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ON THE LAPLACE GENERALIZED CONVOLUTION
TRANSFORM
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Abstract. Several classes of integral transforms related to Laplace gen-
eralized convolution are studied. Necessary and sufficient conditions to
ensure that the transformation is unitary are obtained, and a formula for
the inverse transformation is derived in this case. In the application, we
obtain solutions of several classes of integro-differential equations in closed
form.

1. Introduction

Laplace transform is an integral transform method which is of the form

(
Lf)(y) =

∞∫
0

f(x)e−yxdx, y > 0.

Here, the integral converges for functions f of the exponential order α > 0, i.e.,
there exists a positive M and x0 � 0 such that |f(x)| � Meαx, x � x0. This
transform finds wide applications in various terms of electrical engineering,
optics, signal processing, partial different equation, integral equation, inverse
problems and so on (see [3, 5, 6, 9, 10, 11, 12, 15]).
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Although, so far there have beenmany articles about convolution transforms
(see [1, 2, 4, 7, 12, 13, 14, 17]). But generalized convolution transform related
to the Laplace transform has not been studied. In this paper, we introduce
several generalized convolutions related to Laplace transform. Then, we study
classes of integral transforms related to these generalized convolutions, which
are Laplace generalized convolution transforms.

This paper consists of four sections. The first section, reflects the content
of the paper. The second section, we recall several fundamental notations used
in this paper. The third section, we introduce several new generalized convo-
lutions for the Fourier sine, Fourier cosine and the Laplace transforms; as well
as together with the related integral transforms. The Watson’s type theorem
which gives the necessary and sufficient condition to ensure that the above
integral transforms are unitary. Additionally, the Plancherel’s type theorem
is also obtained. In the final section, as application, we obtain solutions of
several classes of integro-differential equations in closed form. The research
is interested in L2(R+) space and the space of functions of exponential order
α > 0.

2. Preliminaries

The Fourier cosine and Fourier sine transforms are defined as follows (see
[11, 12])

(
Fcf

)
(y) =

√
2

π

∞∫
0

f(x) cosxydx =

√
2

π

d

dy

∞∫
0

f(x)
sinxy

x
dx, y > 0,(2.1)

(
Fsf

)
(y) =

√
2

π

∞∫
0

f(x) sinxydx =

√
2

π

d

dy

∞∫
0

f(x)
1− cosxy

x
dx, y > 0,(2.2)

for f ∈ L1(R+). The second integrals in (2.1) and (2.2) are also well-defined
for f ∈ L2(R+).

The Fourier sine and cosine generalized convolution of f and k is defined
as in [11] by

(f ∗
1
k)(x) =

1√
2π

∞∫
0

f(y)[k(x+ y) + sign(x− y)k(|x− y|)]dy, x > 0,(2.3)
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which satisfies the following factorization and Parseval’s type identities (see [1])

Fs

(
f ∗

1
k
)
(y) =

(
Fcf

)
(y)

(
Fsk

)
(y), ∀y > 0, f, k ∈ L2(R+),(2.4) (

f ∗
1
k
)
(x) = Fs

[
(Fcf)(Fsk)

]
(x), ∀x > 0, f, k ∈ L2(R+).(2.5)

The Fourier cosine and sine generalized convolution of f and k is defined
as in [8] by

(f ∗
2
k)(x) =

1√
2π

∞∫
0

f(y)[k(x+ y)− sign(x− y)k(|x− y|)]dy, x > 0,(2.6)

which satisfies the following factorization and Parseval’s type identities (see [2])

Fc

(
f ∗

2
k
)
(y) =

(
Fsf

)
(y)

(
Fsk

)
(y), ∀y > 0, f, k ∈ L2(R+),(2.7) (

f ∗
2
k
)
(x) = Fc

[
(Fsf)(Fsk)

]
(x), ∀x > 0, f, k ∈ L2(R+).(2.8)

