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Abstract. We formulate some results, open problems and conjectures in
probabilistic number theory.

1. Introduction

Notation. Let, as usual, P, N, N0, Z, R, C be the set of primes, posi-
tive integers, non-negative integers, integers, real and complex numbers, re-
spectively. We say that f : N → R is an additive function, if f(1) = 0
and f(mn) = f(m) + f(n) for all (m,n) = 1. Let A denote set of all ad-
ditive functions. A function g : N → C is multiplicative, if g(1) = 1 and
g(mn) = g(m) · g(n) for all (m,n) = 1. We denote by M the set of all multi-
plicative functions.

Key words and phrases: multiplicative functions, additive functions, continuous homomor-
phism.
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Let q ≥ 2, integer, Aq = {0, . . . , q − 1}. Every n ∈ N0 can be written as

n =

k∑
j=0

εj(n)q
j , εk(n) �= 0, εj(n) ∈ Aq,

and this expansion is unique.

In the following let Aq denote the set of q-additive functions, i.e. a function

f : N0 → R belongs to Aq, if f(0) = 0, and f(n) =

k∑
j=0

f(εj(n)q
j) (∀n ∈ N0).

Similarly, we say that g : N0 → C is q-multiplicative, if g(0) = 1, and g(n) =
k∏

j=0

g(εj(n)q
j) (∀n ∈ N). Let Mq be the set of q-multiplicative functions.

Let π(x) be the number of the primes up to x, and π(x, k, l) be the number
of the primes p ≤ x satisfying p ≡ l (mod k).

Examples.

• ω(n)= number of prime factors of n, ω(n) ∈ A,

• τ(n) = number of divisors of n, τ(n) ∈ M,

• 1cm f(n) = log n ∈ A,

• 1cm ϕ(n) = Euler’s totient function, ϕ(n) ∈ M,

• 1cm σ(n) = sum of divisors of n, σ(n) ∈ M.

• If f(n) ∈ A, g(n) = zf(n), z ∈ C, then g ∈ M.

• If α(n) =
k∑

j=0

εj(n) = sum of digits functions, then α(n) ∈ Aq.

• f(n) = n ∈ Aq,

• g(n) = zn ∈ Mq.

The following wellknown results can be found in [8].

Definition 1. We say that f ∈ A has a limit distribution (on the set N) if

FN (y) :=
1

N
#{n ≤ N | f(n) < y}

has a limit lim
N→∞

FN (y) = F (y) for almost all y (or in all continuity points of

F ).
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Theorem 1 (Erdős-Wintner). f ∈ A has a limit distribution if and only if the
next three series converge

(1.1)
∑

|f(p)|>1

1

p
,

(1.2)
∑

|f(p)|≤1

f(p)

p
,

(1.3)
∑

|f(p)|≤1

f2(p)

p
.

Theorem 2. f ∈ A has a limit distribution with a suitable centralization c(N),
i.e.

lim
N→∞

1

N
#{n ≤ N | f(n)− c(N) < y} = F (y)(1.4)

exists for almost all y, if and only if (1.1), (1.3) converge.

Let a(N) :=
∑

|f(p)|≤1
p<N

f(p)

p
. If (1.4) holds, then lim(a(N)− c(N)) = α exists,

and α is finite.

Theorem 3 (Erdős-Kac). Let f ∈ A,

(1.5) AN :=
∑
p≤N

f(p)

p
, B2

N =
∑

pα≤N

f2(pα)

pα
.

Assume that f(p) = O(1) (p ∈ P). Then

lim
N→∞

1

N
#

{
n ≤ N

∣∣∣∣ f(n)−A(N)

BN
< y

}
= Φ(y),

Φ = Gaussian law.

Turán-Kubilius inequality. Let f ∈ A. Then∑
n≤N

(f(n)−AN )2 ≤ cNB2
N ,

AN , BN are defined in (1.5).
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2. Distribution of additive functions on some subsets of
integers

Let B ⊆ N, B(x) = #{n ≤ x, n ∈ B}.
We say that f ∈ A is distributed in limit with centralization aN and nor-

malization bN on the set B, if

lim
N→∞

1

B(N)
#

{
n ≤ N, n ∈ B

∣∣∣∣ f(n)− aN
bN

< y

}
= F (y)

exists a.a.

