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ON THE EQUATION
f(n* + Dm?) = f(n)* + Df(m)*
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Abstract. Let D =2or 3, E := {n> + Dm?*ln,m € N}, e(n) =1ifn € E
and e(n) € {—1,1} if n € N\ E. Let f : N — C be such a function for

which
f(n* + Dm?) = f(n)> + Df(m)* for every n,m € N.
Then either f(n) =0, or f(n) = DE(Z)I’ or f(n) =€e(n)n for every n € N.

1. Introduction

Let, as usual, P, N, C be the set of primes, positive integers and complex
numbers, respectively.

Let us consider an arithmetical function f : N — C satisfying the Cauchy’s
functional equation

f(n+m)=f(n)+ f(m) for every n,m € N.
It is obvious that f(n) = nf(1) holds for all n € N.
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In 1992, C. Spiro [9] proved that if a multiplicative function f : N — C
satisfies the relations

f(po) #0 for some py € P

and
flp+q)=fp) + flqg) forevery p,qeP,

then f(n) =n for all n € N.

In 1997 J.-M. De Koninck, I. Kédtai and B. M. Phong [4] proved that if a
multiplicative function f : N — C satisfies the relation

flp+n?) = f(p) + f(n?) forevery peP, neN,

then f is the identity function. K.-H. Indlekofer and B. M. Phong [5] proved
that if k € N, f € M satisfy f(2)f(5) #0and f (n®+m?+k+1) = f(n®>+
+1) + f(m? + k) for all n,m € N, then f(n) =n for alln € N, (n,2) = 1.

For some generalizations of the above results, we refer the other works of
P. V. Chung [2], B. M. Phong [6], [7], [8].

Let D € N. We are interested in all solutions of those f : N — C for which
(1.1) f(n* +Dm?) = f(n)>+ Df(m)* for every n,m € N.

In the case D = 1, the solutions of (1.1) were given in [1]. I. Kétai and B. M.
Phong posed the following conjecture:

Conjecture. (I. Katai and B. M. Phong [3]) Assume that the arithmetical
function f: N — C satisfies (1.1). Then one of the following assertions holds:

a) f(n)=0 forevery neN,
)

D+1
c)  [fn)=¢

where E := {n? + Dm?|n,m € N}, €(n) =1 ifn € E and €(n) € {-1,1} if
neN\E.

Our purpose in this note is to prove this conjecture for D =2 and D = 3.

for every n €N,

n)n  for every n €N,

Theorem 1. The conjecture is true for D = 2.

Theorem 2. The conjecture is true for D = 3.
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2. Proof of Theorem 1.

In this section, we assume that D = 2 and f : N — C satisfies
(2.1) f(n?+2m?) = f(n)* +2f(m)? for every n,m € N.
First we prove the following

Lemma 1. Let
S, = f(n)> for every n €N.

Then
(2.2) Sy = Ak* + Bk + C(k) for every k€N,
where
A 2(54 85— S+ 51),B = %(—254 355 + 25, — 35))
and

1
C(k):= g[(754 — 1383 — 385 + 1751) 4 (S4 — 385 + 385 — S1)(—1)F].

Proof. Since
(n+4)2+2n+1)*=n>+2(n+3)? forevery ncN,
we infer from (2.1) that

(2.3) Snta =285,43 — 25,41+ S, for every n e N.
Assume that A, B and C(k) are defined in Lemma 1. Then we have

1 _ _ .
(2'4) C(k) _ 4(354 583 — 35 + 951) lf 2 J[ k
Sy — 2853+ 285 if 2|k
and it is easy to check that
A+ B+C(1)=51,4A+ 2B+ C(2) = Ss,

and
9A+ 3B+ C(3) =S53,16A+4B + C(4) = S4.

These prove that (2.2) holds for k < 4.
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Assume that (2.2) holds for k = n,n + 1,n + 2,n + 3, where n > 1. Then
we get from (2.3) and our assumptions that

Spia =283 2841+ 8, =2[A-(n+3)*+B-(n+3)+C(n+3)-
—2[A-(n+1)?+B-(n+1)+C(n+1)] + [An* + Bn+ C(n)] =
=AR2n+3)2 -2 +1)2+n|+ B2n+3)—2n+1)+n]+C(n+4) =
=A-(n+4)?*+B-(n+4)+C(n+4).

