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Abstract. Module M is called quasi nil-injective if for each m ∈ Nil(M)
and each homomorphism f : mR → M , there exists a homomorphism
f̄ : M → M such that f̄(x) = f(x) for every x ∈ mR. In this paper, we
first obtain some characterizations of the class of quasi nil-injective modules
and some known results can be deduced from these characteristics. Next,
we apply to ring and obtain some properties of a quasi nil-injective rings.
We proved that a ring R is semiprime if only if every right R-module
(cyclic) is quasi nil-R-injective.

1. Introduction

Throughout the paper, R is an associative ring with identity 1 
= 0 and all
modules are unitary R-modules. We write MR (resp., RM) to indicate that M
is a right (resp., left) R-module. Let J (resp., Zr, Sr) be the Jacobson radical
(resp. the right singular ideal, the right socle) of R and E(MR) the injective
hull of MR. If X is a subset of R, the right (resp. left) annihilator of X in
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R is denoted by rR(X) (resp., lR(X)) or simply r(X) (resp. l(X)). If N is a
submodule of M (resp., proper submodule) we write N ≤ M (resp., N < M).
Moreover, we write N ≤e M, N � M , N ≤⊕ M and N ≤max M to indicate
that N is an essential submodule, a small submodule, a direct summand and
a maximal submodule of M , respectively. A module M is called uniform if
M 
= 0 and every non-zero submodule of M is essential in M . A module
M is finite dimensional (or has finite rank) if E(M) is a finite direct sum of
indecomposable submodules. A right R-module N is called M -generated if
there exists an epimorphism M (I) → N for some index set I. If the set I is
finite, then N is called finitely M -generated. In particular, N is called M -cyclic
if it is isomorphic to M/L for some submodule L of M . Hence, any M -cyclic
submodule X of M can be considered as the image of an endomorphism of M .

It is well-known that a right R-module Q is called injective if for every
monomorphism i : A → B, with A, B right R-modules and every
R-homomorphism f : A → Q, there exists an R-homomorphism f̄ : B → Q
such that f̄ i = f.

In 1940, Baer has launched an important criterion to test the injectivity of
the modules as follows: A right R-module Q is injective if and only if for every
homomorphism i : I → RR with I a right ideal of R and every homomorphism
f : I → Q, there exists a homomorphism f̄ : B → Q such that f̄ i = f.

From the definition of injectivity and Baer’s criterion, two of the extended
development of injectivity respectively co-exist. The first is to expand the
original definition. A right R-module Q is called C-injective (by [4]) (strong
socle-injective (by [2]), resp., if for every monomorphism i : A → B, with
every cyclic right R-module A (the socle of B, resp.,); every right R-module
B and every R-homomorphism f : A → Q, there exists an R-homomorphism
f : B → Q such that fi = f . In this paper, we continue to review the module
A in the above chart is just mR with m ∈ Nil(M), the definition used by the
product of the submodules. According to [5], a module M is called principally
quasi-injective if for every m ∈ M and every homomorphism f : mR → M ,
there exists a homomorphism f̄ : M → M such that f̄(x) = f(x) for every
x ∈ mR. Some of the results and the relationship between the principally
quasi-injective modules and its endomorphism ring has been studied.

According to [5], a module M is called quasi mininjective if for every
simple submodule N of M and every homomorphism f : N → M , there exists
a homomorphism f̄ : M → M such that f̄(x) = f(x) for every x ∈ N . Clearly
have

principally quasi-injective ⇒ quasi mininjective.

Besides, the second development of injectivity is interested by many authors.
In [6], Nicholson-Yousif has launched a concept called P-injective of the modules
M if for every a ∈ R and every homomorphism f : aR → M , there exists a
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homomorphism f̄ : RR → M such that f̄(x) = f(x) for every x ∈ aR. They
brought out many interesting features of the ring such that RR is P -injective. In
addition, a general case of P -injective modules were also studied and expanded,
such as GP -injective modules, AGP -injective modules, ect.