Results:

1. B = P+1 = {p+1 | p ∈ P} = set of shifted primes, aN = 0, bN = 0. f ∈ A
has a limit distribution on P+1 if the 3 series (in Erdős-Wintner theorem)
are convergent ([6]).

The proof is based on the method of characteristic functions: g(n) =
eiτf(n).

lim
x→∞

1

π(x)

∑
p<x

g(p+ 1) = Mτ (x) =(2.1)

=
∏
p

(
1− 1

p− 1
+

g(p)

p
+

g(p2)

p2
+ · · ·

)
.

To prove (2.1), the Siegel-Walfisz theorem was used, namely that

π(x, k, l) =
∑
p≤x

p≡l (mod k)

1 =
li x

ϕ(k)

(
1 +O

(
e−c

√
log x

))
uniformly as (l, k) = 1, k < (log x)c1 , where

li x =

x∫
2

du

log u
,

and the A. I. Vinogradov - E. Bombieri inequality, according to it∑
k≤

√
x

(log x)A

max
(l,k)=1

max
y≤x

∣∣∣∣π(y, k, l)− li y

ϕ(k)

∣∣∣∣ ≤ C
x

(log x)B
,
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B = 2A+ 5, C is a suitable (non-effective) constant.

J. Kubilius and P. Erdős asked on the necessity of the convergence of
the 3 series (1.1), (1.2), (1.3). Partial results were obtained by P.D.T.A.
Elliott, I. Kátai, and N. Timofeev. Finally more than 20 years later it
was proved by A. Hidebrand that they are necessary ([4]).

2. L. Germán proved the analog of Erdős-Wintner theorem on the set

B = {n+ 1 | ω(n) ≤ ε(n)
√
log log n},

where ε(n) → 0. (See [2].)

3. On q-additive functions

Let f ∈ Aq, ξj be independent random variables,

P (ξj = f(aqj)) =
1

q
(a ∈ Aq),

ηN = ξ0 + ξ1 + . . .+ ξN−1,

mj = E(ξj) =
1

q

∑
a∈Aq

f(aqj), σ2
j =

1

q

∑
a∈Aq

f2(aqj)−m2
j .

By using the standard method of probability theory one can prove

Theorem 4. Let f ∈ Aq. Then

lim
x→∞

1

x
#{n < x | f(n) < y} = F (y)

for almost all y exists, if and only if (3.1), (3.2) are convergent:

∞∑
j=0

∑
a∈Aq

f(aqj),(3.1)

∞∑
j=0

∑
a∈Aq

f2(aqj).(3.2)
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What is happening if we consider the distribution of f over a subset B in
N0?

Let 1 ≤ j1 < . . . < jh < N, b1, . . . , bh ∈ Aq,

BN

(
j1, . . . , jh

b1, . . . , bh

)
= {m < qN | m ∈ B, εjl(m) = bl, l = 1, . . . , h},

BN

(
j1, . . . , jh

b1, . . . , bh

)
= #{m < qN | m ∈ B, εjl(m) = bl, l = 1, . . . , h},

B(x) = #{m < x | m ∈ B}.
Let P (u) ∈ Z[u] be a polynomial r = degP, P (u) = aru

r + . . . + a1u +
a0, ar > 0.

Let

Σ1 := A

(
x

∣∣∣∣ l1, . . . , lhb1, . . . , bh

)
= #{n ≤ x | εlj (P (n)) = bj , j = 1, . . . , h},

Σ2 :=
∏(

x

∣∣∣∣ l1, . . . , lhb1, . . . , bh

)
= #{p ≤ x | εlj (P (p)) = bj , j = 1, . . . , h}.

Lemma 1. Let qN ≤ x < qN+1. Let h be fixed, λ be an arbitrary constant,

N
1
3 ≤ l1 < . . . < lh ≤ rN −N

1
3 .(3.3)

Then

Σ1 =
x

qh
+O

(
x

(log x)λ

)
,

Σ2 =
π(x)

qh
+O

(
x

(log x)λ

)
uniformly as l1, . . . , lh in (3.3), b1, . . . , bh ∈ Aq.

The proof depends on the next Lemmas 2 and 3. Let e(u) := e2πiu.

Lemma 2 (Hua Loo Keng). Let 0 < Q ≤ c1(k)(log x)
τ1 and

S =
∑
p≤x

p≡t (mod Q)

e(f(p))

in which

f(y) =
h

q
yk + α1y

k−1 + · · ·+ ak, (h, q) = 1.
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Suppose that (log x)τ ≤ q ≤ xk(log x)−τ . For arbitrary τ0 > 0, when τ >
26k(τ0 + τ1 + 1), we always have

|S| ≤ c2(k)x · (log x)−τ0 ·Q−1.

c2(k) depends only on k.

