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Abstract. In the present paper we introduce a new subclass of analytic
functions. We prove a sharp upper bound to the second Hankel determi-

nant associated with the kth root transform
[
f(zk)

] 1
k of the normalized

analytic function f(z), when it belongs to this class, using Toeplitz deter-
minants.

1. Introduction

Let A denote the class of all functions f(z) of the form

(1.1) f(z) = z +
∞∑

n=2

anzn

in the open unit disc E = {z : |z| < 1}. Let S be the subclass of A consisting of
univalent functions. In 1985, Louis de Branges de Bourcia proved the Bieber-
bach conjecture, i.e.: for a univalent function its nth coefficient is bounded

Key words and phrases: Analytic function, upper bound, reciprocal of bounded turning
function, second Hankel functional, positive real function, Toeplitz determinants.
2010 Mathematics Subject Classification: 30C45; 30C50.

https://doi.org/10.71352/ac.44.069

https://doi.org/10.71352/ac.44.069


70 D. Vamshee Krishna, B. Venkateswarlu and T. RamReddy

by n (see [3]). The bounds for the coefficients give information about the ge-
ometric properties of these functions. In particular, the growth and distortion
properties of a normalized univalent function are determined by the bound of
its second coefficient. The Hankel determinant of f for q ≥ 1 and n ≥ 1 was
defined by Pommerenke [14] as

Hq(n) =

an an+1 · · · an+q−1

an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

, (a1 = 1).

This determinant has been considered by many authors in the literature. For
example, Noor [12] determined the rate of growth of Hq(n) as n → ∞ for
the functions in S with bounded boundary. Ehrenborg [5] studied the Hankel
determinant of exponential polynomials. The Hankel transform of an integer
sequence and some of its properties were discussed by Layman [8]. In the recent
years several authors have investigated bounds for the Hankel determinant of
functions belonging to various subclasses of univalent and multivalent analytic
functions in the literature. In particular for q = 2, n = 1, a1 = 1 and q = 2,
n = 2, a1 = 1, the Hankel determinant simplifies respectively to

H2(1) =
a1 a2

a2 a3
= a3 − a2

2,

and H2(2) =
a2 a3

a3 a4
= a2a4 − a2

3.

We refer to H2(2) as the second Hankel determinant. A familiar result is that
for the univalent function given in (1.1) the sharp inequality H2(1) = |a3−a2

2| ≤
≤ 1 holds true [4]. For a family T of functions in S, the more general problem
of finding sharp estimates for the functional |a3 − μa2

2|(μ ∈ R or μ ∈ C)
in popularly known as the Fekete-Szegő problem for T . Ali [2] found sharp
bounds for the first four coefficients and sharp estimate for the Fekete-Szegő
functional |γ3 − tγ2

2 |, where t is real for the inverse function of f defined as
f−1(w) = w +

∑∞
n=2 γnwn ∈ S̃T (α), the class of strongly starlike functions

of order α (0 < α ≤ 1). Janteng, Halim and Darus [7] have considered the
functional |a2a4 − a2

3| and found sharp upper bound for the function f in the
subclass RT of S, consisting of functions whose derivative have a positive real
part (also called bounded turning functions) studied by Mac Gregor [10] and
have shown that if f ∈ RT then |a2a4 − a2

3| ≤ 4
9 . R. M. Ali, S. K. Lee, V.

Ravichandran and S. Supramaniam [1] obtained sharp bounds for the Fekete-
Szegő coefficient functional denoted by |b2k+1−μb2

k+1| associated with the kth

root transform
[
f(zk)

] 1
k of the function given in (1.1), belonging to certain
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subclasses of S. The kth root transform for the function f given in (1.1) is
defined as

(1.2) F (z) :=
[
f(zk)

] 1
k = z +

∞∑
n=1

bkn+1z
kn+1

Motivated by the results obtained by R. M. Ali, S. K. Lee, V. Ravichandran
and S. Supramaniam [1], in the present paper, we introduce a new subclass
denoted by R̂T and obtain sharp upper bound to the functional |bk+1b3k+1 −
−b2

2k+1| for the kth root transform of the function f when it belongs to this
class, defined as follows.

Definition 1.1. A function f(z) ∈ A is said to be function whose reciprocal
derivative has a positive real part (also called reciprocal of bounded turning
function), denoted by f ∈ R̂T , if and only if

Re
1

f ′(z)
> 0, ∀z ∈ E.

2. Preliminary results

Let P denote the class of functions consisting of p, such that

(2.1) p(z) = 1 + c1z + c2z
2 + c3z

3 + ... = 1 +
∞∑

n=1

cnzn,

which are regular in the open unit disc E and satisfy Re p(z) > 0 for any
z ∈ E. Here p(z) is called the Carathéodory function [4].

Lemma 2.1. ([13], [15]) If p ∈ P, then |ck| ≤ 2, for each k ≥ 1 and the
inequality is sharp for the function 1+z

1−z .