The Fourier cosine convolution of two functions f and k is defined as in [11]
by

(f ∗
Fc

k)(x) =
1√
2π

∞∫
0

f(y)[k(x+ y) + k(|x− y|)]dy, x > 0,

which satisfies the following factorization identity

Fc

(
f ∗

Fc

k
)
(y) =

(
Fcf

)
(y)

(
Fck

)
(y), ∀y > 0, f, k ∈ L2(R+).(2.9)

The convolution of two functions f and k for the Laplace transform (see
[5, 10])

(f ∗
L
k)(x) =

x∫
0

f(x− y)k(y)dy, x > 0,

this convolution satisfies the factorization identity

L
(
f ∗
L
k
)
(y) = (Lf)(y)(Lk)(y), y > 0.(2.10)

This factorization identity holds for all functions f and k of exponential order
α > 0. Moreover, (f ∗

L
k)(x) of exponential order α > 0 (see Theorem 2.39,

p.92 in [10]).
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3. The Laplace generalized convolution transform

In this section, we introduce several new generalized convolutions related
to the Laplace transform and study classes related to integral transforms.

Definition 3.1. The generalized convolutions with a weight function γ(y) =
sin y of two functions f, k for the Fourier sine, Fourier cosine and Laplace
transforms are defined by

(
f

γ∗ k
)
{ 1

2}(x) =
1

2π

∞∫
0

∞∫
0

{[ v

v2 + (x− 1− u)2
± v

(v2 + (x− 1 + u)2
]

−
[ v

v2 + (x+ 1− u)2
± v

v2 + (x+ 1 + u)2
]}

f(u)k(v)dudv,(3.1)

where x > 0.

Theorem 3.1. Suppose that f(x) ∈ L2(R+) and k(x) is a function of expo-

nential order α > 0. Then, the generalized convolutions
(
f

γ∗ k
)
{ 1

2} ∈ L2(R+)

satisfy the Parseval’s type identities

(
f

γ∗ k
)
{ 1

2}(x) = F{ s
c}

[
± sin y(F{ c

s}f)(Lk)
]
(x), ∀x > 0,(3.2)

and the following factorization identities hold

F{ s
c}

(
f

γ∗ k
)
{ 1

2}(y) = ± sin y(F{ c
s}f)(y)(Lk)(y), ∀y > 0.(3.3)

Proof. From (3.1) and by using the formula (2.13.5) in [5]

∞∫
0

e−αx cosxydx =
α

α2 + y2
, α > 0,
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we get

(
f

γ∗ k
)
{ 1

2}(x) =
1

2π

∞∫
0

∞∫
0

∞∫
0

f(u)k(v)e−vy
{[

cos(x− 1− u)y ± cos(x− 1 + u)y
]

−
[
cos(x+ 1− u)y ± cos(x+ 1 + u)y

]}
dudvdy

=± 2

π

∞∫
0

∞∫
0

∞∫
0

f(u)k(v)e−vy

{
sinxy. sin y. cosuy

cosxy. sin y. sinuy

}
dudvdy

=± 2

π

∞∫
0

[ ∞∫
0

f(u)

{
cosuy

sinuy

}
du.

∞∫
0

k(v)e−vydv
]
sin y

{
sinxy

cosxy

}
dy

=±
√

2

π

∞∫
0

(F{ c
s}f)(y)(Lk)(y) sin y

{
sinxy

cosxy

}
dy.

Therefore Parseval’s type identities (3.2) hold. On the other hand, (Lk)(y) van-
ishes at infinity and f ∈ L2(R+) therefore sin y(F{ c

s}f)(y)(Lk)(y) ∈ L2(R+).

Combining with (3.2) we have
(
f

γ∗ k
)
{ 1

2} ∈ L2(R+) and factorization identities

(3.3) hold.

In the next part of this section, we reflect several properties of the integral
transforms related to convolutions (2.3), (2.6) and generalized convolutions
(3.1), namely, transformations of the form

f(x) �→ g(x) =
(
Tk1,k2f

)
(x) =

(
1− d2

dx2

){
(f

γ∗ k1){ 1
2}(x) + (f ∗

{ 1
2}

k2)(x)
}
,

(3.4)

x > 0.