In 2007, Wei and Chen ([7]) have given some general cases of P -injective,
named nil-injective. A module M is called nil-injective if each nilpotent ele-
ment a ∈ R and homomorphism f : aR → M , there exists a homomorphism
f̄ : RR → M such that f̄(x) = f(x) for every x ∈ aR. Naturally, we intro-
duce the concept of quasi nil-injective module. In this paper, we study the
characterizations of the class of such modules and we also obtain some results
on the relationship between quasi nil-injective, nil injective and others. And
we extend this concept into right quasi nil-injective rings, then we prove some
their properties. One of the characterization of a semiprime ring that is every
right R-module (cyclic) is quasi nil-R-injective.

2. Some properties of quasi nil-injective modules

Let M be a right R-module, S := EndR(M) and H, K be submodules
of M .

Then, in [3], Lomp defined

H � K :=
∑

{f(K)| f ∈ Hom(M, H)}.

Definition 2.1. Let H,K be submodules of M . Then H � K is called the
product of two submodules of H and K and is denoted by HK.

From the definition above we have the following comments:

Remark. (i). If M = R, the product of two ideals of R, is the ideal products
in the common sense; i.e., if I, K are ideals of R,

IK = {
∑
i≤k

aibi| ai ∈ I, bi ∈ K, k ∈ N∗}.

(ii) HK ≤ H for every K ≤ M . Moreover, if K is a fully invariant submod-
ule (i.e., carried into itselt by every endomorphism of M), we have HK ≤ K
for every H ≤ M .

First we have the following properties:
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Lemma 2.2. Let H,K, L be submodules of M . Then

(1) H(KL) ≤ (HK)L.

(2) L(H + K) = LH + LK.

(3) LK + HK ≤ (L + H)K.

(4) If M is projective in σ[M ],then (1) and (3) will be the equations.

Proof. By [3, Proposition 3.1]. �

Let N be a submodule of M and n ∈ N. We define a family of submodules
of N as follow:

N1 = N, N2 = NN, N3 = N2N, . . . , Nn = Nn−1N.

Then we have
Nn ≤ Nn−1 ≤ · · · ≤ N2 ≤ N1 = N.

The submodule N of M is called nilpotent if there exists n ∈ N such that
Nn = 0. We denote

Nil(M) = {m ∈ M | mR is nilpotent }.
It is clear to check the following lemma:

Lemma 2.3. Let A, B be submodules of M . If A ≤ B, then An ≤ Bn for
all n.

Definition 2.4. A module M is called quasi nil-injective if each m ∈ Nil(M)
and each homomorphism f : mR → M , there exists a homomorphism
f̄ : M → M such that f̄(x) = f(x) for every x ∈ mR, i.e., the following
diagram is commutative:

M

0 mR M�

�
f

�i
�

�

�

�

�

�

�

�

�

� f̄

where i : mR → M is the inclusion map.

Theorem 2.5. The following conditions are equivalent for module M with
S = End(M):

(1) M is quasi nil-injective.



On quasi nil-injective modules 97

(2) lM (r(m)) = Sm for every m ∈ Nil(M).

(3) If r(m) ≤ r(m′) for every m ∈ Nil(M) and m′ ∈ M , then Sm′ ≤ Sm.

Proof. (1) ⇒ (2). Let m ∈ Nil(M) and x ∈ lM (r(m)). The map f : mR → M
is defined by f(mr) = xr for every r ∈ R. Then f is an R-homomorphism. By
(1), there exists an R-homomorphism f̄ : M → M such that f̄(y) = f(y) for
every y ∈ mR. It implies x = f(m) = f̄(m) ∈ Sm and lM (r(m)) = Sm.

(2) ⇒ (3) is clear.
(3) ⇒ (1). For each m ∈ Nil(M) and each f : mR → M . We have

r(m) ≤ r(f(m)). Hence, there exists f̄ ∈ S such that f(m) = f̄(m). Then M
is quasi nil-injective. �

Next we have a another property of the quasi nil-injective modules:

Proposition 2.6. If M is a quasi nil-injective module, then lS(Ker(α) ∩
∩mR) = Sα + lS(m) for every m ∈ M and α ∈ S with α(m) ∈ Nil(M).