Lemma 2.2. ([6]) The power series for p(z) = 1 +
∑∞

n=1 cnzn given in (2.1)
converges in the open unit disc E to a function in P if and only if the Toeplitz
determinants

Dn =

2 c1 c2 · · · cn

c−1 2 c1 · · · cn−1

c−2 c−1 2 · · · cn−2

...
...

...
...

...
c−n c−n+1 c−n+2 · · · 2

, n = 1, 2, 3, . . .
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and c−k = ck, are all non-negative. They are strictly positive except for p(z) =
=

∑m
k=1 ρkp0(eitkz), ρk > 0, tk real and tk 
= tj, for k 
= j, where p0(z) = 1+z

1−z ;
in this case Dn > 0 for n < (m− 1) and Dn

.= 0 for n ≥ m.

This necessary and sufficient condition found in [6] is due to Carathéodory
and Toeplitz. We may assume without restriction that c1 > 0. On using
Lemma 2.2, for n = 2, we have

D2 =
2 c1 c2

c1 2 c1

c2 c1 2
= [8 + 2Re {c2

1c2} − 2 | c2 |2 − 4|c1|2] ≥ 0,

which is equivalent to

(2.2) 2c2 = c2
1 + x(4− c2

1), for some x, |x| ≤ 1.

For n = 3,

D3 =

2 c1 c2 c3

c1 2 c1 c2

c2 c1 2 c1

c3 c2 c1 2

≥ 0

and is equivalent to

(2.3) |(4c3 − 4c1c2 + c3
1)(4− c2

1) + c1(2c2 − c2
1)

2| ≤ 2(4− c2
1)

2 − 2|(2c2 − c2
1)|2.

Simplifying the expressions (2.2) and (2.3), we get

4c3 = {c3
1 + 2c1(4− c2

1)x− c1(4− c2
1)x

2+

+ 2(4− c2
1)(1− |x|2)z}, with |z| ≤ 1.

(2.4)

To obtain our result, we refer to the classical method initiated by Libera and
Zlotkiewicz [9] and used by several authors in the literature.

3. Main result

Theorem 3.1. If f(z) ∈ R̂T , then |bk+1bk+3 − b2
k+2| ≤ 4

9k2 with k ∈ N =
= {1, 2, 3, . . .} and the inequality is sharp.

Proof. For f(z) = z +
∑∞

n=2 anzn ∈ R̂T , by virtue of Definition 1.1, there
exists an analytic function p ∈ P in the open unit disc E with p(0) = 1 and
Re p(z) > 0 such that

(3.1)
1

f ′(z)
= p(z) ⇐⇒ 1 = f ′(z)p(z).
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Replacing f ′(z) and p(z) with their equivalent series expressions in (3.1), we
have

1 =

{
1 +

∞∑
n=2

nanzn−1

}{
1 +

∞∑
n=1

cnzn

}
.

Upon simplification, we obtain

1 = 1 + (c1 + 2a2)z + (c2 + 2a2c1 + 3a3)z2+

+ (c3 + 2a2c2 + 3a3c1 + 4a4)z3 + · · · .
(3.2)

Equating the coefficients of like powers of z, z2 and z3 respectively on both
sides of (3.2), after simplifying, we get

(3.3) a2 =
−c1

2
; a3 =

1
3
(c2

1 − c2); a4 = −1
4
(c3 − 2c1c2 + c3

1).

For a function f given by (1.1), a computation shows that

[
f(zk)

] 1
k =

[
zk +

∞∑
n=2

anznk

] 1
k

=

=
[
z +

1
k

a2z
k+1 +

{1
k

a3 +
1− k

2k2
a2
2

}
z2k+1+

+
{1

k
a4 +

1− k

k2
a2a3 +

(1− k)(1− 2k)
6k3

a3
2

}
z3k+1 + · · ·

]
.

(3.4)

The equations (1.2) and (3.4) yield;

(3.5)
bk+1 =

1
k

a2 ; b2k+1 =
1
k

a3 +
1− k

2k2
a2
2 ;

b3k+1 =
1
k

a4 +
1− k

k2
a2a3 +

(1− k)(1− 2k)
6k3

a3
2.

Simplifying the equations (3.3) and (3.5), we get

(3.6)
bk+1 =

−c1

2k
; b2k+1 =

1
24k2

[(5k + 3)c2
1 − 8kc2];

b3k+1 = − 1
48k3

[12k2c3 − 8k(1 + 2k)c1c2 + (1 + 2k)(1 + 3k)c3
1].

