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Abstract. We formulate some open problems, conjectures in the field of
arithmetic functions.

1. Notation

Let P = set of primes; N = set of positive integers; Z = set of integers; Q =
set of rational numbers; R = set of real numbers; C = set of complex num-
bers. Let G be an Abelian group, AG = set of additive arithmetical functions
mapping into G. f : N → G belongs to AG, if f(mn) = f(m) + f(n) whenever
m,n are coprimes. Let A∗G = set of completely additive arithmetical functions,
f : N → G. f ∈ A∗G (⊆ AG) if f(mn) = f(m) + f(n) holds for every m and
n. We shall write simply A,A∗ if G = R.

Let M be the set of multiplicative functions. We say that g ∈ M if g :
N → C and g(nm) = g(n) · g(m) for every n,m coprime pairs of integers. Let
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M∗ be the set of completely multiplicative functions. We say that g : N → C
belongs to M∗ if g(nm) = g(n) · g(m) holds for every n,m ∈ N.

p and q, with and without suffixes always denote primes. For some x ∈ R
let {x} be the fractional part of x, and ‖ x ‖= min({x}, 1− {x}).

2. On the iteration of multiplicative functions

Let ϑ be a completely multiplicative function taking positive integer values.
We shall define a directed graph Gϑ on the set of primes according to the
following rule: if q is a prime divisor of ϑ(p) then we lead an edge from p to q.
Let Ep denote the set of those primes q which can be reached from p walking
on Gϑ. Let furthermore K be the set of that primes which are located on some
circles.

The properties of K and Ep were investigated in [17], [35], [18] in the case
ϑ(p) = p+ a, a ∈ N. It was proved that K is a finite set, and that for every
prime p there is a k such that all the prime factors of ϑ(k)(p) belong to K. Here
ϑ(k)(n) is the k-fold iterate of ϑ(n), i.e. ϑ(0)(n) = n, ϑ(k+1)(n) = ϑ(ϑ(k)(n)).

Conjecture 2.1. Let ϑ be a completely multiplicative function defined at prime
places p by ϑ(p) = ap+ b, where a ≥ 2, 2a+ b ≥ 1, a, b be integers, (a, b) = 1.
Then

(1) Ep is a finite set for every p ∈ P ,

(2) K is a finite set.

Conjecture 2.2. Let ϑ be completely multiplicative, ϑ(p) = p2 + 1. Then K
is infinite, and there is a q ∈ P for which Eq is an infinite set.

3. logn as an additive function

It is clear that c logn is an additive function. Erdős proved in [12] that
if an additive function f(n) satisfies f(n + 1) − f(n) → 0 (n → ∞), or
f(n + 1) ≥ f(n) (n ∈ N), then f(n) = c log n. In the same paper Erdős
formulated the conjecture that

1

x

∑
n≤x

|f(n+ 1)− f(n)| → 0 (x → ∞)
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implies that f(n) = c log n. This was proved by I. Kátai [19], and in a more
general form by E. Wirsing ([38], [39]).

Iványi and Kátai proved the following result in [16].

If f(n) is a completely additive function, N1 < N2 < . . . an infinite sequence
of integers, ε > 0 is an arbitrary positive constant, such that

f(n) ≤ f(n+ 1) when n ∈ [Nj , Nj + (2 + ε)
√
Nj ],

j = 1, 2, . . . , then f(n) is a constant multiple of log n (Theorem 1 in [16]).

Let Ψ(N) = exp
(

c logN
log logN

)
, c > 0 an absolute constant.

They proved: if f is an additive function,

f(n) ≤ f(n+ 1) in [Nj , Nj +Ψ(Nj)
√
Nj ]

for j = 1, 2, . . . , where N1 < N2 < . . . (Nj → ∞), then f(n) is a constant
multiple of log n.

Recently, it is proved in [3] that if f(n) is a completely additive func-
tion, c, d are positive integers with c > 2d, an infinite sequence of integers
1 < N1 < N2 < . . . and an infinite sequence of reduced residues �1 (mod d), �2
(mod d), . . . satisfies the relation

f
(
n
)

≤ f
(
n+ d

)
if n ∈ [Nν , Nν + c

√
Nν ] and n ≡ �ν (mod d) (ν ∈ N),

then there exists a constant c such that f(n) = c log n for all n ∈ N, (n, d) = 1.