Proof. For each m ∈ M, α ∈ S and α(m) ∈ Nil(M), we have Sα + lS(m) ≤
≤ lS(Ker(α) ∩ mR). In the other hand, for each s ∈ lS(Ker(α) ∩ mR),
s(Ker(α) ∩ mR)) = 0. Moreover, we have α(m) ∈ Nil(M) and r(α(m)) ≤
≤ r(s(m)). By the Theorem 2.5, there exists s′ ∈ S such that s(m) = s′α(m) or
s−s′α ∈ lS(m) and then s ∈ Sα+lS(m). Thus lS(Ker(α)∩mR) = Sα+lS(m).

�

Proposition 2.7. Every direct summand of a quasi nil-injective module is a
quasi nil-injective module.

Proof. Assume that M is a quasi nil-injective module and N is a direct
summand of M . Let ι : N → M be the inclusion map and p : M → N
be the projection. Let n ∈ Nil(N) and f : nR → N be homomorphism.
There exists k ∈ N such that (nR)k = 0. We have (nR)k =

∑{f(nR)| f ∈
∈ Hom(N, (nR)k−1)} = 0. On the other hand, for every g ∈ Hom(M, (nR)k−1),
then g(nR) = gι(nR) ≤ ∑{f(nR)| f ∈ Hom(N, (nR)k−1)} = (nR)k, which
implies ∑

{f(nR)| f ∈ Hom(M, (nR)k−1)} = 0.

Therefore n ∈ Nil(M). Since M is a quasi nil-injective module, there exists
a homomorphism f̄ ∈ End(M) such that f̄(x) = f(x) for every x ∈ nR. We
have pf̄ι ∈ End(N) and pf̄ι(x) = f(x) for every x ∈ nR. Thus N is a quasi
nil-injective module. �

Lemma 2.8. Assume that φ : N → M is an isomorphism and A, B ≤ N .
Then

φ(AB) = φ(A)φ(B) and φ(Ak) = φ(A)k.
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Proof. By the definition of the product AB we have AB =
∑{f(B)| f ∈

∈ Hom(N, A)} and φ(A)φ(B) =
∑{g(φ(B))| g ∈ Hom(M, φ(A))}. Then

φ(AB) =
∑{φ(f(B))| f ∈ Hom(N, A)}. Next, let f ∈ Hom(N, A) and

g = φ|Afφ−1. Then we have g ∈ Hom(M, φ(A)) and g(φ(B)) =
= φ|Afφ−1(φ(B)) = φ|Af(B) = φ(f(B)). This implies φ(AB) ≤ φ(A)φ(B).
On the other hand, for each g ∈ Hom(M, φ(A)), set f = φ−1|φ(A)gφ, we
have f ∈ Hom(N, A). So φ(f(B)) = φφ−1|φ(A)gφ(B) = gφ(B) and hence
gφ(B) ≤ φ(A)φ(B). It implies that

φ(A)φ(B) ≤ φ(AB).

Thus φ(AB) = φ(A)φ(B).
Moreover, we have

φ(A2) = φ(A)φ(A) = φ(A)2

φ(A3) = φ(A2A) = φ(A2)φ(A) = φ(A)2φ(A) = φ(A)3
...

φ(Ak) = φ(A)k.

�
Use the above lemma we have:

Proposition 2.9. Every module, which is isomorphic to a quasi nil-injective
module, is quasi nil-injective.

Proof. Let M be a quasi nil-injective module, N be a right R-module and
φ : N → M be an isomorphism. Assume that n ∈ Nil(N) and f : nR →
→ N is a homomorphism. There exists k ∈ N such that (nR)k = 0. By the
Lemma 2.8 we have φ(nR)k = φ((nR)k) = 0. It implies that (φ(n)R)k = 0 or
φ(n) ∈ Nil(M). Since M is quasi nil-injective, there exists a homomorphism
g ∈ End(M) such that g is an extension of the homomorphism φf(φ−1|φ(n)R).
Let f̄ = φ−1gφ ∈ End(N). For every x ∈ R we have f̄(nx) = φ−1gφ(nx) =
= φ−1(φf(φ−1|φ(n)R))(φ(nx)) = f(nx). Thus f̄ is an extension of f . Hence N
is a quasi nil-injective module. �

It is well-known that a minimal right ideal I of R is either a direct summand
of R or I2 = 0. The following theorem gives us the same result as in the ring
for the module.

