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Abstract. Let D = 2 or 3, E := {n2 + Dm2|n, m ∈ N}, ε(n) = 1 if n ∈ E
and ε(n) ∈ {−1, 1} if n ∈ N \ E. Let f : N → C be such a function for
which

f(n2 + Dm2) = f(n)2 + Df(m)2 for every n, m ∈ N.

Then either f(n) = 0, or f(n) =
ε(n)

D + 1
, or f(n) = ε(n)n for every n ∈ N.

1. Introduction

Let, as usual, P, N, C be the set of primes, positive integers and complex
numbers, respectively.

Let us consider an arithmetical function f : N → C satisfying the Cauchy’s
functional equation

f(n + m) = f(n) + f(m) for every n, m ∈ N.

It is obvious that f(n) = nf(1) holds for all n ∈ N.
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In 1992, C. Spiro [9] proved that if a multiplicative function f : N → C
satisfies the relations

f(p0) 
= 0 for some p0 ∈ P

and
f(p + q) = f(p) + f(q) for every p, q ∈ P,

then f(n) = n for all n ∈ N.

In 1997 J.-M. De Koninck, I. Kátai and B. M. Phong [4] proved that if a
multiplicative function f : N → C satisfies the relation

f(p + n2) = f(p) + f(n2) for every p ∈ P, n ∈ N,

then f is the identity function. K.-H. Indlekofer and B. M. Phong [5] proved
that if k ∈ N, f ∈ M satisfy f(2)f(5) 
= 0 and f

(
n2 + m2 + k + 1

)
= f(n2 +

+1) + f(m2 + k) for all n, m ∈ N, then f(n) = n for all n ∈ N, (n, 2) = 1.

For some generalizations of the above results, we refer the other works of
P. V. Chung [2], B. M. Phong [6], [7], [8].

Let D ∈ N. We are interested in all solutions of those f : N → C for which

(1.1) f(n2 + Dm2) = f(n)2 + Df(m)2 for every n, m ∈ N.

In the case D = 1, the solutions of (1.1) were given in [1]. I. Kátai and B. M.
Phong posed the following conjecture:

Conjecture. (I. Kátai and B. M. Phong [3]) Assume that the arithmetical
function f : N → C satisfies (1.1). Then one of the following assertions holds:

a) f(n) = 0 for every n ∈ N,

b) f(n) =
ε(n)

D + 1
for every n ∈ N,

c) f(n) = ε(n)n for every n ∈ N,

where E := {n2 + Dm2|n, m ∈ N}, ε(n) = 1 if n ∈ E and ε(n) ∈ {−1, 1} if
n ∈ N \ E.

Our purpose in this note is to prove this conjecture for D = 2 and D = 3.

Theorem 1. The conjecture is true for D = 2.

Theorem 2. The conjecture is true for D = 3.
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2. Proof of Theorem 1.

In this section, we assume that D = 2 and f : N → C satisfies

(2.1) f(n2 + 2m2) = f(n)2 + 2f(m)2 for every n, m ∈ N.

First we prove the following

Lemma 1. Let
Sn := f(n)2 for every n ∈ N.

Then

(2.2) Sk = Ak2 + Bk + C(k) for every k ∈ N,

where

A :=
1
4
(S4 − S3 − S2 + S1), B :=

1
2
(−2S4 + 3S3 + 2S2 − 3S1)

and

C(k) :=
1
8
[(7S4 − 13S3 − 3S2 + 17S1) + (S4 − 3S3 + 3S2 − S1)(−1)k].

Proof. Since

(n + 4)2 + 2(n + 1)2 = n2 + 2(n + 3)2 for every n ∈ N,

we infer from (2.1) that

(2.3) Sn+4 = 2Sn+3 − 2Sn+1 + Sn for every n ∈ N.

