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Abstract. This paper deals with the heuristic running time analysis of the
elliptic curve primality proving (ECPP) algorithm of Atkin and Morain.
Our aim is to collect assumptions and the fastest possible algorithms to
reduce the heuristic running time and to show that under these assumptions
and some plausible conditions the heuristic running time can be reduced
down to o(ln4 n) bit operation for input possible prime n.

1. Introduction

In the work of Atkin and Morain [1] the background and an exact imple-
mentation of elliptic curve primality proving (ECPP) algorithm is described.
A heuristic running time analysis is given by Lenstra, Lenstra [20] and Morain
[22]. They have found that the running time is O(ln6+ε n) for any positive
ε for input n. Using asymptotically fast methods for multiplication, division,
polynomial calculation, etc. it is possible to reduce this down to O(ln5+ε n).
With a trick attributed to J. O. Shallit (building up discriminants from small
primes), it can be expected to run in time O(ln4+ε n).
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In this paper we are investigating the heuristic running time of ECPP using
the fastest known algorithms to compute the various parts and prove that under
some conditions the heuristic running time can be reduced down to o(ln4 n).
Moreover we are summarizing questions and assumptions that are related to
this topic.

There are projects of one of the authors, Gy. Kiss, on implementations that
are using these assumptions in practice. One of them is finished, the details
can be found in the work of Farkas, Kallós, Kiss [9] and Járai, Kiss [13]. The
other project is still ongoing. Both implementations are written in Magma
computer algebra system [2]. The aim of this second project is to replace the
actual ECPP implementation used in Magma.

2. The ECPP algorithm: outline

We give an outline of the ECPP algorithm; some of the necessary definitions
and details will be given in the subsequent sections. Input to the algorithm
is an odd positive integer n that is large and probably prime. Given such an
integer n, the basic ECPP algorithm proceeds roughly in these three stages:

Algorithm 2.0.1. ECPP

(D) Starting with n0 = n, find a sequence of probable primes n0, n1, . . . , nk,
such that ni+1 divides the order of an elliptic curve modulo ni, such that
ni+1 > ( 4

√
ni +1)2, and such that nk is small (so that primality of nk can

be established easily).

(F) For each of the integers ni with i = 0, 1, . . . , k − 1, construct an elliptic
curve Ei moduli ni of order a multiple of ni+1, together with a point Pi

of order ni+1 on the curve modulo ni.

(P) Verify that nk is prime, and that Pi is a point on the elliptic curve Ei

modulo ni of order ni+1 and that ni+1 > (n
1
4
i + 1)2 (see Theorem 3.1),

for i = k − 1, k − 2, . . . , 0.

In this paper we will be almost exclusively concerned with the first step (D).
The difficulties will only become clear when we look at what is done in more
detail.

The ‘Downrun’ part (D) of ECPP will be called recursively with input ni;
the main objective is to find ni+1. This is what happens at level i.
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Algorithm 2.0.2. Downrun

(D) Select a pair (D,u) of negative discriminant D and integer u such that
ni + 1 + u is the product of small primes and a probable prime ni+1 that
exceeds ( 4

√
ni + 1)2. This is done as follows:

(0) Select discriminants D suitable for ni from a list.

(1) For these D, reduce the binary quadratic form nix
2+Bxy+ B2−D

4ni
y2,

where B is such that B2 ≡ D mod ni. If this provides ν with
ν · ν = ni, then u = ν + ν and the pair (D,u) is usable.

(2) From all pairs (D,±u) of the previous step, select those for which a
probably prime q dividing ni +1−u can be found such that (ni +1−
−u)/q is the product of small primes only.

(3) Select the best possible pair (D,u) from this list, and let ni+1 = q,
the probable prime for which (ni + 1 − u)/q is the product of small
primes only.

In the following m(k) denotes the complexity of the multiplication of k-bit
integers.

3. The theory

Starting point for the application of ECPP will always be a probable prime
n = n0; it is assumed that n will be free of small prime factors (in particular
2 and 3), and that n has passed certain compositeness tests (see below). This
will make it very likely that n is indeed prime; the objective is to prove that.

In ECPP this is done in a recursive fashion, using the following theorem;
precisely what (points P and OE on) elliptic curves modulo n are, will be
explained further on.

Theorem 3.1. Let n ∈ N with gcd(6, n) = 1 and E an elliptic curve modulo
n. Suppose there exist m, n′ ∈ N with n′ | m such that for every prime factor
q of n′ there exist P on E with mP = 0E but m

q P �= 0E. Then:

n′ > (n
1
4 + 1)2 ⇒ n is prime.

It is good to keep the following in mind.
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Essential (for the correctness of this theorem) is the theorem of Hasse,
stating that the order of the group of points on any elliptic curve modulo a
prime number p equals p + 1 − u for some integer u with |u| ≤ 2

√
p. If the

conditions of Theorem 3.1 are satisfied the number of points on E modulo n
cannot be a proper divisor of n′.

Essential for the use of this theorem is that all prime factors q of n′ are
known; keeping the Theorem of Hasse in mind, one searches for a suitable m
satisfying n+1−2

√
n < m < n+1+2

√
n, where suitable means: m the product

of ‘small’ prime factors and a ‘large’ probable prime n′, that is, n′ > (n
1
4 +1)2.

Once such m, n′ have been found, the algorithm recurses, with n′ replacing n.
Essential for the algorithm to succeed quickly is the ability to spot at least

one suitable m; current methods from analytic number theory cannot guarantee
that it can be found in polynomial time.

Thus, recursively, a sequence of probable primes n0 = n, n1, . . . , nk is de-
termined, with nk is small enough to be recognized as prime by other means
(like table lookup, or exhaustive pseudo-primality tests).

