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Abstract. Starting from discrete Fourier series we construct approxima-
tion processes on the roots of four kinds of Chebyshev polynomials gener-
ated by suitable summation functions ϕ. We prove a general result stating
that if the Fourier transform of ϕ is integrable then these processes are
uniformly convergent on the whole interval [−1, 1] in some weighted spaces
of continuous functions. We also examine necessary and sufficient condi-
tions for the interpolation. As applications, we obtain various new results
for the arithmetic means of the Lagrange interpolation, the Grünwald, the
de la Vallée Poussin and the Hermite–Fejér interpolation.

1. Introduction

Let C(I) represent the linear space of continuous functions defined on an
interval I ⊂ R,

wγ,δ(x) := (1 − x)γ(1 + x)δ
(
x ∈ [−1, 1], γ, δ ≥ 0

)
Key words and phrases: Lagrange interpolation, Hermite–Fejér interpolation, weighted in-
terpolation, Chebyshev polynomials, summation processes, Grünwald processes, de la Vallée
Poussin means.
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be a weight function and define the weighted function space

Cwγ,δ
:=

{
f ∈ C(−1, 1) | lim

±1
(fwγ,δ) = 0

}
,

if γ, δ > 0. Otherwise, if γ = 0 (respectively δ = 0) let Cwγ,δ
consists of all

continuous functions on (−1, 1] (respectively on [−1, 1)) and

lim
−1

(fwγ,δ) = 0
(
resp. lim

1
(fwγ,δ) = 0

)
.

Finally, if γ = δ = 0 (i.e. wγ,δ ≡ 1) then let Cwγ,δ
= C[−1, 1].

Then

‖f‖wγ,δ
:= ‖fwγ,δ‖∞ := max

x∈[−1,1]
|(fwγ,δ)(x)| (f ∈ Cwγ,δ

)

is a norm on Cwγ,δ
and (Cwγ,δ

, ‖ · ‖wγ,δ
) is a Banach space.

If XM := {xk,M} ⊂ (−1, 1) (M ∈ N+ := {1, 2, . . .}) is an interpolatory
matrix, that is

−1 < xM,M < xM−1,M < · · · < x2,M < x1,M < 1

and f : [−1, 1]→ R is a given function then we denote the Lagrange interpola-
tion polynomial of f on XM by LM (f,XM , ·).

Using [25, Theorem 2.2] we have a Faber type result for the weighted approx-
imation of the Lagrange interpolation, namely if γ, δ ≥ 0 then for the matrix
of nodes XM there exists a function f ∈ Cwγ,δ

for which the relation

(1.1) ‖f − LM (f,XM , ·)‖wγ,δ
→ 0 as n→ +∞

does not hold.

Therefore we can ask how to construct such discrete processes which are
uniformly convergent in suitable spaces of continuous functions.

One possibility to achieve this aim is to loosen the strict condition on the
degree of interpolating polynomials (see [15, Chapter II], [18], [24], [7]). The
success of a construction like this strongly depends on the matrix of nodes.

Another way to obtain uniformly convergent processes is to consider suitable
means of the Lagrange interpolation polynomials (see [20], [21]).

In this paper we use amixture of the above techniques to obtain wide classes
of uniformly convergent weighted processes on the roots of the four kinds of
Chebyshev polynomials using a summation function ϕ.

Let wα,β(x) := (1 − x)α(1 + x)β be a Jacobi weight (α, β > −1) and con-

sider the sequence of orthonormal polynomials p
(α,β)
j (x) having positive main

coefficients (j ∈ N := {0, 1, . . .}) with respect to the weight wα,β :

(1.2)

∫ 1

−1

p
(α,β)
i (x)p

(α,β)
j (x)wα,β(x) dx = δi,j (i, j ∈ N).
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Let us denote by

X
(α,β)
M := {xk,M := x

(α,β)
k,M : k = 1, 2, . . . ,M} (M ∈ N+)

the M different roots of p
(α,β)
M , indexed in decreasing order.

The Lagrange interpolation polynomial of a function f on X
(α,β)
M

(M ∈ N+) will be denoted by LM (f,X
(α,β)
M , ·) and can be expressed (see [16,

Theorem 3.2.2 and 3.4.6]) as

(1.3) LM (f,X
(α,β)
M , x) =

M−1∑
j=0

cj,M (f)p
(α,β)
j (x) (x ∈ [−1, 1]),

where

(1.4) cj,M (f) := c
(α,β)
j,M (f) =

M∑
k=1

f(xk,M )p
(α,β)
j (xk,M )λ

(α,β)
k,M

for j = 0, 1, . . . ,M − 1, and λ
(α,β)
k,M denote the Christoffel numbers with respect

to the weight wα,β .

The definition of the coefficients c
(α,β)
j,M (f) may be extended for all j ∈ N by

the above formula (1.4), and the series

(1.5)
∑
j∈N

cj,M (f)p
(α,β)
j

can be considered as a discrete Fourier series of f .

Section 2. contains the construction of ϕ-summations for the parameters
|α| = |β| = 1

2 . We discuss the convergence and the interpolation property of
these processes in general.

In Section 3. we consider some well-known methods, i.e. the arithmetic
means of Lagrange interpolation; the Grünwald, de la Vallée Poussin and
Hermite–Fejér interpolations.

The proofs of our statements can be found in Section 4.