Assume that A, B and C(k) are defined in Lemma 1. Then we have

(2.4) C(k) =

{
1
4 (3S4 − 5S3 − 3S2 + 9S1) if 2 � k

S4 − 2S3 + 2S1 if 2 | k

and it is easy to check that

A + B + C(1) = S1, 4A + 2B + C(2) = S2,

and
9A + 3B + C(3) = S3, 16A + 4B + C(4) = S4.

These prove that (2.2) holds for k ≤ 4.
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Assume that (2.2) holds for k = n, n + 1, n + 2, n + 3, where n ≥ 1. Then
we get from (2.3) and our assumptions that

Sn+4 = 2Sn+3 − 2Sn+1 + Sn = 2[A · (n + 3)2 + B · (n + 3) + C(n + 3)]−
− 2[A · (n + 1)2 + B · (n + 1) + C(n + 1)] + [An2 + Bn + C(n)] =

= A[2(n + 3)2 − 2(n + 1)2 + n2] + B[2(n + 3)− 2(n + 1) + n] + C(n + 4) =

= A · (n + 4)2 + B · (n + 4) + C(n + 4).

Here, we have used (2.4) to get C(n + 3) = C(n + 1) and C(n) = C(n + 4).
Thus, we proved that (2.2) is true for k = n + 4 and the proof of Lemma 1 is
complete. �

Lemma 2. One of the following holds:

(2.5) f(n) = 0 for every n ∈ N,

(2.6) Sn = f(n)2 =
1
9

for every n ∈ N,

(2.7) Sn = f(n)2 = n2 for every n ∈ N.

Proof. Let S1 = f(1)2 := a and S2 = f(2)2 := b.
It follows from (2.1) that if n = u2 + 2v2, then

f(n) = f(u2 + 2v2) = f(u)2 + 2f(v)2 = Su + 2Sv,

consequently

(2.8) Sn = (Su + 2Sv)2 if n = u2 + 2v2.

Since (n, u, v) ∈ {3, 1, 1), (6, 2, 1), (9, 1, 2), (11, 3, 1)} satisfies the equation
n = u2 + 2v2, we get from (2.8) that

(2.9)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S3 = (S1 + 2S1)2 = 9a2,

S6 = (S2 + 2S1)2 = (b + 2a)2,
S9 = (S1 + 2S2)2 = (a + 2b)2,
S11 = (S3 + 2S1)2 = (9a2 + 2a)2.

It is obvious from (2.1) that if x2 + 2y2 = z2 + 2t2 then

Sx + 2Sy = Sz + 2St.
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Consequently, the relations 52 + 2 · 12 = 32 + 2 · 32, 52 + 2 · 22 = 12 + 2 · 42 and
72 + 2 · 12 = 11 + 2 · 52 imply

(2.10)

⎧⎪⎪⎨⎪⎪⎩
S5 = S3 + 2S3 − 2S1 = 27a2 − 2a,

S4 = S5+2S2−S1
2 = 27

2 a2 − 3
2a + b,

S7 = −S1 + 2S5 = 54a2 − 5a.

Thus, by using (2.9)-(2.10), we infer from the relations 62 + 2 · 32 = 22 + 2 · 52,
92 + 2 · 32 = 11 + 2 · 72 and 12 + 2 · 112 = 92 + 2 · 92 that

(2.11) (8a + b− 1)(4a− b) = S6 + 2S3 − (S2 + 2S5) = 0,

(2.12) − 89a2 + 9a + 4ba + 4b2 = S9 + 2S3 − (S7 + 2S5) = 0

and

(2.13) a(a− 1)(9a− 1)(9a + 14) = S11 + 2S1 − (S5 + 2S7) = 0.

From (2.11) we have
b ∈ {1− 8a, 4a}.

Case I: b = 1− 8a

First we prove that a = b = 1
9 . From (2.12), we have

−89a2+9a+4ba+4b2 = −89a2+9a+4(1−8a)a+4(1−8a)2 = (9a−1)(15a−4) = 0.

This relation with (2.13) proves that a = 1
9 and b = 1− 8a = 1− 8

9 = 1
9 .