In reversed order, the ‘Find curves’ part (F) of the algorithm then constructs
pairs (Ej , Pj) for j = k − 1, k − 2, . . . , 0 of an elliptic curve Ej and a point
Pj ∈ E[Z/njZ] of order (a multiple of) nj+1.

The primality proof thus constructed will serve as a prime certificate that
can be verified in polynomial time, by a computation showing that the given
points lie on the given curves and have the given orders.

The difficulties in each of the three steps have been obscured here by lack
of detail. In the following subsections we will fill in some important details.

3.1. Probable primes

First we explain the notion of probable primes. Not only because the input
n0 to our algorithm will always be probably prime, but because in the recursion
we also want to establish that the ni for i > 0 are probably prime.

Theorem 3.2. Suppose n > 3 is odd, and n − 1 = 2st, with t odd and s ≥ 1.
Let a ∈ Z satisfy 1 < a < n − 1, and let bj ≡ at2j

mod n for 0 ≤ j ≤ s. Then
n is composite if one of the following holds

• gcd(a, n) �= 1;

• bk ≡ 1 mod n and bk−1 �≡ ±1mod for some k with 1 ≤ k ≤ s;

• bs �≡ 1 mod n.

Moreover, if n > 9, odd and composite, then for a fraction of at least 3
4 (n − 1)

of the possible a one of these conditions is satisfied.
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The proof of the first part will be clear: if n is prime, a cannot be a divisor,
and by Fermat’s theorem an−1 ≡ 1 mod n; the important additional property
is that modulo a prime number n only ±1 can be square roots of 1 mod n.

The importance of the second part of Theorem 3.2 is that we obtain an
efficient probabilistic test for compositeness by taking values for a at random. If
one of the conditions is satisfied we say that a is a witness to the compositeness
of n. If, for some n, after k random choices for a the computations still have
shown up no witness to the compositeness of n, one will be fairly confident
that n is probably prime. In practice often a fixed set of bases (for example
a = 2, 3, 5, 7, 11, 13, 19, 23, 29, 31) is used.

3.2. Elliptic curves

Definition 3.1. The projective plane modulo m, denoted P2(Z/mZ), for a
positive integer m, consists of equivalence classes (x : y : z) of triples (x, y, z) ∈
∈ (Z/mZ)3 satisfying gcd(x, y, z, m) = 1, under the equivalence (x, y, z) ∼
∼ (λx, λy, λz) for any λ ∈ (Z/mZ)∗.

An elliptic E curve modulo m, for an integer m coprime to 6, is a pair
(a, b) ∈ (Z/mZ)2 for which gcd(4a3 +27b2, m) = 1. The set of points E[Z/mZ]
on an elliptic curve E modulo m consists of (x : y : z) ∈ P2(Z/mZ) for which

y2z = x3 + axz2 + bz3.

Define V = Vm(E) to be the set of all (x : y : 1) ∈ P2(Z/mZ) on the elliptic
curve together with O = (0 : 1 : 0) ∈ P2(Z/mZ). Given (V, a), the partial
addition operation ⊕ computes for any pair P = (xp : yp : zp), Q = (xq : yq :
: zq) ∈ V either an element in R ∈ V (the sum of P and Q) or a non-trivial
factor of m:

(0) If zp = 0 then R = Q and if zq = 0 then R = P ;

(1) If xp = xq and yp = −yq then R = (0 : 1 : 0);

(2) If xp �= xq and yp = −yq define v = xp − xq, and λ = (yp − yq). Now
let (xr, yr, zr) be ((yp − yq)2v − (xp + xq)v2, (yp − yq)3 − (yp − yq)(2xp +
+xq)v2, v3);

(3) otherwise let w = yp + yq, and let (xr, yr, zr) be ((3x2
p + a)2w − (xp +

+xq)w2, (3x2
p + a)3 − (3x2

p + a)(2xp + xq)w2, w3).

(4) If gcd(zr, m) = 1, then (xr, yr, zr) ∼ R = (x′r : y′r : 1) ∈ V and we say
that R = P ⊕ Q is the sum of P and Q in V ; if d = gcd(zr, m) �= 1 then
we have found a non-trivial factor of m.
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In the special case that m = p is a prime number, the following important
special properties hold. First of all, the partial addition algorithm will produce
a sum R = P⊕Q for every pair P,Q ∈ E[Z/pZ], and the operation is then called
the addition algorithm, and the sum usually denoted R = P + Q. Moreover,
due to Hasse and Deuring [7] the following holds; see also [4] and [27].

Theorem 3.3. Let p > 3 be a prime number. The set E[Z/pZ] forms a finite
abelian group under addition, with zero element O = (0 : 1 : 0). The number
of elements N = #E[Z/pZ] of this group satisfies the bounds p + 1 − 2

√
p <

< N < p+1+2
√

p. Conversely, for every N between these bounds there exists
an elliptic curve modulo p with order N .

Remark 3.1. Moreover, it can be shown that for a prime divisor p of arbitrary
m coprime to 6 and the discriminant of E, the sum R produced by the partial
addition algorithm for any two points P,Q on an elliptic curve Ea,b modulo m,
has the property that Rp (obtained by reducing the coordinates of R modulo p)
is the sum of the points Pp and Qp in the group Eā,b̄[Z/pZ], where ā ≡ a mod p,
and b̄ ≡ b mod p. So R mod p = (P mod p) + (Q mod p) ∈ Eā,b̄[Z/pZ].