Conjecture 3.1. If f(n) is an additive function such that

f(n) ≤ f(n+ 1) for n ∈ [Nj , Nj +Nε
j ],

where Nj → ∞, and ε > 0 is an arbitrary constant, then f(n) = c log n.

Wirsing proved that f ∈ A∗, f(n+ 1)− f(n) = o(log n) (n → ∞) implies
that f(n) = c log n ([39]). This theorem is very deep, it is based upon the
Bombieri-Vinogradov theorem. Hence we could deduce simply that, if f, g ∈
A∗, g(n+ 1)− f(n) = o(log n) (n → ∞), then f(n) = g(n) = c log n.

In some of his papers Kátai asked for a characterization of those fi ∈
A (i = 1, . . . , k) which satisfy

(3.1) l(n) := f1(n+ 1) + f2(n+ 2) + . . .+ fk(n+ k) → 0 as n → ∞.

Conjecture 3.2. Assume that f1, . . . , fk ∈ A, and l(n) → 0 (n → ∞).
Then there exist appropriate constants c1, . . . , ck, and v1, . . . , vk ∈ A, such that
fi(n) = ci log n+ vi(n), where c1 + · · ·+ ck = 0,

(3.2)
k∑

i=1

vi(n+ i) = 0 (n = 0, 1, 2, . . .),
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and v1, . . . , vk are of finite support.

Definition 1. An additive function f is said to be of finite support, if f(pα) =
0 (α = 1, 2, . . .) holds for all but finitely many primes p.

The conjecture is true in the special case, when fi(n) = λif1(n), where
(1 =)λ1, λ2, . . . , λk are constants. This assertion has been proved by Elliott
[10], and by Kátai [20]. Let E be the shift operator E defined over {an}, by
a′n := Ean = an+1 (n = 1, 2, . . .). If P (x) = λ0 + λ1x + . . . + λkx

k ∈ R[x],

then let (a′n :) = P (E)an :=
k∑

j=0

λjan+j . The developed method was suitable

to prove the following assertions:

I. If P (x) ∈ R[x], f ∈ A, and

1

x

∑
n≤x

|P (E)f(n)| → 0,

then f(n) = c log n+ u(n), where P (E)u(n) = 0 (n = 1, 2, . . .). If P (1) �= 0,
then c = 0. Furthermore, u is of finite support.

II. If f ∈ A∗, P (x) ∈ R[x], and P (E)f(n) = o(log n) as n → ∞, then
f(n) = c log n.

For further generalization of these questions see the excellent book of Elliott
[11].

4. Characterization of ns as a multiplicative function N→ C

In a series of papers [21-26] there were considered functions f ∈ M under
the conditions that Δf(n) = f(n+1)−f(n) tends to zero in some sense. There
were determined all the functions f, g ∈ M for which the relation

(4.1)
∞∑

n=1

1

n
|g(n+ k)− f(n)| < ∞

with some fixed k ∈ N holds. In the special case k = 1, f, g ∈ M∗ the relation
(4.1) implies that either∑ |f(n)|

n
< ∞,

∑ |g(n)|
n

< ∞,

or
f(n) = g(n) = nσ−iτ , σ, τ ∈ R, 0 ≤ σ < 1.
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Hence it follows especially that

∞∑
n=1

1

n
|λ(n+ 1)− λ(n)| = ∞,

where λ(n) is the Liouville function, i.e. λ ∈ M∗, λ(p) = −1 for every p ∈ P.

In [13-15] the following assertion has been proved: if f, g ∈ M∗ and∑
n≤x

|g(n+ 1)− f(n)| = O(x),

then either
∑
n≤x

|f(n)| = O(x),
∑
n≤x

|g(n)| = O(x), or

f(n) = g(n) = ns, 0 ≤ Re s < 1.

Conjecture 4.1. Let f, g ∈ M, k ∈ N such that lim inf 1
x

∑
n≤x

|f(n)| > 0,

and

(4.2)
1

x

∑
n≤x

|g(n+ k)− f(n)| → 0 (x → ∞).

