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Abstract. We examine the uniform distribution of certain sequences in-
volving the Euler totient function and the sum of divisors function.

1. Introduction and notation

Let us denote by ¢(n) the well known Euler totient function and by o(n)
the sum of the positive divisors of n.

Let also M (resp. A) be the set of multiplicative (resp. additive) functions
and M the set of those f € M such that |f(n)| = 1 for all positive integers
n. For each y € R, we set e(y) := e2™%.

A famous result of H. Daboussi (see Daboussi and Delange [2], [3]) asserts
that

(1.1) o é > f(m)e(na)] =0 asa — oo

n<z

for every @ € R\ Q.
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The proof of (1.1) is based on the large sieve inequality. Another proof
follows from a general form of the Turdn-Kubilius inequality.

Here, we examine the uniform distribution of certain sequences involving
the Euler totient function and the sum of divisors function.

From here on, we let p stand for the set of all primes and we let {y} be the
fractional part of y. We also let P(n) stand for the largest prime factor of n.

2. Background results

The following result was obtained by the second author [7].

Theorem A. Let t : N — R. Assume that for every real number K > 0, there
exists a finite set py of primes p1 < py < --- < py such that

k

(2.1) Ag =Y 1ok

i=1 Pi
and that, given any pair i # j, 1,7 € {1,2,...,k}, the corresponding sequence
ni.g(m) = t(pim) —t(pym)  (meN)

satisfies the relation

1
= E e(n;i,j(m)) — 0 as x — oo.
x

m<x

Then there exists a function p, for which p, — 0 as * — oo and such that

sup =7 fme(t(n)| < pe.

femMm; T

n<z

Observe that Theorem A holds in particular if one chooses t(n) := a,n" +
+---+ ain, a polynomial with real coefficients where at least one the «a;’s is
irrational.

Recall that the discrepancy of a set of N real numbers z1,...,zy is the
quantity

1
D(z1,...,zy):= sup |— E 1—(b—a)l.
[a,b)C[0,1) {z,}€[a,b)
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We now consider the set 7 of all those real valued arithmetic functions ¢ for
which the sequence

m(F):=F(n)+tn) (neN)
satisfies
D((n(F),n2(F),...,nn(F)) — 0 as N — o0
for every arithmetic function F.

The following result is then a consequence of Theorem A.

Corollary 1. Assume that for every real number K > 0, one can choose a set
of primes px = {p1,p2,...,pk} for which (2.1) holds, and let t : N — R be a
function such that the sequence (t(pim) — t(p;m))m>1 is uniformly distributed
modulo 1 for every pair of integers i # j, 1,5 € {1,2,...,k}. Thent e T.

Remark 1. Observe that it is clear that if ¢ € 7, then the sequence (¢(n))n>1
is uniformly distributed modulo 1.

Note also that, letting ||z|| stand for the distance between x and the nearest
integer, we proved in [4] the following.

Theorem B. If « is a positive irrational number such that for each real number

k > 1 there exists a positive constant ¢ = ¢(k, «) for which the inequality

llag|| > % holds for every positive integer ¢,

and let Q(z) = a,a” + --- + ap € R[z], where a, > 0. Assume that h is an
integer valued function belonging to M such that h(p) = Q(p) for every p € p
and that for some fixed d > 0 we have h(p®) = O(p?®) for every prime power
p®. Then the function t(n) = ah(n) belongs to 7.

It follows from Theorem B and Remark 1 that the sequence ({ao(n)})n>1
is uniformly distributed modulo 1.

Remark 2. Observe that one can construct an irrational number « for which
the corresponding sequence ({ao(n)})n>1 is not uniformly distributed modulo
1. Indeed, consider the sequence of integers ({y)r>1 defined by ¢; = 1 and

Ll
lpy1 = 22" for each integer k > 1. Then consider the number

1
azzz%.
=1

It is clear that, letting Ay := Zle 1/2% for each integer k > 1, we have

Ay,
-

2

[e%
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For each integer £ > 1, define Y} := 22 0k41 - With a technique used by Wi-
jsmuller [11], one can prove that, for any fixed e > 0, setting T}, := [(2 —
—e)loglog x|, then

1

(2.2) —#{n<z:0(mn)=0 (mod2%)} —1 as & — oo.
x

It follows from (2.2) that, for every fixed 6 > 0,

—#{n<Yk lac(n)|| < 6} — 1 as k — oo.