Substituting the values of bk+1, b2k+1 and b3k+1 from (3.6) in the second Hankel
determinant |bk+1b3k+1− b2

2k+1| for the kth transform of the function f ∈ R̂T ,
which simplifies to

(3.7) |bk+1b3k+1−b2
2k+1| =

1
576k4

∣∣72k2c1c3−16k2c2
1c2−64k2c2

2+(11k2−3)c4
1

∣∣.
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Substituting the values of c2 and c3 from (2.2) and (2.4) respectively from
Lemma 2.2 on the right-hand side of (3.7), we have

(3.8)
∣∣72k2c1c3 − 16k2c2

1c2 − 64k2c2
2 + (11k2 − 3)c4

1

∣∣ =

=
∣∣∣72k2c1 × 1

4
{c3

1 + 2c1(4− c2
1)x− c1(4− c2

1)x
2 + 2(4− c2

1)(1− |x|2)z}−

− 16k2c2
1 ×

1
2
{c2

1 + x(4− c2
1)} − 64k2 × 1

4
{c2

1 + x(4− c2
1)}2+

+ (11k2 − 3)c4
1

∣∣∣.
Using the triangle inequality and the fact |z| < 1, upon simplification, we get

(3.9)

∣∣72k2c1c3 − 16k2c2
1c2 − 64k2c2

2 + (11k2 − 3)c4
1

∣∣ ≤
≤ ∣∣(5k2 − 3)c4

1 + 36k2c1(4− c2
1) + 4k2c2

1(4− c2
1)|x|+

+2k2(c1 + 2)(c1 + 16)(4− c2
1)|x|2

∣∣ .
Since c1 ∈ [0, 2], noting that (c1 + a)(c1 + b) ≥ (c1 − a)(c1 − b), where a, b ≥ 0
on the right hand side of (3.9), we have

(3.10)

∣∣72k2c1c3 − 16k2c2
1c2 − 64k2c2

2 + (11k2 − 3)c4
1

∣∣ ≤
≤ ∣∣(5k2 − 3)c4

1 + 36k2c1(4− c2
1) + 4k2c2

1(4− c2
1)|x|+

+2k2(c1 − 2)(c1 − 16)(4− c2
1)|x|2

∣∣ .
Choosing c1 = c ∈ [0, 2], applying triangle inequality and replacing |x| by μ on
the right-hand side of the above inequality, we have

(3.11)

∣∣72k2c1c3 − 16k2c2
1c2 − 64k2c2

2 + (11k2 − 3)c4
1

∣∣ ≤
≤ [

(5k2 − 3)c4 + 2k2
{
18c + 2c2μ + (c− 2)(c− 16)μ2

}× (4− c2)
]

=

= F (c, μ), for 0 ≤ μ = |x| ≤ 1.

We next maximize the function F (c, μ) on the closed region [0, 2]× [0, 1]. Dif-
ferentiating F (c, μ) partially with respect to μ, we get

(3.12)
∂F

∂μ
= 4k2

[
c2 + (c− 2)(c− 16)μ

]× (4− c2).

For 0 < μ < 1, for fixed c with 0 < c < 2 and for every k ∈ N, from (3.12),
we observe that ∂F

∂μ > 0. Therefore, F (c, μ) is an increasing function of μ and
hence it cannot have maximum value at any point in the interior of the closed
region [0, 2]× [0, 1]. Moreover, for fixed c ∈ [0, 2], we have

(3.13) max
0≤μ≤1

F (c, μ) = F (c, 1) = G(c).
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Therefore, replacing μ by 1 in F (c, μ), upon simplification, we obtain

(3.14) G(c) = −(k2 + 3)c4 − 40k2c2 + 256k2,

(3.15) G′(c) = −4(k2 + 3)c3 − 80k2c.

From (3.15), we observe that G′(c) ≤ 0, for every c ∈ [0, 2] and for every k.
Therefore, G(c) becomes a decreasing function of c in the interval [0, 2], whose
maximum value occurs at c = 0 only. From (3.14), the maximum value of G(c)
is given by

(3.16) Gmax = G(0) = 256k2.

From the relations (3.11) and (3.16), we get

(3.17)
∣∣72k2c1c3 − 16k2c2

1c2 − 64k2c2
2 + (11k2 − 3)c4

1

∣∣ ≤ 256k2.

Simplifying the expressions (3.7) and (3.17), we obtain

(3.18)
∣∣bk+1b3k+1 − b2

2k+1

∣∣ ≤ 4
9k2

.

By setting c1 = c = 0 and selecting x = 1 in the expressions (2.2) and (2.4),
we find that c2 = 2 and c3 = 0 respectively. Using these values in (3.17), we
observe that equality is attained, which shows that our result is sharp. For
these values, we derive the extremal function, given by

(3.19)
1

f ′(z)
= 1 + 2z2 + 2z4 + ... =

1 + z2

1− z2
.

This completes the proof of our Theorem. �

Remark 3.1. Choosing k = 1 in (3.18), the result coincides with that of
Janteng, Halim and Darus [7]. From this, we conclude that the upper bound
to the second Hankel determinant of a function whose derivative has a positive
real part and a function whose reciprocal derivative has a positive real part is
the same.
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