Then there exist U, V ∈ M and s ∈ C with 0 ≤ Re s < 1 such that f(n) =
U(n) · ns, g(n) = V (n) · ns, and

(4.3) V (n+ k) = U(n) (n ∈ N)

holds.

Even a complete solution of (4.3) is not trivial. (4.3) was treated and all
solutions found in the papers [28], [29], [30].

Celebrating P. Erdős on his 70th anniversary in a conference in Ootacamund
(India) Kátai gave a talk, proving that f ∈ M, |Δf(n)|(log n)2 = O(1) implies
that either f(n) = ns, 0 ≤ Re s < 1, or f(n) → 0, and formulated the
conjecture:

Conjecture 4.2. If f ∈ M, Δf(n) → 0 (n → ∞) , then either f(n) =
ns, 0 ≤ Re s < 1, or f(n) → 0 (n → ∞).

This conjecture was proved by E. Wirsing. He sent the proof to Kátai
[40]. Tang Yuansheng and Shao Pintsung, being unaware of the existing proof
of his conjecture, gave an independent proof. They have written a paper to-
gether with Wirsing [42]. In a paper of B. M. Phong and I. Kátai [30] they
characterized all those f, g ∈ M for which g(n+ k)− f(n) → 0 (n → ∞).
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As an immediate consequence of the theorem of E. Wirsing the following
assertion is true:

If F (n) ∈ A, and ‖ ΔF (n) ‖→ 0, then either ‖ F (n) ‖→ 0 or F (n) −
τ log n ≡ O (mod 1) for every n, with suitable τ ∈ R.

Conjecture 4.3. Let f be a completely multiplicative function, |f(n)| = 1 (n ∈
N), δf (n) = f(n+ 1)f(n).

Let Ak = {α1, . . . , αk} be the set of limit points of {δf (n)|n ∈ N}. Then
Ak = Sk, where Sk is the set of k’th complex units, i.e. Sk = {w|wk = 1},
furthermore f(n) = niτF (n) with a suitable τ ∈ R, and F (N) = Sk, and for
every w ∈ Sk there exists a sequence nν ↗ ∞ such that F (nν + 1)F (nν) =
w (ν = 1, 2, . . .).

The motivation of this problem, and partial results can be read in [31], [32].
E. Wirsing [41] proved a very important result by proving that if the conditions
of Conjecture 4.3 are satisfied, then f(n) = niτF (n), and F l(n) = 1 (n ∈ N)
holds with a fixed l. He was not able to prove that l = k. Even he proved
this theorem in the more general setting of additive functions mapping into a
locally compact Abelian group.

5. Additive functions (mod 1)

Let T = R/Z. We say that F ∈ AT (= set of additive functions mapping
into T ) is of finite support if F (pα) = 0 holds for every large prime p.

Let F0, F1, . . . , Fk−1 ∈ AT , and

(5.1) Ln(F0, . . . , Fk−1) := F0(n) + F1(n+ 1) + . . .+ Fk−1(n+ k − 1).

Conjecture 5.1. Let L0 be the space of those k−tuples (F0, . . . , Fk−1), Fν ∈
AT (ν = 0, . . . , k − 1) for which

Ln(F0, . . . , Fk−1) = 0 (n ∈ N)

holds. Then every Fν is of finite support, and L0 is a finite dimensional Z
module.

The function F (n) := τ log n (mod 1) can be extended to Rx(= multiplica-
tive group of positive reals) continuously, namely by defining F (x) := τ log x
(mod 1). We say that τ logn = F (n) is the restriction of a continuous homo-
morphism from Rx to N.
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It is clear that if τ0, . . . , τk−1 are such that τ0 + . . .+ τk−1 = 0, then

Ln(τ0 log ., τ1 log, . . . , τk−1 log .) → 0 (n → ∞).

Conjecture 5.2. If Fν ∈ AT (ν = 0, . . . , k − 1),

Ln(F0, . . . , Fk−1) → 0 (n → ∞),

then there exist suitable real numbers τ0, . . . , τk−1 such that τ0+ . . .+ τk−1 = 0,
and if Hj(n) := Fj(n)− τj logn, then

Ln(H0, . . . , Hk−1) = 0 (n = 1, 2, . . .).

Remarks.

