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Abstract. We formulate some open problems, conjectures in the field of
arithmetic functions.

1. Notation

Let P = set of primes; N = set of positive integers; Z = set of integers; Q =
set of rational numbers; R = set of real numbers; C = set of complex num-
bers. Let G be an Abelian group, Ag = set of additive arithmetical functions
mapping into G. f: N — G belongs to Ag, if f(mn) = f(m) + f(n) whenever
m,n are coprimes. Let A7 = set of completely additive arithmetical functions,
f NG fe Ay, (CAg)if f(mn)= f(m)+ f(n) holds for every m and
n. We shall write simply A, A* if G = R.

Let M be the set of multiplicative functions. We say that ¢ € M if ¢ :
N — C and g(nm) = g(n) - g(m) for every n,m coprime pairs of integers. Let
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M* be the set of completely multiplicative functions. We say that ¢ : N — C
belongs to M* if g(nm) = g(n) - g(m) holds for every n,m € N.

p and ¢, with and without suffixes always denote primes. For some x € R
let {z} be the fractional part of z, and || z ||= min({z},1 — {z}).

2. On the iteration of multiplicative functions

Let 9 be a completely multiplicative function taking positive integer values.
We shall define a directed graph Gy on the set of primes according to the
following rule: if ¢ is a prime divisor of J(p) then we lead an edge from p to q.
Let E, denote the set of those primes ¢ which can be reached from p walking
on Gy. Let furthermore K be the set of that primes which are located on some
circles.

The properties of K and E, were investigated in [17], [35], [18] in the case
Hp) =p—+a, a€N. It was proved that K is a finite set, and that for every
prime p there is a k such that all the prime factors of 9(*)(p) belong to K. Here
9" (n) is the k-fold iterate of ¥(n), i.e. 9O (n) =n, I*+D(n) =9WF) (n)).

Conjecture 2.1. Let ¥ be a completely multiplicative function defined at prime
places p by ¥(p) = ap+b, where a > 2, 2a+b>1, a,b be integers, (a,b) =1.
Then

(1) E, is a finite set for every p € P,

(2) K s a finite set.

Conjecture 2.2. Let ¥ be completely multiplicative, 9(p) = p?> + 1. Then K
is infinite, and there is a ¢ € P for which Ey is an infinite set.

3. logn as an additive function

It is clear that clogn is an additive function. Erdds proved in [12] that
if an additive function f(n) satisfies f(n +1) — f(n) - 0 (n — o0), or
fn+1) > f(n) (n € N), then f(n) = clogn. In the same paper Erdds
formulated the conjecture that

S D) @ 50 (o)
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implies that f(n) = clogn. This was proved by I. Kétai [19], and in a more
general form by E. Wirsing ([38], [39]).

Ivényi and Kétai proved the following result in [16].

If f(n) is a completely additive function, N1 < No < ... an infinite sequence
of integers, € > 0 is an arbitrary positive constant, such that

fn) < f(n+1) when n € [N;,N; + (2+¢)/Nj],
j=1,2,..., then f(n) is a constant multiple of logn (Theorem 1 in [16]).
Let ¥(N) = exp ( clog N ) , ¢ >0 an absolute constant.

loglog N
They proved: if f is an additive function,

fn) < f(n+1)  in [Nj,N;+ U(N;)/Nj]

for j =1,2,..., where Ny < Ny < ... (N; = o0), then f(n) is a constant
multiple of logn.

Recently, it is proved in [3] that if f(n) is a completely additive func-
tion, ¢, d are positive integers with ¢ > 2d, an infinite sequence of integers
1 < N; < N3 < ... and an infinite sequence of reduced residues ¢; (mod d), ¢5
(mod d), . .. satisfies the relation

f(n) < f(n+d) if ne[N, N, +¢y/N,] and n=/, (modd) (veN),
then there exists a constant ¢ such that f(n) = clogn foralln e N, (n,d) =1
Conjecture 3.1. If f(n) is an additive function such that

fn) < f(n+1) for n €[N, N; + N;],
where N; — 00, and € > 0 is an arbitrary constant, then f(n) = clogn.

Wirsing proved that f € A*, f(n+1) — f(n) = o(logn) (n — oo) implies
that f(n) = clogn ([39]). This theorem is very deep, it is based upon the
Bombieri-Vinogradov theorem. Hence we could deduce simply that, if f,g €
A* gn+1)— f(n) =o(ogn) (n— o), then f(n) = g(n) = clogn.

In some of his papers K&atai asked for a characterization of those f; €
A (i=1,...,k) which satisfy

(3.1) In):=filn+ 1)+ fo(n+2)+ ...+ fu(ln+k) =0 as n— oo.

Conjecture 3.2. Assume that f1,...,fx € A, and l(n) - 0 (n — o0).
Then there exist appropriate constants c1,...,cx, and v1,...,v, € A, such that
filn) = ¢ilogn + v;(n), where ¢c; + -+ ¢, =0,

k
(3.2) > wiln+i) = (n=0,1,2,...),
=1
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and vi,...,v; are of finite support.