Finally, the above relations imply

S1 = a =
1
9
, S2 = b =

1
9
, S3 = 9a2 =

1
9
, S4 =

1
2
(7a2 − 3a + 2b) =

1
9
.

It is easy to check that in this case we have

A = B = 0

and

C(k) =
1
8
[(7S4 − 13S3 − 3S2 + 17S1) + (S4 − 3S3 + 3S2 − S1)(−1)k] =

=
1
72

[(7− 13− 3 + 17) + (1− 3 + 3− 1)(−1)k] =
1
9
.
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The proof of (2.6) follows from (2.2) of Lemma 1.

Case II: b = 4a

We obtain from (2.12) that

−89a2 + 9a + 4ba + 4b2 = −89a2 + 9a + 4(4a)a + 4(4a)2 = −9a(a− 1) = 0.

This implies

a ∈
{

0, 1
}

.

If a = 0, then b = 4a = 0. Then S1 = a = 0, S2 = b = 0, S3 = 9a2 = 0. By
(2.10) we have S4 = 1

2 (27a2 − 3a + 2b) = 0, and so

A = B = C(k) = 0 for every k ∈ N.

It follows from (2.2) that Sn = f(n)2 = 0 for all n ∈ N, which proves (2.5).

Finally we consider the case a = 1. Then we have

S1 = a = 12, S2 = b = 4a = 22, S3 = 9a2 = 32, S4 =
1
2
(27− 3 + 8) = 42

and
A =

1
4
(S4 − S3 − S2 + S1) =

1
4
(42 − 32 − 22 + 1) = 1,

B :=
1
2
(−2S4 + 3S3 + 2S2 − 3S1) =

1
2
(−2 · 42 + 3 · 32 + 2 · 22 − 3) = 0

and

C(k) :=
1
8
[(7S4 − 13S3 − 3S2 + 17S1) + (S4 − 3S3 + 3S2 − S1)(−1)k] =

=
1
8
[(7 · 42 − 13 · 32 − 3 · 22 + 17) + (42 − 3 · 32 + 3 · 22 − 1)(−1)k] = 0

for all k ∈ N.

Thus we get from (2.2) that

Sk = Ak2 + Bk + C(k) = k2 for every k ∈ N.

The proof of (2.7) and of Lemma 2 is complete. �
Theorem 1 follows from Lemma 2, because from (2.6)–(2.7) it follows that

f(n2 + 2m2) = f(n)2 + 2f(m)2 =

{
1
3 if f(k)2 = 1

9 (∀k ∈ N)
n2 + 2m2 if f(k)2 = k2 (∀k ∈ N).
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3. Proof of Theorem 2.

In this section, we assume that D = 3 and f : N → C satisfies

(3.1) f(n2 + 3m2) = f(n)2 + 3f(m)2 for every n, m ∈ N.

First we prove the following

Lemma 3. Let
Sn := f(n)2 for every n ∈ N.

Then

(3.2)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S2 = 4
5S1 + 16

5 S2
1 ,

S3 = 7
15S1 + 128

15 S2
1 ,

S4 = 16S2
1 ,

S5 = − 3
5S1 + 128

5 S2
1 ,

S6 = − 4
3S1 + 112

3 S2
1

and

(3.3) S1 ∈ {0,
1
16

, 1}.

Proof. It is obvious from (3.1) that if x2 + 3y2 = z2 + 3t2 then

Sx + 3Sy = Sz + 3St.