Theorem 3.2 (Watson’s type theorem). Suppose that k1(x) is a function of
exponential order α > 0 and k2(x) ∈ L2(R+), then necessary and sufficient
conditions to ensure that the transforms (3.4) are unitary on L2(R+) are that∣∣± sin y(Lk1)(y) + (Fsk2)(y)

∣∣ = 1

1 + y2
.(3.5)

Moreover, the inverse transforms have the form

f(x) =

(
1− d2

dx2

){
(g

γ∗ k1){ 1
2}(x) + (g ∗

{ 1
2}

k2)(x)
}
.(3.6)
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Proof. Necessity. Assume that k1 and k2 satisfy conditions (3.5). We known

that h(y), yh(y), y2h(y) ∈ L2(R) if and only if (Fh)(x), d
dx (Fh)(x), d2

dx2 (Fh)(x) ∈
L2(R) (Theorem 68, pp.92, [12]). Moreover,

d2

dx2
(Fh)(x) =

1√
2π

d2

dx2

+∞∫
−∞

h(y)e−ixydy = F
[
(−iy)2h(y)

]
(x).

Specially, if h is an even or odd function such that h(y), y2h(y) ∈ L2(R+), then
the following equalities hold(

1− d2

dx2

)(
F{ c

s}h
)
(x) = F{ c

s}
[
(1 + y2)h(y)

]
(x).(3.7)

From conditions (3.5), therefore ± sin y(Lk1)(y) + (Fsk2)(y) are bounded, and
hence (1+ y2)

(
± sin y(Lk1)(y)+ (Fsk2)(y)

)
(F{ c

s}f)(y) ∈ L2(R+). Since (3.4),

by using Parsevals’ type properties (2.5), (2.8), (3.2), and formula (3.7), we
have

g(x) =

(
1− d2

dx2

)
F{ s

c}
[
± sin y(F{ c

s}f)(y)(Lk1)(y) + (F{ c
s}f)(y)(Fsk2)(y)

]
(x)

=F{ s
c}

[
(1 + y2)

(
± sin y(Lk1)(y) + (Fsk2)(y)

)
(F{ c

s}f)(y)
]
(x).

Therefore, the Parseval identities ||f ||L2(R+) = ||F{ c
s}f ||L2(R+) and conditions

(3.5) give

||g||L2(R+) =||(1 + y2)
(
± sin y(Lk1)(y) + (Fsk2)(y)

)
(F{ c

s}f)(y)||L2(R+)

=||(F{ c
s}f)(y)||L2(R+) = ||f ||L2(R+).

It shows that the transforms (3.4) are isometric.

On the other hand, since

(1 + y2)
(
± sin y(Lk1)(y) + (Fsk2)(y)

)
(F{ c

s}f)(y) ∈ L2(R+),

we have

(F{ s
c}g)(y) = (1 + y2)

(
± sin y(Lk1)(y) + (Fsk2)(y)

)
(F{ c

s}f)(y).

Using conditions (3.5), we have

(F{ s
c}f)(y) = (1 + y2)

(
± sin y(Lk1)(y) + (Fsk2)(y)

)
(F{ c

s}g)(y).
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Again, conditions (3.5) show that

(1 + y2)
(
± sin y(Lk1)(y) + (Fsk2)(y)

)
(F{ c

s}g)(y) ∈ L2(R+).

By using (2.5), (2.8), (3.2), and formulas (3.7), we have

f(x) =F{ s
c}

[
(1 + y2)

(
± sin y(Lk1)(y) + (Fsk2)(y)

)
(F{ c

s}g)(y)
]

=

(
1− d2

dx2

)
F{ s

c}
[
± sin y(F{ c

s}g)(y)(Lk1)(y) + (F{ c
s}g)(y)(Fsk2)(y)

]
=

(
1− d2

dx2

){
(g

γ∗ k1){ 1
2}(x) + (g ∗

{ 1
2}

k2)(x)
}
.