Using the partial addition algorithm repeatedly, it is of course possible to obtain
a partial multiplication algorithm, which computes either k ·P or finds a divisor
of m, for any positive integer k, given any P ∈ V and any a as before. However,
there are various ways to speed up this computation of k · P , using partial
doubling, and the fact that it is not necessary to keep track of the y-coordinate.
Also, writing points in Montgomery representation may speed up the algorithm
(see for example [3]).

In the next sections we will occasionally be sloppy, and write about the
sum and multiples of points on elliptic curves modulo n; we mean the result
of application of the partial addition and multiplication algorithms, which in
unlikely exceptional cases (when a probable prime is in fact composite) means
that a divisor of n could be produced, rather than a point. In practice this
does not happen, as probable primes will be prime.

3.3. Complex multiplication

Although there exists an efficient algorithm to compute the order of the
group of points on an elliptic curve over a finite field (usually referred to as
SEA; [26]), the complexity of this algorithm is too high in practice. Therefore,
Atkin and Morain [1] devised an alternative way to find suitable elliptic curves,
by reduction of special curves defined in characteristic zero.

Suppose that the probable prime n = ni is given; we drop the subscript i in
this section. We describe next how to constructs candidate numbers n + 1−u,
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with |u| < 2
√

n as cardinalities of elliptic curves modulo n. The trick is to
use the reduction modulo n of elliptic curves in characteristic zero for which
the number of points is known, since they admit complex multiplication. This
works as follows.

Let D be a negative fundamental discriminant; this means that D < 0, that
it is a discriminant (an integer with D ≡ 0, 1 mod 4) and fundamental in the
sense that D/f2 is not a discriminant, for any integer f . If n = νν̄ = u2 −Dv2

in the ring O = Z[D+
√

D
2 ], the ring of integers of the imaginary quadratic

field Q(
√

D), then it is easy to write down coefficients a, b of an elliptic curve
with complex multiplication by O having (v − 1)(ν̄ − 1) = n + 1 − u and one
having (−v−1)(−ν̄ −1) = n+1+u points when taken modulo n, if n is prime
indeed. (The cases D = −3,−4 are special, as the roots of unity in the complex
multiplication field give rise to more curves and more easily constructed curves
in fact;). So we find candidate numbers n + 1 ± u, provided we can find the
decomposition n = νν̄. [20]

We may, and will, assume that n is odd and coprime to D. Next suppose
that we can find b such that b2 ≡ D mod n; by adding n to b if necessary, we can
then also achieve b2 ≡ D mod 4n. Then consider Q(x, y) = nx2+bxy+ b2−D

4n y2,
which will be a binary quadratic form of discriminant D, which is primitive.
This is equivalent to some reduced form R(x, y), and a solution to n = νν̄
exists if and only if Q(x0, y0) = n for some integers x0, y0, which will be the
case if and only if R(x, y) is the unit binary form of discriminant D (being
either x2 − D

4 y2 or x2 − x + 1−D
4 y2, depending on D modulo 4).

The reduction time using binary reduction algorithm is proportional to
(lnn)2, but this can be decreased to O

(
m(lnn) ln lnn

)
with the algorithm of

Cornacchia ([5], p. 34) combined with controlled euclidean descent of Schönhage
[31].

3.4. Modular square roots

This implies that we will be able to construct curves with n + 1 ± u points
provided we can solve b2 ≡ D mod n and the form Q reduces to the unit form;
the latter is equivalent to the ideal (n, b−√D

2 ) being principal in O. If the
ideal class is assumed to be random, this happens with probability 1

2h , where
h = h(D) is the ideal class number of O = O√D [20]. To ensure that the first
condition holds we choose D such that the Jacobi symbols (D|n) is equal to 1.

What one does in practice, for given n, is to compute the Legendre symbols
(n|p) for primes p below some bound, and build up discriminants as products
of small primes (and −4 or ±8) such that the condition holds. Note that an
odd negative discriminant can be written uniquely as the product D =

∏
j p∗j ,
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where p∗j = ±pj for prime numbers pj and the signs of p∗j are chosen such
that p∗j ≡ 1 mod 4. The condition (D|n) for the Jacobi symbol of D then
easily translates to conditions on (n|pj) depending on n mod 4. Similarly if D
contains a factor −2 or −4. One expects roughly half the primes from the list
to satisfy the condition. For those we compute a modular square root.

Up to a limit s, for any prime number p for which (n|p) = 1, the square
roots of p or −p is calculated. The small primes are stored in a precalculated
list, containing half the difference of consecutive odd primes. Calculating one
square root with algorithm of Tonelly and Shanks ([5], p. 32) requires roughly
the same time as the probabilistic primality test for n.

Indeed, the algorithm has a probabilistic part which find a generator of
(Z/nZ)∗ and a deterministic part using 2�lg(n)�+ e2 multiplication modulo n,
where e is the largest exponent for which 2e|n− 1. Because we know that n is
odd, we expect the value e for this exponent to occur with probability 2−(e+1).
The expected number of multiplications is O(lnn). Heuristics suggest that
the running time of the probabilistic part can be neglected compared to the
running time of the deterministic part. The total running time of one square
root operation is O

(
m(lnn) lnn

)
.

3.5. Factorization

Elliptic curves modulo n with order n + 1 ± u can now be found. These
orders will be trial divided with primes up to a limit t. Only u mod p is cal-
culated, because n + 1 mod p is precalculated. Division by the divisor found is
performed, and the quotient is stored. The necessary time is proportional to
t lnn.