1. Conjecture 5.2 for k = 1 can be deduced from Wirsing’s theorem.

2. Conjecture 5.1 for k = 3 was proved assuming that Fν are completely
additive ([27]).

3. Conjecture 5.1 for k = 4, 5 was proved assuming that Fν are completely
additive functions which are defined in the set of non-zero integers by
Fν(−n) := Fν(n) (n ∈ N) and Fν(0) := 0 ([1], [34]).

4. Conjecture 5.1 for k = 2 has been proved by R. Styer [36].

5. Marijke van Rossum treated similar problems for functions defined on the
set of Gaussian integers. See [37], [33].

6. It is proved in [2] that if an additive commutative semigroup G (with
identity element 0) and G-valued completely additive functions f0, f1, f2
satisfy the relation f0(n) + f1(2n+1)+ f2(n+2) = 0 for all n ∈ N, then
f0(n) = f1(2n+ 1) = f2(n) = 0 for all n ∈ N. The same result is proved
when the relation f0(n) + f1(2n− 1) + f2(n+ 2) = 0 holds for all n ∈ N.

Let K be the closure of the set {Ln(F0, . . . , Fk−1)|n ∈ N}.
Conjecture 5.3. If F0, . . . , Fk−1 ∈ A∗T and K contains an element of infinite
order, then K = T.

6. Characterizations of continuous homomorphism as elements of
AG, where G is a compact Abelian group

This topic is investigated in a series of papers written by Z. Daróczy and I.
Kátai [4]-[9].
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Assume in §6 that G is a metrically compact Abelian group supplied with
some translation invariant metric �. An infinite sequence {xn}∞n=1 in G is said
to belong to ED, if for every convergent subsequence xn1 , xn2 , . . . the ”shifted
subsequence” xn1+1, xn2+1, . . . is convergent, too. Let EΔ be the set of those
sequences {xn}∞n=1 for which Δxn = xn+1 − xn → 0 (n → ∞) holds. Then
EΔ ⊆ ED. We say that f ∈ A∗G belongs to A∗G(Δ) (resp. A∗G(D)) if the sequence
{f(n)}∞n=1 belongs to EΔ (resp. ED).

The following results are proved:

1. A∗G(Δ) = A∗G(D).

2. If f ∈ A∗G(D), then there exists a continuous homomorphism Φ : Rx → G
such that f(n) = Φ(n) for every n ∈ N.

The proof is based upon the theorem of Wirsing [42].

The set of all limit points of {f(n)}∞n=1 form a compact subgroup in G
which is denoted by Sf .

3. f ∈ A∗G(D) if and only if there exists a continuous functions H : Sf → Sf

such that f(n+ 1)−H(f(n)) → 0 as n → ∞.

Now we formulate the main unsolved problems.

Let fj ∈ AGj (j = 0, 1, . . . , k − 1), and consider the sequence en :=
{f0(n), f1(n+1), . . . , fk−1(n+ k− 1)}. Then en ∈ Sf0 ×Sf1 × . . .×Sfk−1

= U .
What can we say about the functions fj , if the set of limit points of en is not
everywhere dense in U?

Conjecture 6.1. Let f ∈ A∗T , Sf = T, en := (f(n), . . . , f(n+k−1)). Then
either {en|n ∈ N} is everywhere dense in Tk = T × . . . × T , or f(n) = λ log n
(mod Z) with some λ ∈ R.

Conjecture 6.2. Let f, g ∈ A∗T , Sf = Sg = T, en := (f(n), g(n + 1)).
If en is not everywhere dense in T 2, then f and g are rationally dependent
continuous characters, i.e. there exists λ ∈ R, s ∈ Q such that g(n) = sf(n)
(mod Z), f(n) = λ log n (mod Z).

7. A conjecture on primes

Conjecture 7.1. For every integer k ≥ 1 there exists a constant ck such that
for every prime p greater than ck

(7.1) min
j=1,...,p−1

max
l=−k,...,k

l
=0

P (jp+ l) < p.
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Here P (n) is the largest prime factor of n. This problem is unsolved even in
the case k = 2. Some heuristic arguments support our opinion that Conjecture
7.1 is true. Hence Conjecture 5.1 it would follow.
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[4] Daróczy, Z. and I. Kátai, On additive numbertheoretical functions
with values in a compact Abelian group, Aequationes Math., 28 (1985),
288-292.
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