Thus, the transforms (3.4) are unitary on L2(R+) and the inverse transforms
have the form (3.6).
Sufficiency . Assume that, the transforms (3.4) are unitary on L2(R+). Then
the Parseval identities for Fourier cosine and sine transforms yield

||g||L2(R+) =||(1 + y2)
(
± sin y(Lk1)(y) + (Fsk2)(y)

)
(F{ c

s}f)(y)||L2(R+)

=||(F{ c
s}f)(y)||L2(R+) = ||f ||L2(R+).

Therefore, the operators Mθ[f ](y) = θ(y)f(y), here

θ(y) = (1 + y2)
(
± sin y(Lk1)(y) + (Fsk2)(y)

)
are unitary on L2(R+), or equivalent, the conditions (3.5) hold.

Theorem 3.3 (Plancherel’s type theorem). We set

θ{ 1
2}(x, u, v) =

[ v

v2 + (x− 1− u)2
± v

(v2 + (x− 1 + u)2

]
−

[ v

v2 + (x+ 1− u)2
± v

v2 + (x+ 1 + u)2

]
,

and suppose that k1(x) is a function of exponential order α > 0 and two times
continuously differentiable, k2(x) ∈ L2(R+) and two times continuously differ-
entiable, satisfying conditions (3.5) and

Θ{ 1
2}(x, u, v) =

(
1− d2

dx2

)
θ{ 1

2}(x, u, v), K2(x) =

(
1− d2

dx2

)
k2(x)
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are bounded functions. Let f ∈ L2(R+) and for each positive integer N, set

gN (x) =
1

2π

∞∫
0

N∫
0

Θ{ 1
2}(x, u, v)f(u)k1(v)dudv

+
1√
2π

N∫
0

f(u)
[
K2(x+ u)± sign(x− u)K2(|x− u|)

]
du.

Then:
1) We have gN ∈ L2(R+), and if N → ∞ then gN converges in L2(R+) norm
to a function g ∈ L2(R+) with ||g||L2(R+) = ||f ||L2(R+).

2) Set gN = g.χ(0, N), then

fN (x) =
1

2π

∞∫
0

∞∫
0

Θ{ 1
2}(x, u, v)g

N (u)k1(v)dudv

+
1√
2π

∞∫
0

gN (u)
[
K2(x+ u)± sign(x− y)K2(|x− u|)

]
du,

also belong to L2(R+), and if N → ∞ then fN converges in norm to f .

Proof. Because of the definitions of fN and gN , these integrals are over finite
intervals and therefore converge.
Set fN = f.χ(0, N), we have

gN (x) =
1

2π

∞∫
0

N∫
0

Θ{ 1
2}(x, u, v)f(u)k1(v)dudv

+
1√
2π

N∫
0

f(u)
[
K2(x+ u)± sign(x− u)K2(|x− u|)

]
du

=

(
1− d2

dx2

) {
1

2π

∞∫
0

∞∫
0

θ{ 1
2}(x, u, v)f

N (u)k1(v)dudv

+
1√
2π

∞∫
0

fN (u)
[
k2(x+ u)± sign(x− u)k2(|x− u|)

]
du

}
.

In view of Watson’s type theorem, we conclude that gN ∈ L2(R+). Let g be the
transform of f under transformations (3.4), we have ||g||L2(R+) = ||f ||L2(R+),
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and the reciprocal formulas (3.6) hold. We have

(g − gN )(x) =

(
1− d2

dx2

) {
1

2π

∞∫
0

∞∫
0

θ{ 1
2}(x, u, v)(f − fN )(u)k1(v)dudv

+
1√
2π

∞∫
0

(f − fN )(u)
[
k2(x+ u)± sign(x− u)k2(|x− u|)

]
du

}
.