Theorem 2.10. Let N be a simple submodule of M . Then N is either a direct
summand of M or N2 = 0.

Proof. Let N be a simple submodule of M . Assume that N2 
= 0, so∑{f(N)| f ∈ Hom(M,N)} 
= 0. Then there exists a homomorphism
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f : M → N such that f(N) 
= 0. Since N is simple, f(N) = N . We have
N = f(N) = f(M) and M = N + Kerf . On the other hand, we have
N ∩ Kerf = Ker(f |N ) and f |N : N → N be a isomorphism (because N is
simple). Thus N ∩Kerf = 0 and so M = N ⊕Kerf . �

Apply the theorem above we have the following result:

Corollary 2.11. Every quasi nil-injective module is quasi mininjective.

Proof. Let M be a quasi nil-injective module and f : mR → M be a
homomorphism with mR be a simple submodule of M . By Theorem 2.10, mR
is either a direct summand of M or (mR)2 = 0. If mR is a direct summand
of M , then fπ : M → M (with π : M → mR the canonical projection) is an
extension of f . If (mR)2 = 0, we have m ∈ Nil(M). By hypothesis f can be
extended to a homomorphism M → M . �

Assume that N is a simple submodule of M . The notation

SocN (M) =
∑

{X ≤ M | X � N}

is called homogeneous components of Soc(M) contains N .

Proposition 2.12. Assume that M is a quasi nil-injective module and S =
= End(M). Then:

(1) If N is a simple submodule of M , then SocN (M) = SN .

(2) If mR is a simple submodule of MR, then Sm is a simple submodule
of SM.

(3) Soc(MR) ≤ Soc(SM).

Proof. (1). We always have SN ≤ SocN (M). Assume that f : N → N1 is
an isomorphism with N1 ≤ M . By Corollary 2.11, M is a quasi mininjective
module, there exists a homomorphism f̄ : M → M which is an extension of f .
So N1 = f(N) = f̄(N) ≤ SN and we have SocN (M) ≤ SN.

(2). Assume that mR is a simple submodule of MR and 0 
= α(m) ∈ Sm for
α ∈ S. Then α : mR → α(m)R is an isomorphism. It follows that α(m)R is a
simple submodule of M . Since M is quasi nil-injective, M is quasi mininjective,
there exists a homomorphism ᾱ : M → M is an extension of α−1 : α(m)R →
mR. Then m = α−1(α(m)) = ᾱ(α(m)) ∈ Sαm. Thus Sm = Sαm or Sm is a
simple submodule of SM.

(3) is deduced from (2). �

Corollary 2.13 ([5, Proposition 1.3]). Assume that M is a principally quasi-
injective module and S = End(M). Then:
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(1) If N is a simple submodule of M , then SocN (M) = SN .

(2) If mR is a simple submodule of MR, then Sm is a simple submodule of
SM.

(3) Soc(MR) ≤ Soc(SM).

3. Quasi nil-injective rings

Let R be a ring, we denote

Nil(RR) = {x ∈ R|(xR)n = 0}.

In general,
Nil(RR) 
= Nil(RR),

but if R is a communative ring then denote

Nil(R) = Nil(RR) = Nil(RR).

We first note that Nil(R) is different from N(R) (the set of all nilpotent ele-
ments of R) by the following example:

Example 3.1. Let R = Mn(F ), F be a field. Since J(R) = 0, Nil(R) = 0.
However, N(R) 
= 0 because it contains the triangular matrix with the zero
elements on the main diagonal.

Definition 3.2. A ring R is called right quasi nil-injective if RR is quasi nil-
injective, i.e., if each a ∈ Nil(RR) and each homomorphism f : aR → R, there
exists a homomorphism f̄ : R → R such that f̄(x) = f(x) for every x ∈ aR .

The definition of a nil-injective ring was introduced by Wei and Chen ([7])
and we have:

nil-injective ⇒ quasi nil-injective.

Note that every ring that has zero Jacobson radical is a quasi nil-injective
ring. We have the characterizations of quasi nil-injective ring:

Theorem 3.3. The following conditions are equivalent for a ring R:

(1) R is a right quasi nil-injective ring.