2. General results

We shall consider only the special cases

(2.1) |α| = |β| =
1

2
,
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i.e. the node systems X
(α,β)
M contains the roots of one of the four kinds of

Chebyshev polynomials. With the notations x = cosϑ, x ∈ [−1, 1], ϑ ∈
∈ [0, π] we recall the orthonormal first, second, third and fourth kind Chebyshev
polynomials, respectively:

(2.2) p
(− 1

2 ,−
1
2 )

n (x) =
√

2
π
Tn(x) =

√
2
π
cosnϑ

if n ∈ N+ and

p
(− 1

2 ,−
1
2 )

0 (x) =
√

1
π
T0(x) =

√
1
π
.

(2.3) p
( 1

2 ,
1
2 )

n (x) =
√

2
π
Un(x) =

√
2

π

sin(n+ 1)ϑ

sinϑ
,

(2.4) p
(− 1

2 ,
1
2 )

n (x) =
√

1
π
Vn(x) =

√
1

π

cos(2n+ 1)ϑ2
cos ϑ

2

,

(2.5) p
( 1

2 ,−
1
2 )

n (x) =
√

1
π
Wn(x) =

√
1

π

sin(2n+ 1)ϑ2
sin ϑ

2

.

For these α and β, let us define the values

(2.6) γ :=
α

2
+

1

4
and δ :=

β

2
+

1

4
.

Fix a summation function ϕ : [0,+∞) → R with supp ϕ ⊂ [0, 1]. For a
function f ∈ Cwγ,δ

we define the ϕ-means of the discrete Fourier series (1.5)

on the node system X
(α,β)
M as

(2.7)
Sϕ
n,M

(
f,X

(α,β)
M , x

)
:=

n∑
j=0

ϕ

(
j + γ + δ

n+ 2γ + 2δ

)
cj,M (f)p

(α,β)
j (x)

(
x ∈ [−1, 1]; M ∈ N+ ; n ∈ N

)
,

where the coefficients cj,M (f) are given by (1.4). The degree of this polynomial
is ≤ n. Note that the above polynomials have simple explicit, easily computable
forms (the exact roots are known).

Remark. We remark that the ”usual” way to define ϕ summation polynomials
would be by the formula (cf. e.g. [19], [17])

n∑
j=0

ϕ

(
j

n

)
cj,M (f)p

(α,β)
j (x)

(
x ∈ [−1, 1], f ∈ Cwγ,δ

, n ∈ N
)
.
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From the two-parameter operator family
(
Sϕ
n,M , n,M ∈ N

)
we can choose

a one-parameter family using two arbitrary index sequences (nm, m ∈ N) for
the degree, and (Mm, m ∈ N) for the number of nodes. Thus we obtain a
sequence of bounded linear operators

(2.8) Sϕ
nm,Mm

: Cwγ,δ
→ Pnm

(m ∈ N),

where Pm denotes the linear space of algebraic polynomials of degree ≤ m.

Denote by L1(R+) (R+ := [0,+∞)) the linear space ofmeasurable functions
g : R+ → R for which the Lebesgue integral

∫
R+ |g| is finite. The function

‖g‖L1(R+) :=

∫
R+

|g|
(
g ∈ L1(R+)

)
is a norm on L1(R+) and

(
L1(R+), ‖ · ‖L1(R+)

)
is a Banach space.

The (cosine) Fourier transform of g ∈ L1(R+) is defined by

ĝ(x) :=
1

π

∫ +∞

0

g(t) cos (tx) dt
(
x ∈ R+

)
.

The following theorem shows that if the Fourier transform of a suitable sum-
mation function ϕ is Lebesgue integrable on R+ then a sequence of polynomials
(2.7) tends to f uniformly for any f from the weighted space Cwγ,δ

.

Theorem 2.1. Let |α| = |β| = 1
2 and (γ, δ) is given by (2.6). Suppose that

ϕ : [0,+∞) → R is a continuous function with supp ϕ ⊂ [0, 1] and ϕ(0) = 1,
moreover

nm → +∞ (m→ +∞) and nm ≤ 2Mm.

If ϕ̂ ∈ L1(R+) then for any f ∈ Cwγ,δ
we have

(2.9) ‖f − Sϕ
nm,Mm

(f,X
(α,β)
Mm

, ·)‖wγ,δ
→ 0 (m→ +∞),

where the polynomials Sϕ
nm,Mm

are defined by (2.7).

The direct verification of ϕ̂ ∈ L1(R+) is generally not easy, but the following
sufficient condition is known.

Theorem A. ([12, p. 176]) If g : R+ → R is a continuous function supported
in [0, 1], and g ∈ Lip η (η > 1/2) on [0, 1] then ĝ ∈ L1(R+).

Using these results one can easily choose the summation function ϕ such
that the conditions of Theorem A hold, and construct many uniformly conver-
gent discrete processes with simple computable explicit forms.
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Remarks. 1. G.M. Natanson and V.V. Zuk [12, p. 168] proved that ϕ-
summation of trigonometric Fourier series is uniformly convergent if and only
if the Fourier transform of ϕ is Lebesgue integrable. The order of convergence
was investigated by L. Szili and P. Vértesi [19].

2. The first results with respect to the general ϕ-summability of discrete
trigonometric Fourier series are due to F. Schipp and J. Bokor [13]. Their
results are sharpened by L. Szili and P. Vértesi [19]. F. Schipp and F. Weisz
[14]. investigated the multi-dimensional case. In [3] J. Bokor and F. Schipp
studied another type discrete series.