Indeed, if for some integer n < Y}, we have o(n) =0 (mod 27¢), then Ty, > ¢,
in which case we have

20(n) _ 2YilogYy
lao(m)] < 221 < 2klogTi

which tends to 0 as k — oco. Hence, for every § > 0, we have
1
—#{n<z:|ac(n)] <d} —1 as & — 00,
x

thus proving our claim.

Further such constructions are given in Kédtai [8]. Finally, observe that the
same is also true for the sequence ({a@(n)})n>1-

Now, let ¢(n) (resp. or(n)) stand for the k-th iterate of the ¢ (resp. o)
function. We first state two conjectures regarding these functions.

Conjecture 1. Let k € N be fized. Then, for almost all real numbers o € [0, 1),

1
(2.3) sup — Z f(n)e(agr(n))| — 0 as x — 00,
fem x n<z
1
(2.4) sup — Z f(n)e(aok(n))| — 0 as r — 00,
fem z n<lz

and in particular, for almost all o € [0,1), both sequences (a(/)k(n))nzl and
(aok(n))n>1 are in T.

Unfortunately this conjecture is still out of reach when k£ > 2. The main
difficulty is that we cannot obtain a good upper bound for the quantities

Ayn) = #m e N g(m) = n},
Bi(n) = #{meN:or(m)=n},
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when k > 2. Observe that, in the case k = 1, it is known (see Pomerance [10])
that

(2.5) Ai(n) <nexp{—=(1+o0(1))L(n)}  (n— o0),

where
log n)(log loglogn)

_
Ln) = loglog n

Conjecture 2. Let k > 2 be a fized integer. There exists a positive constant
ci such that, for all integers n > 2,

(2.6) Ap(n) < er—g—,
log” n
(2.7) Bu(n) < cr—o.
log” n

Remark 3. Observe that (2.6) holds in the case k = 1, since it is a consequence
of (2.5). On the other hand, (2.7) is also true in the case k = 1, as it can be
proved using the same technique developed by Pomerance [10].

3. Main results

Theorem 1. Conjecture 2 implies Conjecture 1.

Theorem 2. Given a real number « and a prime p, let &, := {a¢p(p + a)}.
Then, for almost all real numbers o, the corresponding sequence (&p)pee is
uniformly distributed modulo 1.

Theorem 3. Let o be a positive irrational number such that for each real
number k > 1 there exists a positive constant ¢ = ¢(k, ) for which the inequality

llag|| > q% holds for every positive integer q.
Then, the sequence ({ad(n)}, {ac(n)})n>1 is uniformly distributed modulo [0,1)2.

4. Proof of Theorems 1 and 2

We begin with Theorem 1. We shall consider only the case of ¢ since the
case of o; can be handled in a similar way.
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Let N > 1 be a fixed integer. Set

helN
uy = e, yh,NzyhzeN-FT

and, for a € R,

Ky p(a) = Z e(adr(n)).

un <n<yp

Let S = S(N,h) ={¢r(n):n € (un,yn)}. Given s € S, let

U(s) = #{n € (un,yn) : ox(n) = s}.

It is clear that U(s) < Ag(s) for s < y,. Hence, using (2.6), we have

1
/|KN,h 2da =) "U%s) < max Ak (s )Y Ul(s)
0

sesS seS
(4.1) <
< max Ag(s) Z 1<
nelun,ynl
eN €2N
< Ckﬁ(yh - UN) < 3ckm~
Let
KN h(Oz) 1
Anp = 0,1): | ————| > — ¢ -
N,h {O[E[,) Yn — UN >N3

It follows from (4.1) that, letting A(S) stand for the Lebesgue measure of a real
set S,