(2) l(r(a)) = Ra for every a ∈ Nil(RR).
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(3) If r(a) ≤ r(b) for each a ∈ Nil(RR), b ∈ M , then Rb ≤ Ra.

(4) l(r(a) ∩ bR) = Ra + l(b) for every a, b ∈ R with ab ∈ Nil(RR).

(5) l(r(a) ∩ bR) = Ra + l(b) for every a, b ∈ R with a ∈ Nil(RR).

Proof. (1) ⇔ (2) ⇔ (3) by Theorem 2.5.
(3) ⇒ (4) by Proposition 2.6.
(4) ⇒ (5). Let a, b ∈ R with a ∈ Nil(RR). Then ab ∈ Nil(RR) by Lemma

2.3.
(5) ⇒ (1). Let a ∈ Nil(RR) and f : aR → RR be a homomorphism. Then

r(a) ≤ r(f(a)). By (4) we have f(a) ∈ lr(f(a)) ≤ lr(a) = l(r(a) ∩ 1.R) = Ra.
It follows that f can be extended to RR. �

Corollary 3.4. Let R =
∏

i∈I Ri be a direct product of rings. Then R is a
right quasi nil-injective ring if and only if Ri is right quasi nil-injective for all
i ∈ I.

Proof. By Theorem 3.3, l(r(ai)) = Riai, for all ai ∈ Nil((Ri)Ri), i ∈ I. For
each bi ∈ Nil(RR), bi = (0, 0, ..., ai, 0, 0, ...0), i ∈ I we have Rbi = (

∏
i∈I Ri)bi =

=
∏

i∈I(Ribi) =
∏

i∈I(Riai) =
∏

i∈I l(r(ai)) = l(r(
∏

i∈I ai)) = l(r(bi)). So we
are done. �

Theorem 3.5. Let R be a right quasi nil-injective ring. If ReR = R where
e2 = e ∈ R then eRe is a right quasi nil-injective ring.

Proof. Let a ∈ Nil(S), where S = eRe, then a ∈ Nil(RR) and so lRrR(a) =
= Ra by Theorem 3.3. We will show that Sa = lSrS(a). In fact, let x ∈
∈ lSrS(a). then rR(x) ≤ rS(x) ≤ rS(a). Now let y ∈ rR(x) then xy = 0. Write
1 =

∑
i=1

n
uievi, ui, vi ∈ R. Clearly ayuie = aeyuie = 0 for all i, because

rS(x) ≤ rS(a). Therefore ay = ay1 =
∑n

i=1 ayuievi = 0, so y ∈ rR(a). This
implies that rR(x) ≤ rR(a), so x ∈ lRrR(x) ≤ lRrR(a) = Ra. Therefore
x = ex ∈ eRa = eRea = Sa, which so that lSrS(a) ≤ Sa. Hence Sa = lSrS(a)
and so eRe = S is a right quasi nil-injective ring. �

Call a ring R a left minannihilator ring [9] if every minimal left ideal K of
R is an annihilator, equivalent if lr(K) = K.

Corollary 3.6. Every right quasi nil-injective ring is left minannihilator.

Proof. Let R be a right quasi nil-injective ring. Assume that Rk is a minimal
left ideal of R. If(Rk)2 
= 0 then Rk = Re, e2 = e ∈ R. So lr(Rk) = lr(k) =
= lr(Re) = lr(e) = Re = Rk. If (Rk)2 = 0 then (kR)3 = 0 and so
k ∈ Nil(RR). Then lr(Rk) = lr(k) = Rk. This implies that R is a left
minannihilator ring. �
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Corollary 3.7. Every right quasi nil-injective ring is right mininjective.