A ‘batch trial division’ using fast multiplication and fast gcd can be applied
to remove divisors from 104 . . . 106 up to an upper limit b, say up to 108. This
trick was suggested by one of the authors several years ago and seem to have
appeared independently by several authors; Pollard, Strassen, D. J. Bernstein,
for example; see [10], p. 353. The product of curve orders is calculated: first
products of pairs, then products of quadruplets, etc. Prime products will be
read from a file. It is divided by the product of curve orders, then the gcd of
the remainder and the product of curve orders is calculated. This is small. It
is distributed to partial products of curve orders, etc., product of quadruplets,
product of pairs, and finally to curve orders. The surprise is that the depen-
dence on log n, the size of curve orders, is very weak. The algorithm seems to
be superior to other factorization procedures useful here, as Pollard ρ and p−1,
the elliptic curve method, etc., for factors below 108, but further investigation
is necessary to find the best limit.
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3.6. Iteration

One of the difficulties in optimizing the Downrun algorithm lies in the
choices to be made at a given stage i, for some known probable prime ni.
In this section we will attempt to describe a simple model for this process.

To avoid numerous indices, we drop the i again and assume we are dealing
with the probable prime n. Naively speaking, the process consists of traversing
a decision tree: at the node for n we create a set of descendants (corresponding
to elliptic curve orders) and choose from those the one we consider to be best.
At this descendant node we repeat. The set of descendants is created from a
much larger set of candidates: to become descendant the order of the elliptic
curve needs to be suitable: smooth with one big probable prime divisor (more
on that below).

Theorem 3.4. Under reasonable assumptions, namely that

• the probability that a given curve order is suitable is small and indepen-
dent of the particular curve, and

• the probabilities are independent for different curves, and do not vary too
much,

the number of descendants at some node is asymptotically distributed according
to a Poisson-λ distribution, with λ equal to the average fraction of suitable
curves among all elliptic curves.

Let us sketch the proof.
Let Xj (for 1 ≤ j ≤ N) be stochastic variables, representing the probability

that the i-th curve order mj is suitable for the next step in the primality proof.
The first assumption is that the success probability

pj = P(Xj = 1)

is small, pj  1; we will write pj = uj

N . Assuming that the Xj are independent,
the expected number of successes will equal

E(
N∑

j=1

Xj) =
N∑

j=1

uj

N
= u,

and we will also assume that this average u converges to some limit μ as
N → ∞.

To show that the distribution of
∑

Xj converges to a Poisson distribution,
it suffices to show for a real variable t that E(et

∑N
j=1 Xj ) converges to E(etY )

for a stochastic variable Y with Poisson-λ distribution.
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But, using again that the Xj are supposed to be independent, and that
P (Xj = 1) = uj

N and hence P (Xj = 0) = 1 − uj

N :

E(et
∑N

j=1 Xj ) =
N∏

j=1

E(etXj ) =
N∏

j=1

(
(1 − uj

N
)e0 +

uj

N
et
)

=

=
N∏

j=1

(
1 +

uj(et − 1)
N

)
,

the logarithm of which equals

N∑
j=1

log(1 + uj
et − 1

N
) =

N∑
j=1

(
uj(et − 1)

N
+ O(u2

j/N
2)
)

→ u(et − 1),

for N → ∞, when assuming that u2
j does not vary to wildly (more precisely:∑N

j=1

u2
j

N = o(N)). So, E(et
∑N

j=1 Xj ) tends to eμ(et−1) as N → ∞.

But for a stochastic variable Y with Poisson-λ distribution we have:

E(etY ) =
∞∑

j=0

λj

j!
e−λetj =

∞∑
j=0

(λet)j

j!
e−λ = eλ(et−1).

Thus, our variable
∑

Xj , signifying the number of successes, behaves like a
Poisson-disctributed stochastic variable with parameter λ = μ. This concludes
the proof sketch.

Note that the parameter may well depend on the stage at which we are, for
example on the size of the numbers involved at the current stage.

Continuing our first, naive, approach, let us suppose that at each node
in the primality proof the number of successes has Poisson distribution with
parameter μi, where the index i now makes explicit the dependence on the
level. We would like to compute the probability that our ‘tree’ has an ‘infinite’
branch, indicating that we will be able to complete the primality proof.

Let p0 denote the probability that the entire tree has an infinite branch;
then

p0 = Pμ0μ1···(∞−branch),

depends on the parameters in the nodes at all levels 0, 1, . . .. Likewise, once we
are at level k, we have

pk = Pμkμk+1···(∞−branch).
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But this leads to a recursion:

pk =

( ∞∑
�=1

μ�
k

�!
e−μk

)(
1 − (1 − pk+1)�

)
= 1 − e−μkpk+1 .

as the first factor represents the probability that there is at least 1 descendant
at the k-th node, and the second factor expresses the probability that at least
one of these children will have a further descendant. Roughly speaking (since
all of our trees will be finite) this probability is the probability that at no
stage of the algorithm we will have to backtrack (due to the absence of further
suitable descendants).

If, for simplicity, we assume that all μj are equal to some fixed μ, we find
that p = p0 = pk = 1 − e−μp. Note that we get a unique solution p > 0 for
μ ≥ 1. It will be clear that p increases with increasing value of μ: the more
suitable descendants are created at each step, the larger the probability that
we will not have to backtrack at all. This shows the main defect of this naive
model: increasing μ at each level will always be beneficial! This is an artefact
of not taking the cost for creating more descendants into account.

Therefore our second, slightly more sophisticated approach, will be to take
two types of cost into account: the cost C for creating an additional descendant
(essentially, costs for modular square roots and quadratic form reduction), and
the cost K for computing the additional data for a new node (performing
factorization of the smooth part and probabilistic prime testing). In fact we
introduce a single new parameter giving the ration between C and K into the
model.

Currently, extensive simulations are taking place to compute the optimal
value for μ to be chosen as a function of this parameter. [19]

3.7. The other parts

We spend a few words on parts (F) and (P) in the outline of ECPP as in
Algorithm 1.