Consequently, the relations 42 + 3 · 22 = 12 + 3 · 32, 52 + 3 · 12 = 12 + 3 · 32 and
62 + 3 · 42 = 32 + 3 · 52 imply

(3.4)

⎧⎪⎨⎪⎩
S4 = S1 − 3S2 + 3S3

S5 = −2S1 + 3S3

S6 = −3S4 + S3 + 3S5 = −9S1 + 9S2 + S3

From (3.4) and from 52 + 3 · 32 = 22 + 3 · 42, we get

0 = S5 + 3S3 − S2 − 3S4 = (−2S1 + 3S3) + 3S3 − S2 − 3(S1 − 3S2 + 3S3) =
= −5S1 + 8S2 − 3S3,

which gives

(3.5) S3 =
−5S1 + 8S2

3
and S4 = S1 − 3S2 + 3S3 = −4S1 + 5S2.
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Finally, we infer from (3.5) and from the fact f(4) = f(12 + 3 · 12) = 4S1

that
S4 = (f(4))2 = 16S2

1 and 16S2
1 + 4S1 − 5S2 = 0.

This implies

(3.6) S2 =
4S1 + 16S2

1

5
.

Therefore the proof of (3.2) follows from (3.4)-(3.6).
Now we prove (3.3). It follows from the relations 72 + 3 · 32 = 12 + 3 · 52,

122 + 3 · 22 = 32 + 3 · 72 that

S7 = S1 − 3S3 + 3S5 = −11
5

S1 +
256
5

S2
1

and
S12 = −3S2 + S3 + 3S7 = −128

15
S1 +

2288
15

S2
1 .

But
f(7) = f(22 + 3 · 12) = S2 + 3S1 =

19
5

S1 +
16
5

S2
1

and
f(12) = f(32 + 3 · 12) = S3 + 3S1 =

52
15

S1 +
128
15

S2
1 .

We get the following two equations

− 1
25

S1(S1 − 1)(16S1 − 1)(16S1 + 55) = S7 −
(19

5
S1 +

16
5

S2
1

)2

= 0

and

−128
225

S1(S1 − 1)(16S1 − 1)(8S1 + 15) = S12 −
(52

15
S1 +

128
15

S2
1

)2

= 0.

These show that (3.3) is true. Lemma 3 is proved. �

Proof of Theorem 2.

Since

(n + 6)2 + 3(n + 2)2 = n2 + 3(n + 4)2 for every n ∈ N,

we infer from (3.1) that

(3.7) Sn+6 = 3Sn+4 − 3Sn+2 + Sn for every n ∈ N.



On the equation f(n2 + Dm2) = f(n)2 + Df(m)2 67

We shall prove that

(3.8) Sn =
1
15

S1(16S1 − 1)n2 − 16
15

S1(S1 − 1) for every n ∈ N.

By using (3.2), one can check that (3.8) holds for n ∈ {1, 2, · · · , 6}. Let

(3.9) A :=
1
15

S1(16S1 − 1) and B := −16
15

S1(S1 − 1).

Assume that Sn = An2 + B holds for k = n, n + 1, n + 2, n + 3, n + 4, n + 5,
where n ≥ 1. Then we get from (3.7) and our assumptions that

Sn+6 = 3Sn+4 − 3Sn+2 + Sn =

= 3[A · (n + 4)2 + B]− 3[A · (n + 2)2 + B] + [A · n2 + B] =

= A · (n + 6)2 + B.

Thus, (3.8) is proved.
From (3.3), we have S1 ∈ {0, 1

16 , 1}.
If S1 = 0, then from (3.8)-(3.9) we have A = B = 0 and Sn = 0 for all

n ∈ N. Consequently f(n) = 0 for all n ∈ N.
If S1 = 1

16 , then from (3.8)-(3.9) we have A = 0, B = 1
16 and Sn = 1

16 for
all n ∈ N. Therefore f(n)2 = 1

16 and

f(n2 + 3m2) = f(n)2 + 3f(m)2 =
1
4

for all n, m ∈ N, which proves Theorem 2.
If S1 = 1, then from (3.8)-(3.9) we have A = 1, B = 0 and Sn = n2 for all

n ∈ N. In this case we also have f(n)2 = n2 and

f(n2 + 3m2) = f(n)2 + 3f(m)2 = n2 + 3m2

for all n, m ∈ N, from which the proof of Theorem 2 is completed. �
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Eötvös Loránd University
H-1117 Budapest
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