Lemma 3 (I. M. Vinogradov). Let f be as in Lemma 2,

S1 =
∑
n≤x

e(f(n)).

Let τ0, τ3, τ4 be arbitrary positive numbers,

τ ≥ 2k(τ0 + τ3) + 2kτ4 + 23(k−2).

Suppose
(log x)τ < q ≤ xk(log x)−τ .

Then
S1 � x(log x)−τ .

The constant standing implicitly in � may depend on τ3, τ.

Theorem 5. ([1]) Let f ∈ Aq, f(bqj) = O(1) as j → ∞, b ∈ E. Further-

more let
D(x)

(log x)
1
3

→ ∞. Here

D2(x) =
N∑
j=0

σ2
j (qN ≤ x < qN+1).

Let P (u) ∈ Z[u], degP = r, P (u) → ∞ (u → ∞). Then

lim
1

x
#

{
n < x

∣∣∣∣ f(P (n))−M(xr)

D(xr)
< y

}
= Φ(y),(3.4)

lim
1

π(x)
#

{
n < x

∣∣∣∣ f(P (p))−M(xr)

D(xr)
< y

}
= Φ(y),(3.5)

ck(x) =
1

xr

∑
n≤xr

(
f1(n)−M1(x

r)

D1(xr)

)k

.

From Lemma 1 one can deduce that

lim ak(x) = lim bk(x) = lim ck(x).
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It is clear that (3.4) is true if P (u) = u, furthermore

lim
x→∞ ck(x) =

∫
ukdφ(u) = μk.

Consequently lim ak(x) = μk, lim bk(x) = μk, and the Frechet-Shohat theo-
rem implies the fulfilment of (3.4) and (3.5).

How to prove Lemma 1?

Let

ϕb(x) =

{
1 if x ∈

[
b
q ,

b+1
q

)
,

0 otherwise in [0, 1).

Let ϕb(x+ n) = ϕb(x) (n ∈ Z).

Let b1, . . . , bh ∈ Aq, (1 ≤)l1 < . . . < lh be arbitrary integers. Then

F (x1, . . . , xh) = ϕb1(x1) . . . ϕbh(xh),

εj(n) = b ⇐⇒
{

n

qj+1

}
∈

[
b

q
,
b+ 1

q

)
.

Let t(y) = F

(
y

ql1+1
, . . . ,

y

qlh+1

)
.

Then

t(m) =

{
1 if εlj (m) = bj , j = 1, . . . , h,

0 otherwise.

Let 0 < Δ < 1
2q , fb(x) =

1

2Δ

Δ∫
−Δ

ϕb(x+ u)du,

t̃(y) = fb1

(
y

ql1+1

)
. . . fbh

(
y

qlh+1

)
.

We can prove that ∑
n≤x

|t(P (n))− t̃(P (n))|

is small, furthermore

t̃(y) =
∑
M

TMe(MV y),

M = [m1, . . . ,mh], V =

[
1

ql1+1
, . . . ,

1

qlh+1

]
,∑

|TM | < ∞.
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Thus ∑
t̃(P (n)) =

∑
TM

∑
n≤x

e

(
AM

HM
P (n)

)
,

∑
t̃(P (p)) =

∑
TM

∑
p≤x

e

(
AM

HM
P (p)

)
,

V M = AM

HM
, (HM , AM ) = 1.

We can apply Lemma 1 and 2. This completes the proof.

Theorem 6. Let f ∈ Aq. Assume that limM(x) exists and is finite, limD2(x) <
∞. Then there exist suitable distribution functions F1(y), F2(y) such that

lim
1

x
#

{
n < x

∣∣∣∣ f(P (n)) < y

}
= F1(y) a.a. y,(3.6)

lim
1

π(x)
#

{
p < x

∣∣∣∣ f(P (p)) < y

}
= F2(y) a.a. y.(3.7)

Theorem 7. If P (n) = n, and (3.7) holds true, then limM(x) exists and is
finite, furthermore lim

x→∞D(x) is finite.

4. Linear combinations of q - additive functions

Here we mention some theorems without proof.