Proof. Let R be a right quasi nil-injective ring. To prove that R is a
right mininjective ring, we need to show that every minimal right ideal kR
of R, Rk = lr(k). Now, assume that kR is any minimal right ideal of R. If
(kR)2 = 0, then k ∈ Nil(RR). By hypothesis and Theorem 3.2, Rk = lr(k);
we are done. If (kR)2 
= 0, then kR = eR, e2 = e ∈ R. Write e = kc, c ∈ R.
Then k = ek = kck. Set g = ck. Then g2 = g, k = kg and Rk = Rg. Hence
r(k) = r(g) and so Rk = Rg = lr(g) = lr(k); we are also done. Therefore R is
a right mininjective ring. �

Remark 3.8. If R is not a right quasi nil-injective ring then the polynomial
ring R[x] is not quasi nil-injective. Indeed, by hypothesis, there exists 0 
=

= a ∈ Nil(RR) such that lRrR(a) 
= Ra and (aR)n = 0, so [a(R[x])]n = 0 and
a ∈ Nil(R[x]R[x]). Hence lR[x]rR[x](a) = (lRrR(a))[x] 
= (Ra)[x] = (R[x])a so
R[x] is not quasi nil-injective. But we have Sr(R[x]) = 0, so R[x] is a right
mininjective ring. Hence there exists a right mininjective ring which is not
right quasi nil-injective.

Example 3.9. Let V be a 2-dimensional vector space over a field K. Denote

R = {
(

k v
0 k

)
| k ∈ K, v ∈ V }. Then R is a commutative ring. Let x =

=
(

0 v
0 0

)
. Then (xR)2 = 0 and lr(x) 
= Rx. It follows that R is not quasi

nil-injective. Thus the polynomial ring R[x] is a mininjective ring but not quasi
nil-injective.

Corollary 3.10. Every right quasi nil-injective ring is right minsymmetric.

Proof. It follows from [9, Propotion 2.4] and Corollary 3.7. �

A ring R is called right Johns [10] if it is right noetherian and every right
ideal is an annihilator.

Corollary 3.11. Every right John, right quasi nil-injective ring is Quasi-
Frobenious.

Proof. By Corollary 3.7 and [10, Theorem 4.6]. �

Call R right MC2 ring [11] if eRa = 0 implies aRe = 0, where a, e2 = e ∈
∈ R, eR is a minimal right ideal of R.

Corollary 3.12. Every right quasi nil-injective ring is right MC2.

Proof. Assume that R is a right quasi nil-injective ring, eRa = 0, a ∈ R
and eR is a minimal right ideal of R, e2 = e ∈ R. We should be pointed out
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that aRe = 0. If aRe 
= 0 then there exists a b ∈ R such that abe 
= 0. We
have abe ∈ Nil(RR) so Rabe = lr(abe) (by hypothesis). Since r(e) = r(abe) so
Re = Rabe. Therefore Re = ReRe = ReRabe = 0, which is a contradiction.
So we are done. �

Call a ring R n-regular [7] if a ∈ aRa for all a ∈ N(R). A ring R is called
reduced [7] if N(R) = 0.

Proposition 3.13. The following conditions are equivalent for a ring R:
1) Nil(RR) = 0.
2) ∀a ∈ Nil(RR), a ∈ aRa.
3) R is a semiprime ring.
These statement are equivalent if throughout ”right” is replaced by ”left”.

Proof. 1) =⇒ 2) is clear.
2) =⇒ 3) Let I be a nilpotent ideal of R and a ∈ I. Then a ∈ Nil(RR).
By hypothesis, a ∈ aRa. There exists an r ∈ R such that a = ara. Then
(ar)2 = ar, i.e., ar is an idempotent. In the other hand, a ∈ Nil(RR) so
(ar)n = 0. It follows that a = 0 then I = 0. In this case the ring R has no
nilpotents ideals then R is a semiprime ring.
3) =⇒ 1) As we know that in a semiprime ring, the only nilpotent right or left
ideal is 0. Hence Nil(RR) = 0. �

It is clear that every n-regular ring is semiprime but the converse does not
true in general (see [7]). In case of a ∈ Nil(RR), we also have the similar
definition: Call a ring R nil-regular if a ∈ aRa for all a ∈ Nil(RR) (a ∈
∈ Nil(RR)). It is easy to see that n-regular ⇒ nil-regular and the converse
doesn’t hold, in general.

Recall that a ring R is right PP [7] if every principal right ideal of R is
projective as a right R-module. A ring R is right PS [12] if every minimal right
ideal is projective as a right R-module. A ring R is right PP if every principal
right ideal of R is projective as a right R-module. A ring R is said to be right
NPP [7] if RaR is projective for all a ∈ N(R).