By using Watson’s type theorem, we get (g − gN )(x) ∈ L2(R+) and

||g − gN ||L2(R+) = ||f − fN ||L2(R+).

Since ||g − gN ||L2(R+) → 0 as N → ∞ then gN converges in L2(R+) norm to
g ∈ L2(R+).

Similarly, one can obtain the second part of the theorem.

The following example shows the existence k1 and k2 which satisfy condi-
tions (3.5).

Example 1.

We choose k1(x) = i sinx is a function of exponential order α > 0, by using
(3.2.9) in [5], we have

(Lk1)(y) =
i

1 + y2
.(3.8)

We choose the function k2(x) ∈ L2(R+) such that

(Fsk2)(y) =
cos y

1 + y2
.(3.9)

By using (2.2.14) in [5], we have

k2(x) =Fs

[ cos y

1 + y2

]
=

1√
2π

∞∫
0

sin y(x+ 1) + sin y(x− 1)

1 + y2
dy

=
1

2
√
2π

[
e−(x+1)Ei(x+ 1)− e(x+1)Ei(−x− 1)

+ e−(x−1)Ei(x− 1)− e(x−1)Ei(−x+ 1)
]
∈ L2(R+),

here, for real nonzero values of x, the exponential integral Ei(x) is defined as
(see [5])

Ei(x) =

x∫
−∞

et

t
dt.
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When, since (3.8), (3.9), therefore conditions (3.5) are satisfied, i.e.,∣∣± sin y(Lk1)(y) + (Fsk2)(y)
∣∣ = 1

1 + y2
.

4. A class of integro-differential equations

Not many integro-differential equations can be solved in closed form. In
this section, we consider the following integro-differential equations related to
the transforms (3.4)

f(x) +
d

dx

(
Tϕ,ψf

)
(x) = g(x), x > 0.(4.1)

Here, ϕ(x) =
(
ϕ1 ∗

L
ϕ2

)
(x), ϕ1 is given function of exponential order α > 0,

ϕ2(x) =
(
sin t ∗

L
sin t

)
(x) and ψ(x) =

(
sech t ∗

1
ψ1

)
(x), ψ1(x) ∈ L2(R+). g(x)

is given function in L2(R+), and f(x) is unknown function.

Theorem 4.1. Suppose the following conditions hold

1 + (y + y3)
[
sin y(Lϕ)(y)± (Fsψ)(y)

]
�= 0, ∀y > 0.(4.2)

Then equations (4.1) have unique solutions in L2(R+). Moreover, the solutions
can be presented in closed form as follows

f(x) = g(x)−
(
q ∗
{Fc

1 }
g
)
(x),

where q(x) ∈ L2(R+) is defined by

(Fcq)(y) =
(y + y3)

[
sin y(Lϕ)(y)± (Fsψ)(y)

]
1 + (y + y3)

[
sin y(Lϕ)(y)± (Fsψ)(y)

] .
Proof. The equations (4.1) can be rewritten in the form

f(x) +

(
d

dx
− d3

dx3

)[
(f

γ∗ ϕ){ 1
2}(x) +

(
f ∗
{ 1

2}
ψ
)
(x)

]
= g(x).(4.3)

By using Parseval’s type identities (3.2), (2.5) and (2.8), we have

(
d

dx
− d3

dx3

)(
f

γ∗ ϕ){ 1
2}(x) =

(
d

dx
− d3

dx3

)
F{ s

c}
[(

± sin yF{ c
s}f

)(
Lϕ

)]
(x)

(4.4)

= F{ c
s}

[
(y + y3) sin y(F{ c

s}f
)(
Lϕ

)]
(x),
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and

(
d

dx
− d3

dx3

)(
f ∗
{ 1

2}
ψ
)
(x) =

(
d

dx
− d3

dx3

)
F{ s

c}
[(
F{ c

s}f
)(
Fsψ

)]
(x)(4.5)

= ±F{ c
s}

[
(y + y3)(F{ c

s}f
)(
Fsψ

)]
(x).