3Ck
)\(AN,h) S ﬁ7
so that
leN] 5Ck
(42) A U AN,h ﬁ
h=1

5
Therefore, since Z % < 00, it follows from (4.2) that
N>1

fore) leN]

M U Avn | <o
N=1 h=1
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Hence, using the well known Borel-Cantelli lemma, we have that if F is the
leN]

set of all those real o which belong to U Ap p for infinitely many N, then

AME) = 0. =

Now, let « € E. Then, for every N > Ny(«), we have

K )| < —4—+——.
Knn(0)| € s

We shall use this to prove that

(4.3) é Z e(agr(n)) — 0 as x — 0o.

n<z

For = € [yn N, Yn+1,N), letting Ty be a function tending to infinity arbitrarily
slowly with N, we have

> elagi(n))

Yo elagn(n)+ Y elagu(n)) +

n<x nSeN_TN eN-Ty <n<eN
+ Y elagim)+ Y elagy(n) =
eN<n<lyn N yn,N<n<z

= S1+ 55+ 83+ 85,

say. Trivially we have
T
(4.4) 151] < et

From (4.2), we have

5ceM drx
(4.5) 1Sl < Y — <
N—Ty<M<N M N—-1In

for some constants dy. Finally,

(46) 15o] < 292,
and

eN x
(4.7) |S4] < yhy1,nv —ynN < N < N

=

Gathering (4.4), (4.5), (4.6) and (4.7), estimate (4.3) follows.
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On the other hand, letting E; be the set of those « for which {al} € E,
then A(Ey) = 0, while if o € Fy, then

% Z e(alor(n)) — 0 as r — 00.

n<z

Let g(n) be the smallest prime @ such that @ t n. In order to complete the
proof of the Theorem 1, we need the following result.

Lemma 1. Let k € N. There exists a function y, which tends to infinity with
x such that

(4.8) %#{n <z:q(¢pr(n)) <ys} —0 as r — oo.

Proof. By choosing y, = (loglogz)*(!=%) for a fixed small ¢ > 0, and by
using the same techniques as in Erdés, Granville, Pomerance and Spiro [5] or
as in Bassily and Kétai [1], one can easily obtain (4.8). |

We may now complete the proof of Theorem 1. Let px = {p1,p2,...,pr} be
a set of primes satisfying (2.1) and let t(m) = a¢r(m). Observe that in general
we have that if u | ¢(v), then ¢(ud(v)) = ug(¢(v)). Using this observation and
Lemma 1, we have that t(p;m) = ap;j¢r(m), so that

mi,5(m) = t(pim) — t(pjm) = a(pi — p;)Px(m).

Hence, the sequence (7; ;(m))m>1 is uniformly distributed modulo 1 if «(p; —
—p;) & E. We can drop those o which belong to the set

F= U U Expi—p;)

where Rx = #gi, since A(F) = 0. On the other hand, if « ¢ F, then the
statement of Theorem 1 certainly holds. Thus, the proof of Theorem 1 is
complete.

We will omit the proof of Theorem 2 since it can be obtained by repeating
the arguments used in the proof of Theorem 1 and the techniques used in the
proof of (2.5).

5. Proof of Theorem 3

In order to prove that a given sequence ((uy,vy))n>1 is uniformly dis-
tributed mod [0, 1)2, it is clear that we only need to prove that the sequence
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(kup, + €vy)p>1 is uniformly distributed modulo 1 for all (k,¢) € Z x Z with
(k,0) £ (0,0).
Given a fixed (k,?) € Z x Z with (k, £) # (0,0), consider the functions
A(n) = a(ko(n) + Lo(n)), B(n) = a(ko(n) — £p(n)).
To prove the theorem, it is sufficient to establish that
1

.1 — A 3 .

(5.1) mnz<;:e( (n)) —0 as T — 00

One can easily establish that, for each ¢ > 0, there exists ¢ = ¢(¢) such that
lim. ¢ ¢(¢) = 0 and such that

%#{n <z:Pn)<z}+ %#{n <x:P(n) >z} <c(e).