Here, we have used (2.4) to get C(n+3) = C(n+1) and C(n) = C(n+4).

Thus, we proved that (2.2) is true for £k = n + 4 and the proof of Lemma 1 is
complete. ]

Lemma 2. One of the following holds:

(2.5) f(n)=0 for every n €N,

9 1
(2.6) Sp = f(n)” = ) for every n €N,
(2.7) S, = f(n)>=n* for every n€N.

Proof. Let S; = f(1)? :=a and Sy = f(2)%?:=b.
It follows from (2.1) that if n = u? + 202, then
f(n) = f(u? +20%) = f(u)? + 2f(v)* = Sy + 25,
consequently

(2.8) Sp = (S, +28,)% if n=u?+20%

Since (n,u,v) € {3,1,1),(6,2,1),(9,1,2),(11,3,1)} satisfies the equation
n = u? + 2v%, we get from (2.8) that

S3 = (S1 +251)? = 9a?,

Se = (So +251)? = (b+2a)?,

Sy = (Sl + 252)2 = ((1 + 2b)2,
Si1 = (S3 4 251)* = (94 + 2a)*.

(2.9)

It is obvious from (2.1) that if 22 4 2y? = 22 4 2¢> then

S, +28, = 5. + 25,
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Consequently, the relations 52 +2-12 =3242-32,524+2.22 = 124242 and
72 4+2-12 =11+ 2. 5% imply

S5 = S3 4+ 253 — 25, = 27a% — 2a,
(2.10) Sy = 735”52*31 =2la? — 3a+b,

S7 = —51+255 = 5442 — ba.

Thus, by using (2.9)-(2.10), we infer from the relations 6% + 2 - 32 = 22 2. 52,
924+2-32=1"+2-72and 12 +2-112 = 92 + 2. 92 that

(2.11) (8a—|—b— 1)(4a—b) = S + 253 — (SQ+2S5) =0,
(2.12) —89a% + 9a + 4ba + 4b* = Sg + 253 — (S7 +255) =0
and

(2.13) a(a - 1)(9(1 — 1)(9(1 + 14) =511 +251 — (S5 + 257) =0.

From (2.11) we have
be {1—8a, 4a}.
CaseI: b=1-8a

First we prove that a = b = §. From (2.12), we have
—89a*+9a-+4ba+4b* = —89a*+9a+4(1—8a)a+4(1-8a)? = (9a—1)(15a—4) = 0.

This relation with (2.13) proves that a = § and b=1—-8a=1— 5 = {.

Finally, the above relations imply

1 1 1
51=a=§,52=b=f 53:90,22 ,5’4:5(7a2—3a+2b)=§.

It is easy to check that in this case we have
A=B=0

and

C(k) =2 [(7Ss — 1355 — 355 + 1751) + (S4 — 355 + 355 — §1)(=1)}] =
= 7—12[(7—13—3+17)+(1—3+3—1)(—1)k] _L

0]
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The proof of (2.6) follows from (2.2) of Lemma 1.
Case II: b=4a
We obtain from (2.12) that

—89a? + 9a + 4ba + 4b* = —89a® + 9a + 4(4a)a + 4(4a)? = —9a(a — 1) = 0.

a € {0,1}.
Ifa=0,thenb=4a=0. Then Sy =a =0, S =b=0, S3 =92 =0. By
(2.10) we have Sy = £(27a* — 3a + 2b) = 0, and so

This implies

A=B=C(k)=0 forevery keN.

It follows from (2.2) that S,, = f(n)? = 0 for all n € N, which proves (2.5).

Finally we consider the case a = 1. Then we have
Sh :a:12,52=b=4a=22,53=9a2:32,54:%(27—3+8):42
and
A:i(srsgﬂs*ﬁsl):3(42f32f22+1):1,
B:= %(—254+353+252—351):%(—2-42‘+3.32+2-22—3)=0

and

1
C(k):= é[(754 — 1383 — 385 +175;) + (S4 — 383 + 382 — 81)(—1)F] =

1
:g[(7-42—13-32—3-22+17)+(42—3-32+3-22—1)(—1)’f]:o

for all kK € N.
Thus we get from (2.2) that

S, = Ak®> + Bk + C(k) = k* for every k€ N.