In this section λ is the Lebesgue measure defined in R.
Let

f1, . . . , fk ∈ Aq; (1 ≤)a1 < . . . < ak(< q), (ai, q) = 1, (ai, aj) = 1 if i �= j,

l(n) = f1(a1n) + . . .+ fk(akn).

Definition 2. We say that l(n) is a tight sequence if ∃ AN such that

C(K) := lim sup
1

qN
#{n < qN | |l(n)−AN | > K} → 0

as K → ∞.

Theorem 8. (K.-H. Indlekofer and I. Kátai, [5])
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1. l(n) is tight if and only if ∃ γ1, . . . , γk for which a1γ1 + . . . + akγk = 0
and for ψl(n) := fl(n)− γl(n) we have

∞∑
j=0

q−1∑
a=0

ψl(aq
j)2 < ∞ (l = 1, . . . , k).(4.1)l

2. If the conditions of 1) hold, then

lim
1

qN
#{n < qN | l(n)− EN < y} = F (y) a.a. y,

where F is a suitable distribution function,

A
(l)
N :=

1

q

N∑
j=0

∑
a∈Aq

ψl(aq
j),

EN =
k∑

l=1

A
(l)
N .

3. l(n) has a limit distribution, if and only if the conditions of 1) are satis-
fied, and if EN has a finite limit.

Theorem 9. 1. The sequence l(p) (p ∈ P) is tight if it is tight on the
whole set N.

2. If ((4.1)l) hold, then

lim
N→∞

1

π(qN )
#{p < qN | l(p)− EN < y} = F ∗(y) a.a. y.

3. l(p) has a limit distribution if and only if l(p) is tight and if EN has a
finite limit.

Let μl(u) =
1

q

∑
c∈Aq

fl(cq
u), p(u) =

k∑
l=1

μl(u),

F (N) :=

N−1∑
u=0

p(u),

πu(c1, . . . , ck) :=
1

qu+1
#{n < qu+1 | εu(ajn) = cj},
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π(c1, . . . , ck) = λ

({
x ∈ [0, 1] | {ajx} ∈

[
cj
q
,
cj + 1

q

)
, j = 1, . . . , k

})
.

We have πu(c1, . . . , ck) = π(c1, . . . , ck) +O
(

1
qu

)
(u → ∞).

Let

τu :=
∑

c1,...,ck∈Aq

(f1(c1q
u) + . . .+ fk(ckq

u)− p(u))2πu(c1, . . . , ck),

�2N =
N−1∑
u=0

τu.

Theorem 10. Assume that

|fl(cqM )|
�M

→ 0 as M → ∞

for l = 1, . . . , k. Then

lim
N→∞

1

qN
#

{
n < qN

∣∣∣∣ l(n)− FN

�N
< y

}
= φ(y).

Theorem 11. Assume that

sup
M

max
c∈Aq

max
l

|fl(cqM )| < ∞,

and that
�2KN

/�2N → 0, (�2N − �2N−KN
)/�2N → 0

as KN = [logN ], N → ∞. Then

lim
N→∞

1

π(qN )
#

{
p < qN

∣∣∣∣ l(p)− FN

�N
< y

}
= φ(y).

5. On a theorem of G. Harman and I. Kátai ([3])

Let 0 ≤ j1 < j2 < . . . < jr ≤ N − 1, x > exp(q2), qN−1 ≤ x ≤ qN − 1.
Let b = (b1, . . . , br), j = (j1, . . . , jr),∏(

x

∣∣∣∣ jb
)

:= #{p ≤ x | εlj (p) = bj , j = 1, . . . , r},

A

(
x

∣∣∣∣ jb
)

:= #{n ≤ x | εlj (n) = bj , j = 1, . . . , r}.
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Theorem 12. Suppose that 1 ≤ r < C
√
N/ logN . Then

∏(
x

∣∣∣∣ jb
)

=
qrf(b, j)

log x
A

(
x

∣∣∣∣ jb
)

+O

(
x log log x

ϕ(q)qr−1(log x)2

)
,

where

f(b, j) =

⎧⎪⎨⎪⎩
q−r if j1 > 0,

0 if j1 = 0, (b1, q) > 1,

q1−rϕ(q)−1 if j1 = 0, (b1, q) = 1.

A similar theorem is claimed in the paper ([7]) of I. Kátai, but there were
some mistakes in the proof.

Our guess: Theorem 12 remains valid up to r < 1
3N .
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