3. In algebraic interpolation, a similar result was presented in [17] for the
unweighted case.

We also investigate the interpolatory properties of the polynomials (2.7).
The following theorem states that these polynomials interpolate the function

f ∈ Cwγ,δ
at the points X

(α,β)
M , i.e.

f(xk,M ) = Sϕ
nk,Mk

(
f,X

(α,β)
M , xk,M

) (
xk,M ∈ X

(α,β)
M

)
if and only if some values of the summation function ϕ are symmetrical to the
center (x0, 1/2), where

x0 =
M + γ + δ

n+ 2γ + 2δ
.

This property is displayed on Figure 1.

ϕ(x) + ϕ (2x0 − x) = 1

1

ϕ(x)

1
2

ϕ (2x0 − x)

y

x
x x0 2x0 − x 1 2x0

Figure 1.
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Theorem 2.2. Let |α| = |β| = 1
2 and γ, δ ≥ 0 arbitrary real numbers, moreover

suppose that M ≥ 2, M ≤ n ≤ 2M (n,M ∈ N+) and ϕ : [0,+∞) → R. The

polynomial Sϕ
n,M (f,X

(α,β)
M , x) interpolates the function f ∈ Cwγ,δ

at the points

X
(α,β)
M if and only if

ϕ

(
j + δ + γ

n+ 2δ + 2γ

)
+ ϕ

(
2M − j + δ + γ

n+ 2δ + 2γ

)
= 1

for every j = 0, 1, . . . , n, j 
= M .

Remark. Similar necessary and sufficient condition is known in the cases of
trigonometric interpolation [19] and unweighted (algebraic) interpolation [17].

3. Results in special cases

For a function f ∈ Cwγ,δ
and M ∈ N+ the Lagrange interpolation poly-

nomials LM (f,X
(α,β)
M , ·) can be obtained as special cases of (2.7). Indeed, let

n := M and

ϕL(t) :=

{
1, if t ∈ [0, 1]

0, if t ∈ (1,+∞).

Using Theorem 2.2 it is clear that SϕL

M,M (f,X
(α,β)
M , ·) interpolates f at the

pointsX
(α,β)
M , and the degree of the summation polynomial cannot exceedM−1

(since cM,M (f) = 0, see Lemma 4.1), so it must be the Lagrange interpolation
polynomial of f .

As we have alreadymentioned (see (1.1)), the sequence of these polynomials
generally does not tend uniformly to f in (Cwγ,δ

, ‖ · ‖wγ,δ
).

3.1. Arithmetic means of Lagrange interpolation

Let M ∈ N+ and for m = 0, 1, . . . ,M − 1 define the polynomials

Lm,M (f,X
(α,β)
M , x) :=

m∑
j=0

cj,M (f)p
(α,β)
j (x), (f ∈ Cwγ,δ

, x ∈ [−1, 1]).

Note that LM−1,M (f,XM , ·) is the Lagrange interpolation polynomial.
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We shall consider the following arithmetic means of Lagrange interpolation:

σM (f,X
(α,β)
M , ·) :=

1

M

M−1∑
m=0

Lm,M (f,X
(α,β)
M , ·).

Theorem 3.1. Let |α| = |β| = 1
2 and (γ, δ) is given by (2.6). Then for any

f ∈ Cwγ,δ
we have

lim
M→+∞

‖f − σM (f,X
(α,β)
M , ·)‖wγ,δ

= 0.

Remarks. 1. Theorem 3.1 is a discrete version of Fejér’s theorem about the
(C, 1) summability of Fourier series. Analogue results in interpolation theory
are due to S. N. Bernstein [1] and J. Marcinkiewicz [8] in the unweighted case.

2. The same result was already obtained in [21] (for more general param-
eters α, β, γ, δ), but our proof differs from the one presented there. A similar
result was proved for the four kinds of Chebyshev nodes in [17], where the
author supplemented the node systems with additional points instead of using
weights.

3. We also note that by Theorem 2.2, σM (f,X
(α,β)
M , ·) does not interpolate

f at the points of X
(α,β)
M .

3.2. Grünwald–Rogosinski type processes

Let us consider the summation function

ϕG(t) :=

{
cos tπ, if t ∈ [0, 1

2 ]

0, if t ∈ (12 ,+∞).

Theorem 3.2. Let |α| = |β| = 1
2 and (γ, δ) is given by (2.6) and suppose that

f ∈ Cwγ,δ
.

(i) For ϕG we have the Rogosinski type average of Lagrange interpolation,
i.e. for f ∈ Cwγ,δ

the relation

wγ,δS
ϕG

2M,M (f,X
(α,β)
M , x) =

=
1

2

{
LM,wγ,δ

(f,X
(α,β)
M , x+) + LM,wγ,δ

(f,X
(α,β)
M , x−)

}
holds, where

LM,wγ,δ
(f,X

(α,β)
M , ·) := wγ,δ · LM (f,X

(α,β)
M , ·)
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and
x± := x cos tM ±

√
1− x2 sin tM , tM :=

π

2(M + γ + δ)
.

(ii) For these polynomials we have

lim
M→+∞

‖f − SϕG

2M,M (f,X
(α,β)
M , ·)‖wγ,δ

= 0.

Remarks. 1. If α = β = − 1
2 and γ = δ = 0, then we obtain Grünwald’s

classical result [6] for first kind Chebyshev roots in the unweighted case.

2. M.S. Webster [28] proved that for α = β = 1
2 the uniform convergence

(without weight) is true only for closed subintervals of (−1, 1). In [27] P. Vértesi
generalized Webster’s result for arbitrary α, β > −1. Theorem 3.2 shows that
for |α| = |β| = 1

2 the uniform convergence holds on the whole interval [−1, 1],

if we use suitable weight function. If α = β = 1
2 then Á. Chripkó [4] proved

that the convergence is true if 1
2 ≤ γ ≤ 2.