Call a ring aRR right NilPP if aRR is projective for all a ∈ Nil(RR).
Hence right PP rings, Von Neumann regular rings, reduced rings and right
NPP rings are right NilPP .

Proposition 3.14.
(1) Every right NilPP ring is right non-singular.
(2) Every right NilPP ring is right PS.
(3) Let R be a ring such that the polynomial ring R[x] is a right NilPP

ring. Then R is a right NilPP ring.
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Proof. (1) Let 0 
= a ∈ Zr(R) = {a ∈ R | r(a) ≤e R} so all u ∈ R, au = 0
then a ∈ Nil(RR). Since R is right NilPP , aR is projective. So r(a) is a direct
summand of R as a right R-module. But a ∈ Zr(R), r(a) must be essential in
RR, which is a contradiction. Hence Zr(R) = 0, so R is a non-singular ring.

(2) By (2) Zr(R) = 0 and Zr(R)∩Sr(R) = 0. By [13], R is a right PS ring.
(3) Let a ∈ Nil(RR), we must verify that rR(a) = eR, e2 = e ∈ R.

Indeed, we have a ∈ Nil(R[x]R[x]), and rR[x](a) = gR[x], by hypothesis. Let
g = g0 + g1x + g2x

2 + · · ·+ gnxn where gi ∈ R, i = 0, 1, 2, · · · , n. Thus g2
0 = g0

and rR(a) = g0R, which implies that R is a right NilPP ring. �

Example 3.15. Let F be a division ring and R =
(

F F
0 F

)
. It is easy to

see that Nil(RR) =
(

0 F
0 0

)
. Then R is not right quasi nil-injective. In fact,

let 0 
= x ∈ F , then R

(
0 x
0 0

)
=

(
0 Fx
0 0

)
=

(
0 F
0 0

)
and lr(

(
0 x
0 0

)
) =

=
(

0 0
F F

)
. Clearly, R

(
0 x
0 0

)

= lr(

(
0 x
0 0

)
). On the other hand, R is right

PP so R is right NilPP .

A module MR is called quasi-nil-R-injective if, for any a ∈ Nil(RR), then
every homomorphism from aR to M can be extended to RR.

Theorem 3.16. The following conditions are equivalent for a ring R.
(1) R is a semiprime ring.
(2) Every right R-module is quasi nil-R-injective.
(3) Every cyclic right R-module is quasi nil-R-injective.
(4) R is a right quasi nil-injective, right NilPP ring.

These statement are equivalent if throughout ”right” is replaced by ”left”.

Proof. (1) =⇒ (2). Assume that M is a right R-module and f : aR → M is
any right R-homomorphism for a ∈ Nil(RR). By (1), a = aba, b ∈ R. Write
e = ab then e2 = abab = ab = e and a = ea. Set m = f(e) then f(x) = mx
which implies that MR is quasi nil-R-injective.

(2) =⇒ (3). It is clear.
(3) =⇒ (4). Clearly R is a right quasi nil-injective ring by (3). Assume

that a ∈ Nil(RR) then aR is quasi nil-injective by (3). Call f : aR → aR the
identity map. By (3), there exists a homomorphism g : RR → aR such that g
is an extension of f . It follows that a = f(a) = g(1)a ∈ aRa. Write g(1) = ab
for some b ∈ R. Then a = ca = aba, c2 = baba = ba = c and aR = cR is a
projective right R-module.
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(4) =⇒ (1) Suppose that a ∈ Nil(RR). By (4) and Theorem 3.3, Ra = lr(a).
Since R is a right NilPP ring, r(a) = (1−e)R, e2 = e ∈ R. Therefore Ra = Re.
Write e = ca, c ∈ R then a = ae = aca ∈ aRa, which implies that R is a
semiprime ring. �
Remark 3.17. The class of quasi nil-R-injective modules and of nil-injective
module are different. Since if they are the same then the class of semiprime rings
and the class of n-regular coincides. It can’t happen since in [7], there exists
a semiprime ring which is not n-regular. For example, the trivial extension
R = T (Z, Z2∞) is semiprime which is not n-regular.

