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Abstract. We consider some possible relations among g-additive and com-
pletely multiplicative functions. We proved that if f is completely multi-
plicative and g-additive function, then either f(n) = n for every n € N or
f(n) is the Dirichlet character (mod qo), where qolq.

1. Notation and some notions

Let, asusual, P, N, Z, Q, C be the set of primes, positive integers, integers,
rational numbers and complex numbers, respectively. Let Ng = NU {0} be the
set of non-negative integers.

Let A (resp. A*) be the class of additive (completely additive) functions, M
(resp. M™*) be the class of multiplicative (completely multiplicative) functions.

For some integer ¢ > 2 let A, be the set of g-additive function. Every
n € Ny can be uniquely represented in the form

n= Zar(n)q’" with a,(n) € {0,1,...,¢ — 1}(= A,)
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and a,(n) =0 if ¢" > n. We say that f € A, if f: Ny —C
f(0)=0 and f(n)= Zf(er(n)qr) for every n € N.
r=0

These functions were first introduced and studied by A. O. Gelfond [6].

Definition 1. (Set of uniqueness for completely additive functions.) We say
that A C N is a set of uniqueness for completely additive functions if f € A*,
f(a) =0 for every a € A implies that f(n) =0 for all n € N.

Definition 2. (Set of uniqueness for completely additive functions (mod 1).)
We say that B C N is a set of uniqueness for completely additive functions
(mod 1) if f € A*, f(b)=0 (mod 1) for all b € B implies that f(n)=0 (mod 1)
for every n € N.

D. Wolke [16] proved that A is a set of uniqueness if and only if every n € N
can be written as n = Hle a;’, where a; € A and r; € Q.

K.-H. Indlekofer [8], [9], P. Hoffman [7], F. Dress and B. Volkmann [2]

proved independently that B is a set of uniqueness for completely additive
functions (mod 1) if and only if every n € N can be written as

k
n= r[bﬁj7 where ¢; € Z, b; € B.
j=1

I. Kétai [11], [12] formulated the conjecture in 1969 that
Pap={p+1|lpeP}

is a set of uniqueness for additive functions, and proved that there exists such
a finite set @ of primes for which P;1 U Q is a set of uniqueness (mod 1).
P. D. T. A. Elliott [3] proved that Q = {p | p < 10%*",p € P} is an appropriate
choice, that is every n € N can be written as

k
n=t-[[i+ 1" e{-11}
=1

and t is such a rational number the largest prime factor of which does not
exceed 10387,
Furthermore, in [4] he proved that for every rational number r, we can find
such primes pq,--- ,pr and €; € {—1,1} (j =1,2,--- ,k), for which
k

(1.1) 9 =i+ 1)

=1

Here g is a constant, g € {1,2,3}.
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A direct consequence of this assertion is
Theorem 1. Let f e M*, f(p+1)=p+1 (Vp€ P). Then
f(n)y=nH(n), He M*, Hn)?=1 for every neN.
Especially, if f(n) is a positive real number for every n € N, then

fn)=n for every meN.

Proof. Since, for every g € P there is at least one p € P such that ¢|p + 1,
therefore f(q) # 0, and so f(n) #0 (n € N). From (1.1) we obtain that

k k
57 = [Ls e+ 1 = TJ s+ 1) = .
i=1 i=1
Thus
g
1= (@) = H(r)9 for every positive rational number.
The proof of Theorem 1 is complete. |

The conjecture that P4 is a set of uniqueness (mod 1) is formulated by
several mathematicians. It would follow from the conjecture of A. Schinzel
and W. Sierpinnski [14], namely that every positive integer has infinitely many

representations of the form qTﬂ (p,q € P).
T. Csajbék, A. Jarai and J. Kasza [1] proved that every prime @ € [2,10'4]
can be written as 5% (p,q € P), and every n € [2,10'1] can be written also
1
as % (p,q € P).

2. On g-additive functions

Definition 3. (Set of uniqueness for g-additive functions.) We say that
D C Ny is a set of uniqueness for the set of g-additive functions, if f € Ay,
f(d) =0 for all d € D implies that f(n) =0 for all n € Ny.

The functions f(n) = cn belong to A, for every ¢ > 2. J. C. Puchta and
J. Spilker [13] gave all the functions belonging to A,, N Ag,.

The following question seems to be interesting. Let (¢1,92) =1, q1, g2 > 2.
Let IC be such a subset of Ny for which the following assertion holds:
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If
fieAg,foe Ay, and  fi(k) = fa(k) for every ke K,

then
fi(n) = fa(n) =cn  for every n € Ny,

where ¢ € C is a suitable number.

Assume that g5 > q1 > 2,
El:{aqma:lv"' 7Q1717n:0a1>"’}

and
EQ:{bqg”b:]-v"'7q2_17m:0717"'}'

Let bgy* € E5 with m > 1. Let L(bg3") = ag} be the largest element of Ey, for
which

aqy < bgy'.

Observe that aq} = bgh* or (a + 1)q} = bgy* cannot occur. Let
Joaz = (bqgna (a+ 1)‘1?), where L(bg3") = aqt.

It is obvious that a + 1 = ¢; can be occur.