3. We also note that by Theorem 2.2, SϕG

2M,M (f,X
(α,β)
M , ·) does not inter-

polate f at the points of X
(α,β)
M .

3.3. De la Vallée Poussin type interpolation

Fix a number κ ∈ (0, 1) and let

ϕκ :=

⎧⎪⎨⎪⎩
1, if t ∈ [0, 1−κ

2 )

− 1
κ

(
t− 1+κ

2

)
, if t ∈ [ 1−κ

2 , 1+κ
2 ]

0, if t ∈ (1+κ
2 ,+∞).

Theorem 3.3. Let |α| = |β| = 1
2 and (γ, δ) is given by (2.6) and suppose that

f ∈ Cwγ,δ
.

(i) For any fixed κ ∈ (0, 1) and M ∈ N+, the degree of the polynomial

Sϕκ

2M,M (f,X
(α,β)
M , ·)

is ≤M(1 + κ) and it interpolates f at the points of X
(α,β)
M .

(ii) For any f ∈ Cwγ,δ
we have

lim
M→+∞

‖f − Sϕκ

2M,M (f,X
(α,β)
M , ·)‖wγ,δ

= 0.

Remarks. 1. For the values κ = 1 and κ = 0, we would obtain the Lagrange
interpolation and the weighted Hermite–Fejér type interpolation (see in the
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next subsection), respectively. In trigonometric interpolation, S. N. Bernstein
has analogue results [2] for a class of interpolatory polynomials.

2. We remark that Theorem 3.3 can also be considered as a discrete version
of the de la Vallée Poussin summation of Fourier series.

3. This result also shows similarity to a result of P. Erdős [5, Theorem 1]
in the classical (unweighted) case, where he proved that if the interpolatory
point system (XM , M ∈ N+) is such that the fundamental polynomials of
Lagrange interpolation are uniformly bounded, then for any f ∈ C[−1, 1] there
exists a sequence of polynomials QM (M ∈ N+) of degree ≤M(1 + κ) tending
uniformly to f , and QM interpolates f at the points of XM for every M ∈ N+.
For our four point systems, we now have a weighted analogue of this result.

3.4. Weighted Hermite–Fejér type interpolation

Let us define the summation function

ϕH(t) :=

{
1− t, if t ∈ [0, 1]

0, if t ∈ (1,+∞).

The next theorem states that the weighted Hermite–Fejér type interpolatory
polynomials can be obtained by using suitable summation function.

Theorem 3.4. Let |α| = |β| = 1
2 and (γ, δ) is given by (2.6) and suppose that

f ∈ Cwγ,δ
.

(i) For any M = 1, 2, . . . the polynomials

SϕH

2M,M

(
f,X

(α,β)
M , x

)
=

2M∑
j=0

(
1−

j + γ + δ

2M + 2γ + 2δ

)
cj,M (f) p

(α,β)
j (x)

(see (1.4) and (2.7)) satisfy the following Hermite–Fejér type interpolatory
properties

(3.1) SϕH

2M,M (f,X
(α,β)
M , xk,M ) = f(xk,M ),

(3.2)
(
wγ,δS

ϕH

2M,M (f,X
(α,β)
M , ·)

)′
(xk,M ) = 0,

for all xk,M ∈ X
(α,β)
M .

(ii) For any f ∈ Cwγ,δ
we have

lim
M→+∞

‖f − SϕH

2M,M (f,X
(α,β)
M , ·)‖wγ,δ

= 0.



Discrete convergent processes 203

Remarks. 1. If α = β = − 1
2 and γ = δ = 0, then we obtain Fejér’s classical

result for first kind Chebyshev roots in the unweighted case. (See e.g. [15, p.
165], [26].)

2. In [7] Ágota P. Horváth proved a general convergence theorem for the
above type weighted Hermite–Fejér interpolation process on 
(w)-normal point
systems (especially on Jacobi roots, see [7, Example (2)]); but Theorem 2 of
her paper does not contain our Theorem 3.4.

3. G. Mastroianni and J. Szabados [11] investigated an other type weighted
Hermite–Fejér interpolation process based on Jacobi nodes.

4. Proofs

4.1. On the coefficients cj,M(f)

Now we prove some results which will be useful later on. First we take a

closer look at the coefficients c
(α,β)
j,M (f) (see (1.4)), if |α| = |β| = 1

2 .

Lemma 4.1. Let us fix the positive integer M . For any xk,M ∈ X
(α,β)
M (k =

1, 2, . . . ,M) and j = 0, 1, . . . ,M − 1 we have

(4.1) p
(α,β)
j (xk,M ) = −p

(α,β)
2M−j(xk,M ),

and

(4.2) p
(α,β)
M (xk,M ) = 0.

For a function f ∈ Cwγ,δ
the coefficients c

(α,β)
j,M (f) have the properties

(4.3) cj,M (f) = −c2M−j,M (f) (j = 0, 1, . . . ,M − 1),

and

(4.4) cM,M (f) = 0.