The proof of (2.7) and of Lemma 2 is complete. [ |

Theorem 1 follows from Lemma 2, because from (2.6)—(2.7) it follows that

it f(k)2=1(VkeN)
2

f(n® +2m?) = f(n)? +2f(m)* = {22 +om?  if f(k)2 = k2 (Vk € N).
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3. Proof of Theorem 2.

In this section, we assume that D = 3 and f : N — C satisfies
(3.1) f(n? +3m?) = f(n)*> +3f(m)? for every n,m € N.
First we prove the following

Lemma 3. Let
S, = f(n)*> for every n€N.

Then
Sy = 451 + 852
S 81 + 1288
(3.2) S, = 16512,
SS _ BS + 128517
Se = —35 + 1257
and
(3.3) S e {0, =1}
. 1 ) 16; .

Proof. 1t is obvious from (3.1) that if 22 + 3y? = 22 + 3¢2 then
Sy +38y, =5, +385;.

Consequently, the relations 42 +3-22 =12 +3-32, 52 +3-12 =12 +3-3% and
62 +3-4% = 32+ 3. 5% imply

Sy =51 —35+35s
(3.4) Sy = —251+35;

S = —3S54+ S3+3S5 = —951 + 955 + S3

From (3.4) and from 5% + 3 - 3% =22 + 3 - 42, we get

0=S55+3535 -5, —35, = (—251 + 353) + 3535 — Sy — 3(51 — 35 + 355) =
= —551 + 855 — 3953,

which gives

(3.5) S3 = w and Sy =S — 35 + 353 = —45; + 55,.
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Finally, we infer from (3.5) and from the fact f(4) = f(12 +3-12) = 45,
that
Sy = (f(4))*=1657 and 1657 +4S; — 55, = 0.

This implies
45; + 16512
—

Therefore the proof of (3.2) follows from (3.4)-(3.6).

Now we prove (3.3). It follows from the relations 72 + 3 - 3% = 12 + 3 - 52,
122 +3-2% =32+ 3 72 that

(3.6) Sy =

2
S7 =51 —353+ 355 = S1—|— 265
and 128 2288
S1o = =353 + S5+ 357 = *75‘1 5 Sl'
But 19 16
f(7)=f(22+3-1%) =S, + 35, = TS+ gsf
and 52 128
f(12) = f(3* +3-1%) = S5+ 35, = Esl + ﬁsf.

We get the following two equations

1 19 16 2
— 55 S1(S1 — 1)(168; — 1)(1681 +55) = S - (?91 + gsf) -0

and

128 52 128

— 537 S1(S1 = 11681 — 1)(881 +15) = S1 - (Es 51) —0.
These show that (3.3) is true. Lemma 3 is proved. |

Proof of Theorem 2.

Since
(n+6)*+3(n+2)?=n>+3(n+4)* forevery neN,
we infer from (3.1) that

(3.7 Sn+6 = 3Sn4+4 —3Sn42+ S, for every n e N.
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We shall prove that

1 , 16
(3.8) Sp = 1—551(1651 —1)n® — 1—551(51 —1) forevery neN.
By using (3.2), one can check that (3.8) holds for n € {1,2,--- ,6}. Let

(39) A= %551(1651 - 1) and B := 7%51(31 - 1)

Assume that S, = An? + B holds for k =n,n+ 1,n+2,n+3,n+4,n + 5,
where n > 1. Then we get from (3.7) and our assumptions that

Sn+6 = 35n+4 _35n+2+5n =
=3[A-(n+4)?+B]-3[A-(n+2)*+B]+[A-n*+B] =
=A-(n+6)*+B.

Thus, (3.8) is proved.
From (3.3), we have S; € {0, &, 1}.

If S; = 0, then from (3.8)-(3.9) we have A = B = 0 and S, = 0 for all
n € N. Consequently f(n) =0 for all n € N.

If S; = . then from (3.8)-(3.9) we have A = 0,B = & and S, = 5 for

all n € N. Therefore f(n)? = & and

Fn? +8m%) = f(n)? + 3£ (m)” = |

for all n,m € N, which proves Theorem 2.

If S; = 1, then from (3.8)-(3.9) we have A = 1,B = 0 and S,, = n? for all
n € N. In this case we also have f(n)? = n? and

f(n?+3m?) = f(n)*> +3f(m)* = n* + 3m?

for all n,m € N, from which the proof of Theorem 2 is completed. |
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