Algorithm 3.0.3. Find curves; and Proof

(F) Construct elliptic curves and points on them.

(0) Hilbert polynomial. The first step is the calculation of the Hilbert
polynomial (or a related polynomial) for the selected discriminants
D using floating point calculations. The resulting coefficients are
rounded to integers.
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(1) Polynomial root. The second step is the calculation of a root of
the Hilbert polynomial, which has degree h(D), modulo n. This uses
the well-known splitting procedure, until a degree 1 part is obtained.
To do this, we have to calculate the nth power of a random first-
degree polynomial modulo the Hilbert polynomial modulo n. If the
more refined version of Atkin and Morain is used, then the degree is
h∗(D) = h(D)/2t−1, where t is the number of factors of D.

(2) Find curve and point on it. The third step to find the appropriate
elliptic curve from the two possible twists, and an appropriate point
on it.

(P) Partial proof verification, given n, n′, P, E.

(0) Proof step. Verify that n′ divides n, and compute n′P and nP ;
then verify that both are on the given elliptic curve E modulo n, and
that n′P �= OE while nP = OE.

4. Asymptotic running time analysis

Let us make a more detailed analysis of the running time for each step
separately. Of course, the analysis will strongly depend on the complexity for
multiplication of integers (which will be of the same order as that for division
and squaring), and which will, for any known practical method, exceed the com-
plexity of addition, subtraction, and multiplication by powers of two (shifts).
To keep our calculations as far as possible independent from the choice of fast
multiplication methods, m(k) shall denote the time that we need to multiply
arbitrary k-bit numbers using the chosen multiplication method. The Fast
Fourier Transform, and the method of Schönhage and Strassen will make it
possible to keep this time as low as O(k ln k ln ln k) even on a multitape Turing
machine with enough tape.

In the rest of the paper lnk n shall denote (lnn)k, ln lnk n shall denote
(ln lnn)k, and so on.

In the following, we use three parameters, that may depend on the size of
n, and the choice of which will determine the running time. We have already
seen b(n) above, which is the smoothness bound in the factorization of the
elliptic curve orders. The second will be d(n), a bound on the size of the
discriminant used, and the third is s(n), a smoothness bound on the factors of
the discriminants.
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D1: Selection of discriminants. We need the square root of D modulo n
for several discriminants D. To keep the number of square root calculations
reasonable, we will consider only discriminants D with absolute value below a
bound d(n) that are s(n)-smooth for some smoothness bound s.

As a standard example, we may choose d(n) � (lnn)2. To obtain a lower
estimate for the number of fundamental discriminants below d(n) (in absolute
value), we consider only the classes of −3, −4, −7, −8, −11 and −15 from the
residue classes mod16, because any number from these classes which is free
from a square of any odd primes is necessarily a fundamental discriminant. (Not
hard to see that only these are the fundamental discriminants.) We estimate the
density of such numbers. The density of square free numbers is

∏
p∈P

(1−1/p2)
having reciprocal∏

p∈P

(
1 − 1

p2

)−1 =
∏
p∈P

(
1 +

1
p2

+
1
p4

+ · · · ) =
∑

n∈N+

1
n2

=
π2

6
.

Considering that the density of odd square free numbers in general is (6/π2) ·
(4/3) = 8/π2 and they reside only in six residue classes modulo 16, asymptot-
ically we obtain that there are at least

3d(n)/π2

fundamental discriminants below d(n). To compute the modular square root of
all these discriminants will be too time-consuming. Instead, we only consider
the fundamental discriminants which are s(n) � d(n)c smooth for some 0 <
< c < 1. Then we only have to calculate a square root modulo n for each prime
below s(n) for which (n|p) = 1. That is, for half the primes below d(n)c, i.e.,
O
(
d(n)c/ ln d(n)

)
primes. So if d(n) = O(ln2 n) and m(k) = O(k ln k ln ln k)

then to determine the modular square roots we need O(ln3 n ln ln lnn) bit oper-
ations if c = 1/2 and o(ln3 n) bit operations if c < 1/2. Still we may ([18], 4.5.4)
suppose that the number of discriminants which can be factored is � ln2(n).

To check all the fundamental discriminants up to d(n) whether they are
d(n)c smooth and to find their factorizations we may use simple trial division
by all primes up to this limit. This takes at most O

(
d(n)1+c ln3 d(n)

)
bit

operations using the classical division procedure.
So, as we will see, with an appropriate choice of c < 1/2 the total amount

of time for this step can be neglected compared with the amount of time to the
other steps.

D2: Modular square roots. For a given discriminant D first we check
whether the conditions (D|n) = 1 and (n|p) = 1 for all odd prime factors of D
are satisfied. The probability that these conditions are satisfied is 2−t where t
is the number of ‘prime’ factors of D; here −4 or −8 is considered as a ‘prime’
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factor but −1 is not. Because of the Erdős–Kac theorem [14] the average
number of the factors for naturals up to x has in limit normal distribution with
expected value ln lnx and variance ln lnx, we obtain that this probability is

2− ln ln d = (e− ln ln d)ln 2 = 1/ lnln 2 d(n).

If ln d(n) � ln lnn, this probability is � 1/ ln lnln 2 n. For example, this is
the case for any choice of d(n) � lnα(n) ln lnβ(n) with α > 0. The time to
calculate the Jacobi symbols can be neglected, because (n|p) = 1 is already
checked, (4|n) and (±8|n) are precalculated. Moreover, we have to calculate
the square roots of the discriminants. This needs time

O
(
m(lnn)d(n)/ lnln 2 d(n)

)
with the following simple trick: we precalculate the square root modulo n of
all ±k for each k up to, say,

√
d(n) which is the product of primes having

(n|p) = 1. After this, at most three modular multiplications give the square
root of D modulo n; indeed if D is written as the product of four factors, then
the product of the least two is not greater then

√
d(n).