Proof. (4.2) obviously holds since the elements of X
(α,β)
M are the roots of

p
(α,β)
M . The equality (4.1) follows from certain trigonometric identities. The

proofs are similar in each four cases for α, β. We shall discuss only the case
α = β = 1

2 , when for k = 1, 2, . . . ,M we have (see (2.3))

X
( 1
2 ,

1
2 )

M � xk,M = cosϑk,M = cos
k

M + 1
π.
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Since for any j = 0, 1, . . . ,M − 1 we have

sin(j + 1)ϑk,M = sin
[(
2M + 2− (2M − j + 1)

) kπ

M + 1

]
=

= − sin(2M − j + 1)ϑk,M ,

consequently by (2.3)

p
( 1
2 ,

1
2 )

j (xk,M ) = p
( 1
2 ,

1
2 )

j (cosϑk,M ) =

√
2

π

sin(j + 1)ϑk,M

sinϑk,M

=

= −

√
2

π

sin(2M − j + 1)ϑk,M

sinϑk,M

= −p
( 1
2 ,

1
2 )

2M−j(cosϑk,M ) = −p
( 1
2 ,

1
2 )

2M−j(xk,M ),

which proofs (4.1).

Now from the definition of the coefficients (1.4) immediately follow (4.3)
and (4.4). �

4.2. Discrete orthogonality

It is possible to convert the (continuous) orthogonality relationship (1.2)

with respect to the system
(
p
(α,β)
n , n ∈ N

)
, into a discrete orthogonality re-

lationship simply by replacing the integral with a certain summ. For the four
kinds of orthonormal Chebyshev polynomials the following discrete orthogonal-
ity properties hold:

Lemma 4.2. For a fixed M ∈ N+ and i, j = 0, 1, . . . ,M − 1 we have

M∑
k=1

p
(α,β)
i (xk,M ) p

(α,β)
j (xk,M )w2

γ,δ(xk,M )CM (wα,β) =

{
1, if i = j

0, if i 
= j,

where xk,M ∈ X
(α,β)
M and

CM (wα,β) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

π

M
, if α = β = − 1

2

π

M + 1
, if α = β = 1

2

2π

2M + 1
, otherwise.

Proof. From the Gauss–Jacobi quadrature formula (see [16, Theorem 3.4.1])
we have the following discrete orthogonality relation for i+ j ≤ 2M − 1∫ 1

−1

p
(α,β)
i (x)p

(α,β)
j (x)wα,β(x) dx =

M∑
k=1

p
(α,β)
i (xk,M ) p

(α,β)
j (xk,M )λk,M = δi,j
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where λk,M ’s are the Christoffel numbers, for which in the cases |α| = |β| = 1
2

by [16, pp. 352–353] we have

(4.5) λ
(α,β)
k,M = CM (wα,β) · w

2
γ,δ(xk,M ) (k = 1, . . . ,M),

which proves the statement. �

4.3. An other form of Sϕ
n,M

For the proof of (2.9) we have to estimate the expression∣∣f(x)− Sϕ
n,M (f,XM , x)

∣∣wγ,δ(x) =
∣∣f(x)wγ,δ(x)− Sϕ

n,M (f,XM , x)wγ,δ(x)
∣∣,

i.e. we approximate the function fwγ,δ with the weighted polynomial Sϕ
n,M wγ,δ.

Now we give another form of Sϕ
n,M wγ,δ. From (2.7) and (1.4) we have

(4.6)

Sϕ
n,M (f,XM , x)wγ,δ(x) =

=
M∑
k=1

(
wγ,δf

)
(xk,M ) ·Kϕ

n,M (wα,β , wγ,δ, xk,M , x) ·
λk,M

w2
γ,δ(xk,M )

,

where the kernel function Kϕ
n,M is defined as

(4.7)

Kϕ
n,M (wα,β , wγ,δ, xk,M , x) := Kϕ

n,M (xk,M , x) :=

:=

n∑
j=0

ϕ

(
j + γ + δ

n+ 2γ + 2δ

)
·
(
wγ,δp

(α,β)
j

)
(xk,M ) ·

(
wγ,δp

(α,β)
j

)
(x)

for an xk,M ∈ XM .

Lemma 4.3. Let us fix n ∈ N, the positive integer M and the node xk,M =

= cosϑk,M ∈ X
(α,β)
M . For ϑ ∈ [0, π] we have

Kϕ
n,M (cosϑk,M , cosϑ) =

=
1

π
·

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Dϕ
n(ϑ+ ϑk,M ) +Dϕ

n(ϑ− ϑk,M ), if α = β = − 1
2

Dϕ
n+2(ϑ− ϑk,M )−Dϕ

n+2(ϑ+ ϑk,M ), if α = β = 1
2

Dϕ
n+1(ϑ+ ϑk,M ) +Dϕ

n+1(ϑ− ϑk,M ), if α = − 1
2 , β = 1

2

Dϕ
n+1(ϑ− ϑk,M )−Dϕ

n+1(ϑ+ ϑk,M ), if α = 1
2 , β = − 1

2 ,

where

Dϕ
n(ϑ) :=

1

2
+

n∑
j=1

ϕ

(
j

n

)
cos jϑ.
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Proof. The proof is based on the trigonometric form of the polynomials p
(α,β)
j .

It is similar in each four cases for α, β, so we give the proof only for α = β = 1
2 .

In this case γ = δ = 1
2 , so for j = 0, 1, . . . , n we have

ϕ

(
j + γ + δ

n+ 2γ + 2δ

)
= ϕ

(
j + 1

n+ 2

)
.