Therefore, in order to prove (5.1), it is sufficient to prove that
1
5.2 — e(A(n)) — 0 as r — 00.
(52) D MCD)
x5<P(7'5<x1_5
Now, given an integer n < x, we write n = mp, where p = P(n). Since

#{ngx:P(n)>x5andp|m}§xZ%zo(x),

p>x= p

in order to prove (5.2), we only need to prove that

1
5.3 — A 0 .
(5.3) - ; e(A(n)) — as x — 0o
P(n)<zl—e
Now, observe that if (p,m) = 1, then clearly,
A(pm) = pA(m) + B(m),

so that

Yo eAm) = Y eBm)q Y elpAlm)— Y e(pA(m))

P(n?le—s m<zl-e p<z/m p<P(m)
(5.4) = Sa(m)+ Sg(m),
say.

We consider the two cases:
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(a) A(m) = 0;
(b) A(m) £0
In case (a), we have that ko(m) + £p(m) = 0, so that ;EZ; = f%
We will prove that
14
(5.5) i# {me ly, 2y], ;E:Z; k:} —0 asy— oo.

Now, according to a result of Lévy [9], if ¢ is an additive function for which
the three series

Z 9(p) Z 9*(p) Z 1
b l9(pl<1

l9(p)]<1 p o217

are convergent, then if (§,)pep is a sequence of independent random variables
such that

(5.6) P&, = g(p*)) = (1 - 1) L w=12..)

p) p?

then, the distribution F, of n = )" &, is everywhere continuous if and only if

(5.7) D P& #0) =
pPEP
Choosing g(n) := log o(m) e then have
= , W v
¢(m)
p+1 l+p+---+p°
lo and 4) =log —————.
9(p) P 9(p") = log =)

For this function g and &, as in (5.6), one can see that condition (5.7) is satisfied.
Hence, using Lévy’s result, we may conclude that (5.5) is satisfied.

14
o(m) = —— and let
¢(m)  k

us estimate the right hand side of (5.4) as m running over D. We have that

Let D be the set of those positive integers m for which
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the right hand side of (5.4) is

< > mlw/m) <

m,gmlfg
meD

< ¥ S w/m) <

wlgl—e/logxr zl—¢ zl—¢
> / g o FT §m<7r
meD

1
= I(C);xx Z Z m =

2v<zl=¢/logx zl-c o, cal"e

U1 = 2;
meD
< o(l)lfj;x logz = o(1),
1—e¢

where we use (5.5) withy = Hence, the contribution of those n = pm < x

v+l :
for which m € D to the sum in (5.3) is o(x) as x — oo.

It remains to consider case (b), that is when A(m) # 0. First, we set
7 = z/(log x)3°. Then, there exists a sequence of rational numbers (@, /¢m )m>1
such that

(5.8) Am) =2l < 2 m=1,2,...),

‘ Gm, 1
Am |  mT

where 1 < ¢, < 7 for each integer m > 1.

If ¢, > log™ z, arguing as in [1], we obtain that

x/m

SAlm) < 2 my

so that

(5.9) > e(B(m))Sa(m) = o(x).

On the other hand,

(5.10) > e(B(m)Sp(m) < > 101;}(;"):0(3;),

(m)
m<azl—e mP(m)<z
m¢gD m<zl—e

where the fact that this last sum is o(z) was proved in our 2005 paper [4]). Thus,
combining (5.9) and (5.10) shows that the contribution of those n = pm < z
for which m ¢ D to the sum in (5.3) is o(x) as © — oo.
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On the other hand, if g, < log* z, then it follows from (5.8) that

Qm 1

G (ko (n) + €0(n)) | ~ gk (n) + Co(n))r

Setting )
A, A )
dm (k‘a(n) —+ €¢(n)) T Q ) (Av Q) 1,

it is clear that
Q< (logx)40 (|k|log z + |€|)x1_5 <zl

provided z is large enough. Using this and (5.8), we may conclude that, for
some function ¢, — 0 as © — oo, we have

1Qa| Q' < b(x),

thus contradicting our assumption (2.3). This fully establishes (5.3) and thereby
completes the proof of Theorem 3.
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