D3: Reduction of quadratic forms. On the remaining D’s the reduction
algorithms of quadratic forms or the Cornacchia algorithm is applied [5]. The
Cornacchia algorithm consists of three parts:

(0) Computing Kronecker symbol
(

D
n

)
.

In our case this was done previously in D1.

(1) Computing the square root of D.

In our case this was done previously in D2.

(2) Euclidean Algorithm.

Here we can use the controlled Euclidean descent algorithm of Schönhage
[31], which needs time O

(
m(lnn) ln lnn

)
.

Thus the running time can be decreased down to

O
(
m(lnn) ln lnn

)
.

Hence the total running time in our case is

O
(
m(lnn)d(n) ln lnn/ lnln 2 d(n)

)
.

D4: Factorization. This step is to remove small factors and find large factors
of elliptic curve cardinalities.
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The number of the elliptic curves e(n) is twice the number of the remaining
good discriminants. Small prime factors of the cardinalities of the group of
points on these curves modulo n are removed with a simple trial division up to
a limit t(n). This takes time

O
(
e(n)t(n) lnn

)
altogether. If t(n) = O(1), then this time can be neglected.

We now concentrate on finding larger factors by various methods.

(a) Further trial division. If we use only simple trial division method to
remove small factors up to the bound b(n), then this takes time

O
(
e(n)b(n) lnn

)
.

(b) Batch trial division. One of the most practical methods is our ‘batch
trial division’ up to a limit b(n). If b(n) ≥ e(n) lnn, then dividing the
product of primes up to b(n) (which is the magnitude of eb(n)) to parts
having the same size as the products of curve orders, we obtain

b(n)
e(n) lnn

parts. Then we take the gcd of each part with the product of curve orders.
This takes time

O

(
b(n)

e(n) lnn
m
(
e(n) lnn

)
ln
(
e(n) lnn

))
and size

O
(
e(n) lnn

)
of core space. A somewhat better solution may be to divide the product
of primes (as it is read from disc in binary form, starting with MSB) with
the product of curve orders, and then taking the gcd of the remainder
and the product. This also needs

O
(
e(n) lnn

)
core space, but only

O

(
m
(
e(n) lnn

)( b(n)
e(n) lnn

+ ln
(
e(n) lnn

)))
time.
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(c) Pollard 	. The so-called Pollard 	 method can be applied. To find fac-
tors up to b(n) roughly, we need O

(√
b(n)

)
iterations, and each iteration

needs O
(
m(lnn)

)
bit operations. We also need gcd operations, which

take O
(
m(lnn) ln lnn

)
bit operations, but it seems to be enough to use

a gcd operation only after ln lnn iterations. This way the total running
time will be

O
(
e(n)

√
b(n)m(lnn)

)
.

(d) Pollard p − 1. The p − 1 method of Pollard can also be applied. Here
we can choose parameters so that all factors p < b(n) are found for which
p − 1 is

√
b(n)-smooth. Hence, it will be almost sure to find a prime

p  b(n), but around p ≈ b(n) only with probability ≈ 0.34 ([18], 4.5.4
about the limit distribution of size of largest prime factor). The running
time is similar to that of the previous method of Pollard.

(e) ECM. We also may use the elliptic curve factorization method to find the
small factors of the elliptic curve cardinalities. By Lenstra and Lenstra
[20], 4.3, p. 698 the optimal choice to find factors below b(n) to take the
“smoothness bound” s to Lb(n)(1/

√
2) and to use Lb(n)(1/

√
2) elliptic

curves, where Lk(β) defined by

Lk(β) = eβ
√

ln(k) ln ln(k).

In this case we shall find prime factors below b(n) with large probability.
The total time needed for e(n) curve cardinalities is

O
(
e(n) ln b(n)m(lnn)Lb(n)(

√
2)
)

.

D5: Miller-Rabin test. We have to test e(n) remaining unfactored parts
with the fast probabilistic Miller-Rabin test ([5], p. 415). A fixed number of
bases (for example 2, 3, 5, 7, 11, 13, 19, 23, 29, 31) is used. This takes time

O
(
e(n)m(lnn) lnn

)
.

F1: Hilbert polynomial. To complete the proof certificate, the first step is
the calculation of the Hilbert polynomial. This running time can be neglected.

F2: Polynomial root. The second step is the calculation of a root of the
Hilbert polynomial, which has degree h(D). The degree certainly
≤ 2

√
d(n) ln d(n), but we may hope � √

d(n) [20]. If the more refined version
of Atkin and Morain is used, then the degree is h∗(D), so we may hope the
degree � √

d(n)/ lnln 2 d(n). So we have two cases:
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(a) In a simple implementation the running time for one step is

O
(
m
(
h(D) lnn

)
lnn

)
.

(b) In a more refined implementation the running time for one step is

O
(
m
(
h∗(D) lnn

)
lnn

)
.

F3: Find elliptic curve. The third step is to find an appropriate elliptic
curve. The number of elliptic curves to try is only two, and the expected
number of points to try is also bounded. Hence this step needs

O
(
m(lnn) lnn

)
time. This can be neglected.

P1: Proof. One proof verification step needs

O
(
m(lnn) lnn

)
time. This can be neglected.