From (2.3) and (4.7) with x =: cosϑ, (ϑ ∈ [0, π]) we obtain

Kϕ
n,M (cosϑk,M , cosϑ) =

2

π

n∑
j=0

ϕ

(
j + 1

n+ 2

)
sin(j + 1)ϑk,M sin(j + 1)ϑ,

since

w 1
2 ,

1
2
(cosϑ) · p

( 1
2 ,

1
2 )

j (cosϑ) = sinϑ ·

√
2

π

sin(j + 1)ϑ

sinϑ
=

√
2

π
sin(j + 1)ϑ,

where j = 0, 1, . . . , n. Thus we get

Kϕ
n,M (cosϑk,M , cosϑ) =

=
1

π

[n+1∑
j=1

ϕ

(
j

n+ 2

)
cos j(ϑ− ϑk,M )−

n+1∑
j=1

ϕ

(
j

n+ 2

)
cos j(ϑ+ ϑk,M )

]
,

and using the fact that ϕ(1) = 0, the expression for Kϕ
n,M (cosϑk,M , cosϑ) also

equals to

1

π

[1
2
+

n+2∑
j=1

ϕ

(
j

n+ 2

)
cos j(ϑ− ϑk,M )−

1

2
−

n+2∑
j=1

ϕ

(
j

n+ 2

)
cos j(ϑ+ ϑk,M )

]
,

consequently

Kϕ
n,M (cosϑk,M , cosϑ) =

1

π

[
Dϕ

n+2(ϑ− ϑk,M )−Dϕ
n+2(ϑ+ ϑk,M )

]
. �

4.4. Proof of Theorem 2.1

Let |α| = |β| = 1
2 . We shall use the Banach–Steinhaus theorem. The

polynomials
{
p
(α,β)
i : i ∈ N

}
form a closed system in the space (Cwγ,δ

, ‖·‖wγ,δ
)

(see e.g. [20, Section 3]), therefore we have to show that

(4.8)
∥∥∥Sϕ

nm,Mm
(pi, XMm

, ·)− pi

∥∥∥
wγ,δ

→ 0 (m→ +∞)
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for every fixed i ∈ N, moreover the norms of the operators Sϕ
nm,Mm

is uniformly
bounded, i.e. there exists c > 0 independent of m such that

(4.9) ‖Sϕ
nm,Mm

‖wγ,δ
≤ c (m ∈ N),

where

‖Sϕ
nm,Mm

‖wγ,δ
:= sup

‖f‖wγ,δ
=1

{
‖Sϕ

nm,Mm
(f,XMm

, ·)‖wγ,δ
: f ∈ Cwγ,δ

}
.

In order to prove (4.8), let us fix i ∈ N and assume that m is large enough,
i.e. min{Mm, nm} > i. Now by Lemma 4.2, for j = 0, 1, . . . ,Mm − 1 we have

cj,Mm
(pi) =

{
1, if i = j

0, if i 
= j,

so considering nm ≤ 2Mm and (4.3), the equality

Sϕ
nm,Mm

(pi, XMm
, ·) =

= ϕ

(
i+ γ + δ

nm + 2γ + 2δ

)
pi − ϕ

(
2Mm − i+ γ + δ

nm + 2γ + 2δ

)
p2Mm−i

holds. It is clear that

lim
m→+∞

ϕ

(
i+ γ + δ

nm + 2γ + 2δ

)
= ϕ(0) = 1.

Since nm ≤ 2Mm (m ∈ N) and

lim inf
m→+∞

2Mm − i+ γ + δ

nm + 2γ + 2δ
= lim inf

m→+∞

(
2Mm + 2γ + 2δ

nm + 2γ + 2δ
−

i+ γ + δ

nm + 2γ + 2δ

)
≥ 1,

moreover ϕ(x) = 0 if x ≥ 1, thus we have

lim
m→+∞

ϕ

(
2Mm − i+ γ + δ

nm + 2γ + 2δ

)
= 0,

therefore we proved (4.8).

Next we show (4.9). Using (4.5), (4.6) and CMm
= CMm

(wα,β), the norm
can be expressed as

‖Sϕ
nm,Mm

(f,XMm
, ·)‖wγ,δ

=

=
∥∥∥Mm∑
k=1

wγ,δ(xk,Mm
)f(xk,Mm

) · CMm
·Kϕ

nm,Mm
(xk,Mm

, ·)
∥∥∥
∞
,
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so if ‖f‖wγ,δ
= supx∈[−1,1] | (wγ,δf) (x)| = 1, then we obtain

‖Sϕ
nm,Mm

‖wγ,δ
= sup

x∈[−1,1]

CMm

Mm∑
k=0

∣∣∣Kϕ
nm,Mm

(xk,Mm
, x)

∣∣∣ .
By Lemma 4.3 the kernel can be uniformly expressed as

Kϕ
nm,Mm

(ϑk,Mk
, ϑ) =

1

π

[
Dϕ

nm+2γ+2δ(ϑ− ϑk,Mk
)±Dϕ

nm+2γ+2δ(ϑ+ ϑk,Mk
)
]
,

so

‖Sϕ
nm,Mm

‖wγ,δ
≤

≤
CMm

π
max

ϑ∈[0,π]

Mm∑
k=1

{∣∣Dϕ
nm+2γ+2δ(ϑ+ ϑk,Mk

)
∣∣+ ∣∣Dϕ

nm+2γ+2δ(ϑ− ϑk,Mk
)
∣∣}.

Let

‖Dϕ
n‖M,1 :=

1

2M
sup

ϑ∈[0,π]

M∑
k=1

{
|Dϕ

n(ϑ+ ϑk,M )|+ |Dϕ
n(ϑ− ϑk,M )|

}
.