Call a ring R right NilC2 if aRR projective implies aR = eR, e2 = e ∈ R
for all a ∈ Nil(RR).

Example 3.18. The trivial extension R = T (Z, Z2∞) is a commutative ring.
Since Nil(RR) ⊆ J(R), R is right NilC2.

Proposition 3.19.
(1) Every right quasi nil-injective, right NilPP ring is right NilC2.
(2) Every right NilC2 ring is right MC2.
(3) If R[x] is a right NilC2 ring, then so is R.

Proof. (1) Let R be a right quasi nil-injective ring. Suppose that a ∈ Nil(RR)
and aRR is projective. Then r(a) = gR, g2 = g ∈ R. By hypothesis and
Theorem 3.3, we have R(1 − g) = l(gR) = lr(a) = Ra. Write 1 − g = ca and
e = ac. Then a = a(1− g) = aca = ea, e2 = e and aR = eR. It implies that R
is a right NilC2 ring.

(2) By definition.
(3) Suppose that a ∈ Nil(RR) and aRR is projective. Then rR(a) =

= eR, e2 = e ∈ R. Since rR[x](a) = eR[x] and a ∈ Nil(R[x]R[x]), aR[x]R[x]

is projective. Therefore aR[x] = hR[x], h2 = h ∈ R[x] by hypothesis. Let
h = h0 + h1x + h2x

2 + · · · + hnxn where hi ∈ R, i = 1, 2, · · · , n. Clearly
aR = h0R, h2

0 = h0. �
Proposition 3.20.

(1) R is a semiprime ring if and only if R is a right NilC2, right NilPP
ring.

(2) If R is a semiprime ring, then Nil(RR) ∩ J(R) = 0.

Proof. (1) By Theorem 3.19 we have every semiprime ring is a right NilC2,
right NilPP ring. Conversely, let a ∈ Nil(RR), since R is right NilPP , aRR

is projective. Since R is a right NilC2 ring, aR = eR, e2 = e ∈ R. Thus
a = ea ∈ aRa. Hence R is a semiprime ring by Proposition 3.16.

(2) It is obvious. �
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Proposition 3.21. Let R be a right quasi nil-injective ring and a ∈ Nil(RR),
b ∈ R.

(1) If σ : aR → bR is epic then there exists φ : Rb → Ra is monic.
(2) If aR ∼= bR then Rb ∼= Ra.

Proof. (1) Call u ∈ R with σ(x) = u(x) for all x ∈ aR. There exists
v ∈ R such that ua = σ(a) = bv. φ(y) = yv, y ∈ Rb, v ∈ R. Then φ(rb) =
= rbv = rσ(a) = rua ∈ Ra so φ is a left R-homomorphism. If φ(rb) = 0 then
rua = rbv = 0. Since σ is an epimorphism, then b = σ(ac), c ∈ R, b = uac and
rb = ruac = 0 which implies that φ is a monic.

(2) Let φ, u, v, σ as (1). By hypothesis, a ∈ Nil(RR) then σ(a) ∈ Nil(RR).
Since r(a) = r(σ(a)), Rσ(a) = lr(σ(a)) = lr(a) = Ra. Thus Ra = Rua, which
implies that φ is epic. So φ is isomorphism. �
Proposition 3.22. Let R be a right quasi nil-injective ring.

(1) If K is a singular simple right ideal of R, then RK is the homogeneous
component of Sl(R) containing K.

(2) If R is I-finite, then R ∼= R1 × R2, where R1 is semisimple and every
simple right ideal of R2 is nilpotent.

Proof. (1) Assume K = kR, k ∈ R and σ : K → S be a right R-homo-
morphism, where S is a right ideal of R. By hypothesis K is a singular right
ideal of R, we have K2 = 0 so (kR)2 = 0, then k, σ(k) ∈ Nil(RR). By
Theorem 3.3, Rk = lr(k) = lr(σ(k)) = Rσ(k). Hence S = σ(k)R ⊆ RkR ⊆
⊆ RK, so K-component is in RK. The other inclusion always holds.

(2) By Corollary 3.10, this is an immediate consequence of [9, Theorem 1.12].
�
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