Definition 1. An additive function f is said to be of finite support, if f(p®) =
0 (a=1,2,...) holds for all but finitely many primes p.

The conjecture is true in the special case, when f;(n) = A;f1(n), where

(1 =)A1, A, ..., A are constants. This assertion has been proved by Elliott

[10], and by Katai [20]. Let E be the shift operator E defined over {a,}, by

al, = Eap, = apy1 (n=1,2,...). If P(x) = X\g + M1z + ... + \pz® € R[z],
k

then let (a, :) = P(E)a, := Y Ajan4j. The developed method was suitable
i=0

J
to prove the following assertions:

L If P(z)eR[z], fe€A and

1
=SS IPE) )] 0,
n<lz
then f(n) = clogn + u(n), where P(E)u(n) =0 (n=1,2,...). If P(1) #0,
then ¢ = 0. Furthermore, u is of finite support.
IL. If f € A*,P(x) € Rlz], and P(E)f(n) = o(logn) as n — oo, then
f(n) =clogn.
For further generalization of these questions see the excellent book of Elliott
[11].

4. Characterization of n® as a multiplicative function N — C

In a series of papers [21-26] there were considered functions f € M under
the conditions that Af(n) = f(n+1)— f(n) tends to zero in some sense. There
were determined all the functions f, g € M for which the relation

o0

(4.1) S ~lgln+ k)~ f(n)] < o0

n=1

with some fixed k£ € N holds. In the special case k =1, f, g € M* the relation
(4.1) implies that either

SO sl

n n

or
f(n)=g(n)=n"""", or7eR, 0<o<l.



Research problems in number theory 271

Hence it follows especially that

o0

1
S0 A+ 1) = A@)] = o0,
n=1
where A(n) is the Liouville function, i.e. A € M*, A(p) = —1 for every p € P.
In [13-15] the following assertion has been proved: if f,g € M* and

> lgtn+1) = f(n)] = O(a),

n<x

then either Y |f(n)] =0(x), > |g(n)] =0(x), or

n<z n<z
f(n)=gn)=n°, 0< Res<1.

Conjecture 4.1. Let f,g € M, k €N such that liminf1 Y |f(n)| > 0,

n<z

and

(4.2) %Zw(mk)fﬂn)mo (& = o).

n<z

Then there exist U,V € M and s € C with 0 < Re s < 1 such that f(n) =
U(n)-n®, g(n)=V(n)- -n°, and

(4.3) Vin+k)=U(n) (n €eN)
holds.

Even a complete solution of (4.3) is not trivial. (4.3) was treated and all
solutions found in the papers [28], [29], [30].

Celebrating P. Erdés on his 70th anniversary in a conference in Ootacamund
(India) Kétai gave a talk, proving that f € M, |Af(n)|(logn)? = O(1) implies
that either f(n) = n®, 0 < Re s < 1, or f(n) — 0, and formulated the
conjecture:

Conjecture 4.2. If f e M, Af(n) =0 (n — o), then either f(n) =
n°, 0< Res<l1, orf(n)—0 (n— o).

This conjecture was proved by E. Wirsing. He sent the proof to Katai
[40]. Tang Yuansheng and Shao Pintsung, being unaware of the existing proof
of his conjecture, gave an independent proof. They have written a paper to-
gether with Wirsing [42]. In a paper of B. M. Phong and I. Kéatai [30] they
characterized all those f,g € M for which g(n + k) — f(n) =0 (n — o0).
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As an immediate consequence of the theorem of E. Wirsing the following
assertion is true:

If F(n) € A, and || AF(n) |— 0, then either | F(n) ||— 0 or F(n) —
Tlogn = O (mod 1) for every n, with suitable T € R.

Conjecture 4.3. Let f be a completely multiplicative function, |f(n)|=1 (n €

N), é¢(n) = f(n+1)f(n).

Let Ay = {ai1,...,a,} be the set of limit points of {07(n)|n € N}. Then
Ai = Sk, where Sy, is the set of k’th compler units, i.e. S, = {w|lw* = 1},
furthermore f(n) = n'"F(n) with a suitable 7 € R, and F(N) = Sk, and for

every w € Sy, there exists a sequence n, /* oo such that F(n, + 1)F(n,) =
w (r=12,...).

The motivation of this problem, and partial results can be read in [31], [32].
E. Wirsing [41] proved a very important result by proving that if the conditions
of Conjecture 4.3 are satisfied, then f(n) = n'"F(n), and F'(n) =1 (n € N)
holds with a fixed [. He was not able to prove that [ = k. Even he proved
this theorem in the more general setting of additive functions mapping into a
locally compact Abelian group.

5. Additive functions (mod 1)

Let T = R/Z. We say that F € Ar (= set of additive functions mapping
into T) is of finite support if F(p*) = 0 holds for every large prime p.

Let Fy, Fy,...,Fy_1 € Ar, and
(51) Ln(Fo, .. .,Fk_l) = Fo(’ll) + Fl(n + 1) + ...+ Fk_l(n + k — ].)