We know that the interval Jygp is quite a large interval. This follows from
an important theorem of R. Tijdeman [15], which is stated now as

Theorem A. Let p be a prime, p > 3 and let 1 = ny < ny < --- be the
sequence of all positive integers composed of primes < p. Then there exists an
effectively computable constant C = C(p) such that

n
Nig1 — Ny > : G for every mn; > 3.

(logm;)
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Corollary. Let p be the largest prime factor of ¢a!, C = C(p) (defined in
Theorem A). Let KC be such a set for which

KO gy 0 i bay' > K.
Assume that g1 € Agy ,92 € Aqg,,
g1(n) = g2(n) if nek

and
g1(n) = ga(n) =cn  for every n <K (K > q2).
Then
g1(n) = ga(n) =cen  for every n € Ny.
Proof. We can see it by using induction. |

Assume that g1 (k) = g2(k) = ck holds for every k < bgy*. Let k < (a+1)g}.
Since
, cugy for v<n and we{l,---,q —1}
g1 (ugy) =

cuqy  for every wu <a,

therefore
gi(k)=ck if k< (a+1)gf.

Let k € KN Jpgp. Thus

91(k) = g2(k) = ck, K = bgy" + h,h < q3",
and so

92(k) = 92(bg3") + ga(h) = ga(bgs") + ch.
Consequently

92(bg3") = cbgy".

Remark. Let & ={a; < a2 <---} be such a sequence of integers for which
Un+1 — an < al™¢ for some € > 0. Then £ is a K-sequence, that is, if K is a
suitable constant, fi € Ay, fa € Ag,, and

fi(n) = fa(n) (Vn < K) and fi(a;) = fao(a;) (j=1,2,--),

then
filn) = fa(n) =c-n for every n € Ny.

Specially, if Q(z) € Zx],
& ={Qn)n=12,---} and & ={Q(p)lp € P},
then both of & and &; are K-sequences.
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3. What are the g-additive multiplicative functions?

In this section let I(n) be the identity function and x4(n) be a Dirichlet
character function. It is clear that

{I,xq} S M N A,.

We shall prove the following

Theorem 2. Let M* the set of all completely multiplicative functions f with
f(1) = 1. Then there exists a qo|q such that

M* ﬂ‘Aq g {Ivqu}'

Proof. Let f € M* N A,. First we consider the case f(¢) = 0. Let ¢ = qoq1,
where f(¢q1) # 0 and f(p) = 0 for all primes p, p|qgo. It is clear that

fl@)flgom +1) = f(gm +q1) = f(q1) + flgm) = f(q1) + f(@) f(m) = fq1)

for every m € N. This implies that f(gom + 1) = 1, which with Lemma 19.3 of
[5] proves that f = xg,-

Now we assume that £ := f(q) # 0. For each a € {0,1,---q — 2}, we have

flg+1)=f(1)+ flg) =1+&, flg+a)= fla)+ flq) = fla) +&

and
(q+1D(g+a)=¢*+(a+1)g+a.

Thus, we infer that
f(la+Da+a) = f(a+ @+ Dg+a) =

= 1@+ f((a+1)a) + fla) = € + fla+1)¢ + f(a),

consequently

(L+(fla) +&) =&+ fla+ 1)+ fla).
This shows that

fla+1)=f(a)+1 for ac{0,1,---q—2},

and so
fm)=m for me{0,1,---¢—1}.
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Since f € A2, therefore the above result shows that
f(M)=M forevery M < ¢

and so & = f(q) = q, because q < ¢°.
Theorem 2 is proved. |

The following problem seems to be interesting. Characterize those subsets
D of Ny for which if f € M*, g € A, and

f(d) = g(d) (vd € D),

then
f(n)=g(n) forevery neN.

Theorem 3. Let ¢, Ny be given numbers, Jy = (2N, 2N+1). Let D C Ny be
such a set of integers for which if N > Ny, then there exist mi,mqo € Jy ND,
m1 # mo such that

@:i AB<ec A BeN.
mo B

Assume that
feEM*, ge Ay, fn)=gn)=n if n<max(c,20).

Then
f(d)=g(d) for every de€D,

implies that
fn)=nfor every ne€D.

Proof. We shall use induction. Assume that

g(2")=2" forevery n=0,1,--- ,N—1.

Then clearly
fu)=gu)=u if u<2".

Let my =2V +1,mo =2N 41,0 < l,r < 2V, 1 # r. We have
g(m1) = g(2") +g(1) = 9(2V) +1,

similarly
g(ma) = g(2N) + g(r) = g(2") + 1.
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We can choose my, mz such that —1 = %, A, B < c¢. Thus miB = m»A,

Bf(mi) = Af(ma), f(m;) = g(my), and so
B(g(2") +1) = A(g(2") +7).

Since B(2Y +1) = A(2N +r), the above relation implies that g(2V) = 2. The
proof of Theorem 3 is complete. ]

We guess that the following conjecture is true.

Conjecture 1. There exist such constants ¢ > 0 and Ny such that if N > Ny,
N € N, then in the interval [2V,2N*1) there exist p— 1,9 — 1 (p,q € P) for
which

p—1_ A
1 B A, BeEN A B<ec.

Corollary. Assume that Conjecture 1 is true. Let
feM* geAy f(n)=gn)=n if n<max(c,2™).

If
flp=1)=g(p—1) for every peP,
then
flp=1)=p—1 forevery peP.
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