Then

‖Dϕ
n‖M,1 ≤

(
1 +

2nπ

M

)
‖Dϕ

n‖1 :=

(
1 +

2nπ

M

)
·
1

2π

∫ π

−π

|Dϕ
n(t)| dt

(see [22, pp. 242]) and

2 sup
n∈N

‖Dϕ
n‖1 = ‖ϕ̂‖L1(R+)

(see Theorem 2 in §24 of [12]). Consequently if ϕ̂ ∈ L1(R+) and nm ≤ 2Mm,
then there exists c > 0 such that

‖Sϕ
nm,Mm

‖wγ,δ
≤ CMm

Mm

π

(
1 +

nm + 2γ + 2δ

Mm

π

)
‖ϕ̂‖L1(R+) < c,

since CMm
(wα,β) ≤

π
Mm

for any |α| = |β| = 1
2 . This completes the proof of

(4.9) and consequently of Theorem 2.1. �

4.5. Proof of Theorem 2.2

Let f ∈ Cwγ,δ
and M ≥ 2,M ∈ N. Using (4.3) and the fact that M ≤ n ≤

≤ 2M we can write the polynomial Sϕ
n,M (f,X

(α,β)
M , x) (see (2.7)) in the form

Sϕ
n,M (f,X

(α,β)
M , x) =

=

M−1∑
j=0

cj,M (f)

[
ϕ

(
j + γ + δ

n+ 2γ + 2δ

)
pj(x)− ϕ

(
2M − j + γ + δ

n+ 2γ + 2δ

)
p2M−j(x)

]
,
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since for 0 ≤ j < 2M − n we have n < 2M − j ≤ 2M , and

ϕ

(
2M − j + γ + δ

n+ 2γ + 2δ

)
= 0.

Now for an arbitrary xi,M ∈ X
(α,β)
M , (i = 1, 2, . . . ,M) by (4.1) we get

Sϕ
n,M (f,X

(α,β)
M , xi,M ) =

=

M−1∑
j=0

cj,M (f) ·

[
ϕ

(
j + γ + δ

n+ 2γ + 2δ

)
+ ϕ

(
2M − j + γ + δ

n+ 2γ + 2δ

)]
· pj(xi,M ),

and considering (1.3), Sϕ
n,M (f,X

(α,β)
M , xi,M ) also equals to

LM (f,X
(α,β)
M , xi,M )+

+

M−1∑
j=0

cj,M (f) ·

[
ϕ

(
j + γ + δ

n+ 2γ + 2δ

)
+ ϕ

(
2M − j + γ + δ

n+ 2γ + 2δ

)
− 1

]
· pj(xi,M ).

Since

LM (f,X
(α,β)
M , xi,M ) = f(xi,M ) (∀ xi,M ∈ X

(α,β)
M ),

the equation

Sϕ
n,M (f,X

(α,β)
M , xi,M ) = f(xi,M )

holds for every xi,M ∈ X
(α,β)
M if and only if the polynomial

M−1∑
j=0

cj,M (f) ·

[
ϕ

(
j + γ + δ

n+ 2γ + 2δ

)
+ ϕ

(
2M − j + γ + δ

n+ 2γ + 2δ

)
− 1

]
· pj(x)

equals to zero at every point xi,M ∈ X
(α,β)
M , so it has M distinct roots and its

degree ≤M − 1, consequently it is the zero polynomial.

So Sϕ
n,M (f,X

(α,β)
M , ·) interpolates f if and only if

ϕ

(
j + γ + δ

n+ 2γ + 2δ

)
+ ϕ

(
2M − j + γ + δ

n+ 2γ + 2δ

)
− 1 = 0

for j = 0, 1, . . . ,M − 1. This completes the proof. �
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4.6. Proof of Theorem 3.1

A simple calculation shows that

σM (f,X
(α,β)
M , ·) = SϕF

2M,M (f,X
(α,β)
M , ·),

where

ϕF (t) :=

{
1− 2t, if t ∈ [0, 1

2 ]

0, if t ∈ (12 ,+∞).

For the Fourier transform of ϕF we have

ϕ̂F (x) =
1

4π

(
sin(x/4)

x/4

)2

,

consequently ϕ̂F (x) ∈ L1(R+), and by Theorem 2.1, our proof is complete. �

4.7. Proof of Theorem 3.2

The verification of (i) is based on the trigonometric form of the polynomials

p
(α,β)
j . It is similar in each four cases for α, β, so we give the proof only for

α = β = 1
2 . In this case γ = δ = 1

2 .

Using the notation x =: cosϑ, (ϑ ∈ [0, π]) a simple calculation shows that

x± = cos(ϑ∓ tM ).

Now by (2.3) for j = 0, 1, . . . ,M − 1 we have(
w 1

2 ,
1
2
p
( 1
2 ,

1
2 )

j

)
(x+) +

(
w 1

2 ,
1
2
p
( 1
2 ,

1
2 )

j

)
(x−) =

= sin(ϑ− tM ) ·
sin

[
(j + 1)(ϑ− tM )

]
sin(ϑ− tM )

+ sin(ϑ+ tM ) ·
sin [(j + 1)(ϑ+ tM )]

sin(ϑ+ tM )
=

= 2 cos(j + 1)tM · sin(j + 1)ϑ,

and thus (by (1.3))

1

2

{
LM,wγ,δ

(f,X
(α,β)
M , x+) + LM,wγ,δ

(f,X
(α,β)
M , x−)

}
=

=
1

2

M−1∑
j=0

2 cos(j + 1)tM · cj,M (f) sin(j + 1)ϑ =

= sinϑ

2M∑
j=0

ϕ

(
j + 1

2M + 2

)
· cj,M (f)

sin(j + 1)ϑ

sinϑ
,
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where

ϕ

(
j + 1

M + 2

)
= cos(j + 1)tM = cos

(j + 1)π

2M + 2

for j = 0, 1, . . . ,M − 1, and ϕ

(
j + 1

M + 2

)
= 0, otherwise.