5. Heuristics

The key to the running time analysis is the following observation: if we are
able to find all prime factors less than b(n) of the number m = n + 1 ± s, an
elliptic curve modulo n with m points is a suitable candidate for the ‘Downrun’
algorithm (D) precisely if the second largest prime factor of m is less than b.
The probability that this happens, if we use for example trial division, where
we guarantee that the number m is completely factored below b(n) (under
randomness assumptions for m) is supposedly approximately

eγ ln b(n)
lnn

≈ 1.7811
ln b(n)
lnn

.

Hence it is reasonable to assume that if we have altogether e(n) such numbers
m, then the number of successes has a probability distribution with mean
approximately equal to

λ = eγ ln b(n)
lnn

e(n).

Because for each negative discriminant D ≤ −7 the probability of the success
is

1
2h(D)

,
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where h(D) denotes the ideal class number, and each successful D results two
different m’s, we expect

e(n) ≈
∑

−d(n)≤D≤−7

1
h(D)

.

Four important theoretical questions appear:

Question 1. What can be said about the asymptotic behavior of the function

ē(n) =
∑

−d(n)≤D≤−7

1
h(D)

,

where we sum the ideal class numbers over s(n)-smooth negative discriminants
D?

For example, it would be good to know that for some c < 1/2 we have
s(n) � d(n)c, ē(n) � √

d(n), or at least for c = 1/2.

Question 2. For different factorization methods, other than trial division, such
as Pollard 	, Pollard p − 1, the elliptic curve method, etc., where we cannot
guarantee that we find all the prime factors below b(n), applying them with var-
ious parameters to find prime factors of the cardinalities of e(n) elliptic curves
modulo n, what will be the expected number of curve cardinalities completely
factored?

Question 3. Suppose that, applying the different factorization methods with
various parameters to find prime factors, one succeeds in factoring completely
the cardinality of a given elliptic curve modulo n, what is the expected value and
distribution of the ‘gain’, defined as log of the ‘smooth part’ of the cardinality?

For example, using trial division or batch trial division up to a bound b(n),
the expected value of the ‘gain’ is supposed to be � ln b(n). The heuristic
behind this is the following: for each prime p the probability that p divides
a given curve order m is 1/p and this results in a ‘gain’ of ln p. Hence the
expected value of the total gain is

G(b(n)) =
∑

p∈P,p≤b(n)

ln p

p
∼

∫ b(n)

2

lnx
1

lnx

1
x

dx ∼ ln b(n).

By other methods we may still expect that the ‘gain’ will only differ by a
bounded factor, so it remains � ln b(n).
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We may suppose that if the expected number of suitable curves is large
enough, then with a fixed positive probability we will succeed. Note that λ is
the parameter of the Poisson distribution in 3.6. This gives the condition

λ = eγ ln b(n)
lnn

e(n) > 1.

We have the possibility always to use more effort in a given step or to backtrack
to a previous level. We would like to find the optimal solution for this problem
too.

Question 4. What is the optimal choice of the parameters b, s, d?

It is not clear what the best strategy for traversing the ‘tree’ of possibilities
is; on the one hand, one would want to minimize the time spent on searching for
suitable discriminants, while on the other hand the ‘gain’ should be maximized.

The problem seems similar to some problems in percolation theory. We
plan to investigate an optimized choice of parameters in our implementation.
Occasionally we may need a backtrack step; some of the data calculated earlier
can be reused by backtracking, which complicates the optimization problem.

6. Strategies

Our aim is to verify that with certain choices of parameters d(n), s(n) and
b(n), the running time could be reduced down to o(ln4 n).

Let m(k) = O(k ln k ln ln k). We suppose that the ‘gain’ G
(
b(n)

) � ln b(n),
the expected number of steps I

(
b(n)

) � lnn/G
(
b(n)

)
, e(n) � √

d(n) if s(n) �
� d(n)c for some appropriate c < 1/2,

h(D) = O(
√

d(n))

and
h∗(D) = O

(√
d(n)/ lnln 2 d(n)

)
.

From the previous chapters we could see that from running time point of
view the most significant parts are D3, D4, D5, F2a and F2b. For this reason in
the following we will consider only the running time of these parts to determine
the running time of one step.
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‘Strong factorization’ strategy. Let us take simply take d(n) � ln2 n,
h(D) = O

(
lnn

)
, h∗(D) = O

(
lnn/ ln lnln 2 n

)
. The time of the most critical

steps, D3, D6 and F2 is the following:

D3:

O
(
d(n)m(lnn) ln lnn/ lnln 2 d(n)

)
= O

(
ln3 n ln ln2−ln 2 n ln ln lnn

)
;

D5:
O
(
e(n)m(lnn) lnn

)
= O

(
ln3 n ln lnn ln ln lnn

)
;

F2a:
O
(
m(h(D) lnn) lnn

)
= O

(
ln3 n ln lnn ln ln lnn

)
;

F2b:
O
(
m(h∗(D) lnn) lnn

)
= O

(
ln3 n ln ln1−ln 2 n ln ln lnn

)
.

D4: In the different cases of factoring we choose b(n) in such a way that the
running time of the factoring won’t exceed the most critical step D3, so we can
take the running time of D3 as the running time of one step. As the ‘gain’
G(b(n)) � ln b(n) and the number of the iterations I(b(n)) � ln(n)/G(b(n))
are depending on b(n), we will determine here also the total running time of
the algorithm for each factoring method.

(a): Trial division. If b(n) is between � lnn and � lnn ln ln2−ln 2 n ln ln lnn
then the running time O

(
e(n)b(n) lnn

)
is between

O
(
ln3 n

)
and

O
(
ln3 n ln ln2−ln 2 n ln ln lnn

)
.

As G(b(n)) � ln lnn in both cases, I(b(n)) � lnn/ ln lnn. Then the total
running time is

O
(
ln4 n ln ln1−ln 2 n ln ln lnn

)
.