Conjecture 5.1. Let Ly be the space of those k—tuples (Fy, ..., Fr_1), F, €
Ar (v=0,...,k—1) for which

Ln(F(),...7Fk,1)=O (TLEN)

holds. Then every F, is of finite support, and Ly is a finite dimensional Z
module.

The function F(n) := 7logn (mod 1) can be extended to R, (= multiplica-
tive group of positive reals) continuously, namely by defining F(z) := 7logx
(mod 1). We say that 7logn = F(n) is the restriction of a continuous homo-
morphism from R, to N.
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It is clear that if 7g,...,7,_1 are such that 79 + ...+ 7x,_1 = 0, then
L,(mplog., 7 1og,...,7s—11l0g.) = 0 (n = o0).
Conjecture 5.2. If F, ¢ Ar (v=0,...,k—1),
L, (Fy,...,Fr_1) >0 (n— o0),

then there exist suitable real numbers 19, ..., Tk_1 such that o+...+7,_1 =0,

and if H;j(n) := Fj(n) — 7;logn, then
Ln(Ho,...,Hk_l):O (n:1,2,)
Remarks.

1. Conjecture 5.2 for k =1 can be deduced from Wirsing’s theorem.

2. Conjecture 5.1 for k = 3 was proved assuming that F, are completely
additive ([27]).

3. Conjecture 5.1 for k = 4, 5 was proved assuming that F,, are completely
additive functions which are defined in the set of non-zero integers by
F,(—n) :=F,(n) (neN) and F,(0):=0 ([1], [34]).

4. Conjecture 5.1 for k = 2 has been proved by R. Styer [36].

5. Marijke van Rossum treated similar problems for functions defined on the
set of Gaussian integers. See [37], [33].

6. It is proved in [2] that if an additive commutative semigroup G (with
identity element 0) and G-valued completely additive functions fo, f1, fo
satisfy the relation fo(n)+ f1(2n+ 1)+ fo(n+2) =0 for alln € N, then
fo(n) = f1(2n+1) = fa(n) =0 for all n € N. The same result is proved
when the relation fo(n) + f1(2n — 1) + fa(n+2) = 0 holds for all n € N.

Let K be the closure of the set {L,(Fo,..., Fy_1)|n € N}.

Conjecture 5.3. If Fy, ..., Fy_1 € A% and K contains an element of infinite
order, then K =T.

6. Characterizations of continuous homomorphism as elements of
Ac, where G is a compact Abelian group

This topic is investigated in a series of papers written by Z. Daréczy and I.
Katai [4]-]9].
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Assume in §6 that G is a metrically compact Abelian group supplied with
some translation invariant metric p. An infinite sequence {z,}52 in G is said
to belong to &p, if for every convergent subsequence ., ,Ty,,. .. the "shifted
subsequence” Ty, 11, Tn,+1,- .- 1S convergent, too. Let Ea be the set of those
sequences {x,}2; for which Az, = 41 — 2, = 0 (n — 00) holds. Then
Ea C Ep. Wesay that f € A% belongs to A% (A) (resp. A% (D)) if the sequence
{f(n)}>2; belongs to Ea (resp. £p).

The following results are proved:
1. AL(A) = AL(D).

2. If f € AL (D), then there exists a continuous homomorphism @ : R, — G
such that f(n) = ®(n) for every n € N.

The proof is based upon the theorem of Wirsing [42].

The set of all limit points of {f(n)}22, form a compact subgroup in G
which is denoted by S;.

3. f € AL(D) if and only if there exists a continuous functions H : Sy — Sy
such that f(n+1) — H(f(n)) = 0 as n — oo.

Now we formulate the main unsolved problems.

Let f; € Ag; (j = 0,1,...,k — 1), and consider the sequence e, :=
{fo(n), fi(n+1),..., fs_a(n+k—1)}. Thene, € Sy, xSp, x... xSy, =U.
What can we say about the functions f;, if the set of limit points of e,, is not
everywhere dense in U?

Conjecture 6.1. Let f € A%, Sy =T, e,:=(f(n),...,f(n+k—1)). Then
either {e,|n € N} is everywhere dense in T, =T x ... x T, or f(n) = Alogn
(mod Z) with some A € R.

Conjecture 6.2. Let f,g € A%, Sy =5, =1T, e, :=(f(n),g(n+1)).
If e,, is not everywhere dense in T2, then f and g are rationally dependent

continuous characters, i.e. there exists A € R, s € Q such that g(n) = sf(n)
(mod Z), f(n) = Alogn (mod Z).

7. A conjecture on primes

Conjecture 7.1. For every integer k > 1 there exists a constant cj such that
for every prime p greater than cy
(7.1) min max P(p+1) <p.

i=1....p—11l=—k,...,
J FREY 2 120
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Here P(n) is the largest prime factor of n. This problem is unsolved even in
the case k = 2. Some heuristic arguments support our opinion that Conjecture
7.1 is true. Hence Conjecture 5.1 it would follow.
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