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Abstract. For a given strictly increasing sequence {an} of natural num-
bers, let g(n) be the number of compositions of n all of whose parts belong
to {an}. We derive a recurrence that enables the computation of g(n), as
well as an estimate for g(n) for large n. We use these results to obtain
useful data concerning compositions whose parts belong to the following 3
sequences: triangular, square, and pentagonal numbers.

1. Introduction

If n is a natural number, let g(n) be the number of compositions of n all of
whose parts belong to a given strictly increasing sequence of natural numbers,
{an}, with g(0) = 1. We show how to compute g(n) via a recurrence, and also
how to estimate g(n) for large n. In a previous effort, this was done for binary
and Fibonacci numbers, that is, the cases an = 2n−1 and an = Fn+1, where Fn

denotes the nth Fibonacci number. (See [1].) Here we obtain similar results
concerning triangular, square, and pentagonal numbers. In these 3 cases, we
tabulate g(n) for 1 ≤ n ≤ 20.

Let p(n) denote the partition function. Let ω(k) = k(3k−1)
2 , where k ∈ Z.

(ω(k) is the (kth pentagonal number). Let x denote a complex variable such
that |x| < 1.

(1) p(n) =
∑
k 
=0

(−1)k−1p(n− ω(k))

Remark. Identity (1) is Euler’s well-known recurrence for p(n).
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2. General theorems

Our first theorem concerns a recurrence that enables computation of g(n).

Theorem 1. Let {an} be a strictly increasing sequence of natural numbers.
If n is a natural number, let g(n) denote the number of compositions of n
whose parts all belong to {an}. Define g(0) = 1, and g(α) = 0 if α is not a
non)-negative integer. Then for all n ≥ 1, we have

g(n) =
∑
k≥1

g(n− ak) .

Proof. Let the generating function for compositions with exactly k elements
from {an} be

gk(x) =
(∑

i≥1

xai

)k

.

Let G(x) be the generating function for all compositions of n with summands
from {an}. Then we have

G(x) = 1 +
∞∑
k=1

gk(x) =
(
1−

∞∑
i=1

xai

)−1

,

and also

G(x) =

∞∑
n=0

g(n)xn →
(
1−

∞∑
i=1

xai

)( ∞∑
n=0

g(n)xn
)
= 1 .

The conclusion now follows if we equate coefficients of like powers of x. �

The next theorem provides a convenient way to estimate g(n) for large n.

Theorem 2. Let

a(x) =

∞∑
j=1

xaj .

Let ρ be the unique positive root of a(x) = 1. Then, as n→∞, we have

g(n) ∼ ρ−n−1

a′(ρ)
.

Proof. The function a(x) has the following properties; (i ) a(0) = 0; (ii)
a′(0) 	= 0; (iii) there exists ρ such that 0 < ρ < 1 and a(ρ) = 0;
(iv) a(x) is analytic at x = ρ. Therefore the function

B(x) =
1

1− a(x)
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has a simple pole at x = ρ, and from the local expansion of B(x) at this
dominant pole, we have

B(x) ∼
( 1

ρa′(ρ)

)( 1

1− x
ρ

)
.

It therefore follows that

g(n) = [xn]B(x) ∼
( 1

ρa′(ρ)

)
ρ−n as n→∞. �

3. Compositions whose parts are polygonal numbers

First, let gs(n) denote the number of compositions of n whose parts are
square numbers. In this case, we have

an = n2 , a(x) =

∞∑
j=1

xj2 , ρ = .70534668 , a′(ρ) = 3.046149872 .

Theorem 3.

(a) gs(n) =
∑
k≥1

gs(n− k2); (b) as n→∞, gs(n) ∼
.70534668−n−1

3.046149872
.

Proof. (a) follows from Theorem 1; (b) follows from Theorem 2. �

Next, let gt(n) denote the number of compositions of n whose parts are
triangular numbers. In this case, we have

an =
n(n+ 1)

2
, a(x) =

∞∑
j=1

x
j(j+1)

2 , ρ = .645222707 , a′(ρ) = 3.149722816 .

Theorem 4.

(a) gt(n) =
∑
k≥1

gt(n−
k(k + 1)

2
); (b) as n→∞, gt(n) ∼

.645222707−n−1

3.149722816
.

Proof. Same as proof of Theorem 3. �

Finally, let gp(n) denote the number of compositions of n whose parts are
pentagonal numbers. In this case, we have

an =
n(3n∓ 1)

2
, a(x) =

∑
k 
=0

x
k(3k−1)

2 , ρ = .578044621 , a′(ρ) = 3.011573540 .
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Theorem 5.

(a) gp(n) =
∑
k 
=0

gp(n− ω(k)); (b) as n→∞, gp(n) ∼
.578044621−n−1

3.0115735
.

Proof. Same as proof of Theorem 3. �

The table below lists gs(n) , gt(n) , gp(n) for 1 ≤ n ≤ 20.

n gs(n) gt(n) gp(n)
1 1 1 1
2 1 1 2
3 1 2 3
4 2 3 5
5 3 4 9
6 4 7 15
7 5 11 27
8 7 16 46
9 11 25 80
10 16 40 138
11 22 61 238
12 30 93 413
13 43 147 713
14 62 227 1235
15 88 351 2136
16 124 546 3695
17 175 845 6393
18 249 1308 11057
19 354 2029 19130
20 502 3145 33091

Glancing at the table above, it appears that gp(n) has the same parity as the
partition function, p(n). This is shown in Theorem 6 below:

Theorem 6. gp(n) ≡ p(n) (mod 2) for all n ≥ 0.

Proof. (Induction on n). We have p(0) = gp(0) = 1. If n ≥ 1, then by (1),
induction, and Theorem 5, part (a), we have

p(n) ≡
∑
k 
=0

p(n−ω(k)) ≡
∑
k 
=0

gp(n−ω(k) ≡ gp(n) (mod 2) . �

The function gp(n) appears to share the following property with p(n):



On compositions whose parts are polygonal numbers 243

Conjecture. gp(5n+ 4) ≡ 0 (mod 5) for all n ≥ 0.
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