From (4.3), (4.4) and (4.5), we get

f(x) + F{ c
s}

[
(y + y3) sin y(F{ c

s}f
)(
Lϕ

)]
(x)± F{ c

s}
[
(y + y3)(F{ c

s}f
)(
Fsψ

)]
(x)

= g(x).

Therefore,

(F{ c
s}f)(y) + (y + y3)

[
sin y

(
F{ c

s}f
)
(y)(Lϕ)(y)± (F{ c

s}f)(y)(Fsψ)(y)
]

= (F{ c
s}g)(y),

or equivalent,

(F{ c
s}f)(y)

[
1 + (y + y3)

(
sin y(Lϕ)(y)± (Fsψ)(y)

)]
= (F{ c

s}g)(y).(4.6)

From conditions (4.2) and (4.6), we have

(F{ c
s}f)(y) = (F{ c

s}g)(y)
[
1−

(y + y3)
[
sin y(Lϕ)(y)± (Fsψ)(y)

]
1 + (y + y3)

[
sin y(Lϕ)(y)± (Fsψ)(y)

]] .

(4.7)

On the other hand, by using (1.7) in [10] and factorization identity (2.10), we
have

(Lϕ)(y) = (Lϕ1)(y)(Lϕ2)(y)(4.8)

= (Lϕ1)(y)L
(
sin t)(y)L

(
sin t)(y)

=
1

(1 + y2)2
(Lϕ1)(y).

Moreover, from formula (1.9.1) in [3]

Fc(sech t)(y) =

√
π

2
sech

πy

2
,

and formula (1.9.4) in [3] for n = 1
√
2π

4
(1 + y2) sech

πy

2
= Fc(sech

3 t)(y),
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combining with factorization identity (2.4), we have

(Fsψ)(y) = Fc(sech t)(y)(Fsψ1)(y) =
2

1 + y2
Fc(sech

3 t)(y)(Fsψ1)(y).(4.9)

From (4.8) and (4.9), we have

(y + y3)
[
sin y(Lϕ)(y)± (Fsψ)(y)

]
= sin y

y

1 + y2
(Lϕ1)(y)± 2yFc(sech

3 t)(Fsψ1)(y).

Then, since by the formula (2.13.6) in [5]

(Fse
−t)(y) =

y

1 + y2
,

and by using partial integration, we easily prove the following formula

yFc

(
sech3 t

)
(y) = −3Fs

(
sinh t sech4 t

)
(y),

combining with factorization identities (3.3), (2.7), we have

(y + y3)
[
sin y(Lϕ)(y)± (Fsψ)(y)

]
(4.10)

=

√
π

2
sin y(Fse

−t)(y)(Lϕ1)(y)∓ 6Fs(sinh t sech
4 t)(Fsψ1)(y)

=

√
π

2
Fc(e

−t γ∗ ϕ1)2(y)∓ 6Fc

(
(sinh t sech4 t) ∗

2
ψ1

)
(y)

= Fc

[√π

2
(e−t γ∗ ϕ1)2 ∓ 6(sinh t sech4 t) ∗

2
ψ1

]
(y) ∈ L2(R+).

From (4.10), conditions (4.2) and Wiener-Levy theorem in [16], there exists a
function q(x) ∈ L2(R+) such that

(Fcq)(y) =
(y + y3)

[
sin y(Lϕ)(y)± (Fsψ)(y)

]
1 + (y + y3)

[
sin y(Lϕ)(y)± (Fsψ)(y)

] .(4.11)

From (4.7), (4.11) and ussing factorization identities (2.4), (2.9), we have

(F{ c
s}f)(y) =(F{ c

s}g)(y)− (F{ c
s}g)(y)(Fcq)(y)

=(F{ c
s}g)(y)− F{ c

s}
(
q ∗
{Fc

1 }
g
)
(y).

Therefore,

f(x) = g(x)−
(
q ∗
{Fc

1 }
g
)
(x), f(x) ∈ L2(R+).

The proof is complete.
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