(b): Batch trial division. If b(n) is between � lnn and � ln3(n) ln ln1−ln 2 n,

then the running time O

(
m
(
e(n) lnn

)( b(n)
e(n) lnn

+ ln
(
e(n) lnn

)))
is between

O
(
ln2 n ln ln2 n ln ln lnn

)
and

O
(
ln3 n ln ln2−ln 2 n ln ln lnn

)
.

As G(b(n)) and I(b(n)) are the same as in (a), the total running time will be
also the same.
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(c/d): Pollard ρ and p−1. If b(n) is between � lnn and � ln2 n ln ln2−2 ln 2 n,
then the running time O

(
e(n)

√
b(n)m(lnn)

)
is between

O
(
ln2.5 n ln lnn ln ln lnn

)
and

O
(
ln3 n ln ln2−ln 2 n ln ln lnn

)
.

As G(b(n)) and I(b(n)) are the same as in (a) and (b), the total running time
will be also the same.

(e): ECM. If
b(n) � (lnn)ln ln n/ ln ln ln2 n

then the running time is

O
(
e(n) ln b(n)m(lnn)Lb(n)(

√
2)
)

=

= O
(
ln2+2/

√
ln ln ln n n ln ln3 n/ ln ln lnn

)
,

as
Lb(n)(

√
2) = e

√
2 ln b(n) ln ln b(n) =

= e
√

4(ln ln ln n−ln ln ln ln n) ln ln2 n/ ln ln ln2 n <

< e
√

4 ln ln2 n/ ln ln ln n =

= e2 ln ln n/
√

ln ln ln n = ln2/
√

ln ln ln n n.

As G
(
b(n)

) � ln ln2 n/ ln ln ln2 n, I
(
b(n)

) � lnn ln ln ln2 n/ ln ln2 n. Then the
total running time is

O
(
ln4 n ln ln ln3 n/ ln lnln 2 n

)
.

Conclusion. We can see that, in (e), the running time is o(ln4 n), but in the
other cases the running time of one step is too big. We could compensate it
with a bigger G

(
b(n)

)
, but in this case the time of the factoring would increase

more. Thus we have to change the other parameters, d(n) and s(n) to achieve
o(ln4 n).

‘Strong factorization plus small discriminant’ heuristic. As it is clear
from the conclusion above, we have to decrease d(n) and s(n) in order to
achieve o(ln4 n) for (a), (b) and (c/d) too but we have to be careful and keep
the expected value of new children, λ = eγ ln b(n)

ln n e(n) above 1. Let us take
d(n) � ln2 n/ ln ln2 n, h(D) = O(lnn/ ln lnn), h∗(D) = O

(
lnn/ ln ln1+ln 2 n

)
.

Again, the time of the most critical steps D3, D5 and F2 is the following:
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D3:

O
(
d(n)m(lnn) ln lnn/ lnln 2 d(n)

)
= O

(
ln3 n ln ln lnn/ ln lnln 2 n

)
;

D5:
O
(
e(n)m(lnn) lnn

)
= O

(
ln3 n ln ln lnn

)
;

F2a:
O
(
m(h(D) lnn) lnn

)
= O

(
ln3 n ln ln lnn

)
;

F2b:
O
(
m(h∗(D) lnn) lnn

)
= O

(
ln3 n ln ln lnn/ ln lnln 2 n

)
.

D4: Like in the previous strategy, in the different cases of factoring we choose
b(n) in such a way that the running time of the factoring won’t exceed the
most critical step, in this case D5, so we can take the running time of D5 as the
running time of one step. We will determine again here also the total running
time of the algorithm for each factoring method.

(a): Trial division. If b(n) is between � lnn and � lnn ln lnn ln ln lnn,
then the running time O

(
e(n)b(n) lnn

)
is between

O
(
ln3 n/ ln lnn

)
and

O
(
ln3 n ln ln lnn

)
.

As G(b(n)) � ln lnn in both cases, I(b(n)) � lnn/ ln lnn. Then the total
running time is

O
(
ln4 n ln ln lnn/ ln lnn

)
.

(b): Batch trial division. If b(n) is between � lnn and � ln3 n/ ln lnn,

then the running time O

(
m
(
e(n) lnn

)( b(n)
e(n) lnn

+ ln
(
e(n) lnn

)))
is between

O
(
ln2 n ln lnn ln ln lnn

)
and

O
(
ln3 n ln ln lnn

)
.

As G(b(n)) and I(b(n)) are the same as in (a), the total running time will be
also the same.

(c/d): Pollard ρ and p − 1. If b(n) is between � lnn and � ln2 n, then
the running time O

(
e(n)

√
b(n)m(lnn)

)
is between

O
(
ln2.5 n ln ln lnn

)
and

O
(
ln3 n ln ln lnn

)
.

As G(b(n)) and I(b(n)) are the same as in (a) and (b), the total running time
will be also the same.
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(e): ECM. If
b(n) � (lnn)ln ln n/ ln ln ln2 n

the same as in the previous strategy then the running time will be the same too,
o(ln3 n). As G(b(n)) � ln ln2 n/ ln ln ln2 n, I(b(n)) � lnn ln ln ln2 n/ ln ln2 n.
Then the total running time is

O(ln4 n ln ln ln3 n/ ln ln2 n).

Conclusion. As we can see in this strategy we could decrease the running
time to o(ln4 n) for each cases by decreasing d(n) and s(n), and λ is still above
1 as e(n) � s(n) thus

λ = eγ ln b(n)
lnn

e(n) � eγ

in (a), (b), (c/d) and

λ = eγ ln b(n)
lnn

e(n) � eγ ln lnn/ ln ln ln2 n

in (e).
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