Consequently

1

2

{
LM,wγ,δ

(f,X
(α,β)
M , x+) + LM,wγ,δ

(f,X
(α,β)
M , x−)

}
=

= w 1
2 ,

1
2
· SϕG

2M,M (f,X
( 1
2 ,

1
2 )

M , x).

(ii) For the Fourier transform of ϕG we have

ϕ̂G(x) =
sin(x− π)/2

x2 − π2
(x ∈ R+),

so ϕ̂G ∈ L1(R+). By Theorem 2.1, we obtain our statement. �

4.8. Proof of Theorem 3.3

An easy calculation shows that

ϕ̂κ(x) =
1

2(1− κ)π

sin2(x/2)− sin2(1 + κ)x

(x/2)2
(x ∈ R+),

so ϕ̂κ ∈ L1(R+), and also

ϕκ(t) + ϕκ(1 − t) = 1 (t ∈ [0, 1]),

thus from Theorem 2.1 and 2.2 we obtain the statement. �

4.9. Proof of Theorem 3.4

(i) The summation function ϕH obviously satisfies the symmetry property
of Theorem 2.2, which proves the interpolatory properties (3.1).

For the proof of (3.2) we shall use the following result regarding some values

of the derivatives of the functions wγ,δp
(α,β)
j .

Lemma 4.4. Let |α| = |β| = 1
2 and (γ, δ) is given by (2.6). Fix the positive

integer M . Then for any node xk,M ∈ X
(α,β)
M we have

(2M − j + γ + δ)
(
wγ,δp

(α,β)
j

)′
(xk,M ) = (j + γ + δ)

(
wγ,δp

(α,β)
2M−j

)′
(xk,M ),

where j = 0, 1, . . . ,M − 1.
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Proof. The proof is based on the trigonometric form of the polynomials

p
(α,β)
j =: pj , and is similar in each four cases for α, β, so we give the proof

only for α = β = 1
2 . In this case γ = δ = 1

2 ,

X
( 1
2 ,

1
2 )

M � xk,M = cos
kπ

M + 1
=: cosϑk,M ,

and by (2.3)(
w 1

2 ,
1
2
pj

)
(x) = sin

(
(j + 1) arccosx

)
, (j = 0, 1, . . . ,M − 1).

For an arbitrary j = 0, 1, . . . ,M − 1 and ϑ ∈ [0, π] we have

(
w 1

2 ,
1
2
pj

)′
(cosϑ) =

√
2

π

(j + 1) · cos(j + 1)ϑ

sinϑ
,

and since

cos
(j + 1)kπ

M + 1
= cos

(2M + 2− (2M − j + 1))kπ

M + 1
= cos

(2M − j + 1)kπ

M + 1
,

thus(
w 1

2 ,
1
2
pj

)′
(xk,M ) =

√
2

π

(j + 1) · cos(2M − j + 1)ϑk,M

sinϑk,M

, (xk,M ∈ XM ).

Observe that the expression on the right side equals to

j + 1

2M − j + 1
·

√
2

π

(2M − j + 1) · cos(2M − j + 1)ϑk,M

sinϑk,M

=

=
j + 1

2M − j + 1

(
w 1

2 ,
1
2
p2M−j

)′
(xk,M ),

proving our statement. �

Let ϕ := ϕH . Then we have

(
wγ,δS

ϕ
2M,M (f,X

(α,β)
M , ·)

)′
=

2M∑
j=0

ϕ

(
j + γ + δ

2M + 2γ + 2δ

)
cj,M (f) · (wγ,δpj)

′.

By (4.3), this equals to

M−1∑
j=0

[
ϕ
(

j+γ+δ
2M+2γ+2δ

)
(wγ,δpj)

′ − ϕ
(
2M−j+γ+δ
2M+2γ+2δ

)
(wγ,δp2M−j)

′
]
· cj,M (f).
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Using

ϕ

(
j + γ + δ

2M + 2γ + 2δ

)
+ ϕ

(
1−

j + γ + δ

2M + 2γ + 2δ

)
= 1.

and Lemma 4.4 together leads us to(
wγ,δS

ϕ
2M,M (f,XM , ·)

)′
(xk,M ) =

=

M−1∑
j=0

[
ϕ

(
j + γ + δ

2M + 2γ + 2δ

)
−

2M − j + γ + δ

j + γ + δ

(
1− ϕ

(
j + γ + δ

2M + 2γ + 2δ

))]
·

·cj,M (f)
(
wγ,δpj

)′
(xk,M ),

which equals to 0 for every xk,M ∈ XM if

2M + 2γ + 2δ

j + γ + δ
· ϕ

(
j + γ + δ

2M + 2γ + 2δ

)
−

2M − j + γ + δ

j + γ + δ
= 0

for j = 0, 1, . . . ,M − 1, or in another form,

ϕ

(
j + γ + δ

2M + 2γ + 2δ

)
= 1−

j + γ + δ

2M + 2γ + 2δ
, (j = 0, 1, . . . ,M − 1).

Since ϕH satisfies this condition and the interpolatory condition as well, so
the proof of (3.2) is complete.

(ii) Since

ϕ̂H(x) =
1

2π

(
sin(x/2)

x/2

)2

(x ∈ R+)

belongs to L1(R+), therefore by Theorem 2.1 we obtain the statement. �
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H–1117 Budapest, Hungary
birka0@gmail.com




