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Abstract. In this article graphs mapping prime numbers into the prime
factors of their linear functions will be examined with computer programs
[9] developed by the author. The main question is what can be said about
the cycles in these graphs. First the F (p) = 2p ± 1 functions, later the
general F (p) = ap+ b functions will be analyzed.

1. Introduction

Let F (n) denote a linear function in the F (n) = an+ b form, where a ∈ N,
b ∈ Z, (a, b) = 1.

Let F k be the iterates of F , where F 1(n) = F (n) and F k(n) = F (F k−1(n)).

Let GF denote the directed graph over the prime vertices connected to the
edges in a way that each p prime node has a directed edge to the q1, . . . , qr
nodes representing the prime numbers for that F (p) = ap + b = qα1

1 · · · qαr
r .

The purpose of this article is to study these GF graphs for some predefined a
and b values and to determine their directed cycles – at least for all primes up
to a limit.

In case of a = 1, the directed cycles of GF are most probably b-dependent
finite sets.
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The a = 2, b = ±1 cases seem to be more interesting than others, because
the p, 2p± 1, 4p± 3, . . . numbers are the elements of a Cunningham chain of
the first or second kind if all the consecutive numbers are primes starting with
p. In the next Section the a = 2, b = 1 case will be analyzed first.

2. The F (p) = 2p + 1 case

2.1. First approach

To discover the cycles let us see the following algorithm as a first approach.
For an arbitrary prime p – call it a starting prime – test the primality of
pk := 2kp+ 2k − 1 starting from k = 0 until we find a composite pk. Factorize
that number, go through its factors and apply the same calculation iteratively
what was done for p. In the following, let pk+1 denote the greatest prime factor
of the iterated (composite) number. Create a directed graph in each step until
there are no new primes left to be added to the graph. As a last step, apply the
depth-first search (DFS) algorithm to detect its cycles [3]. Because of the time-
consuming factorization, primality testing and graph operations, this algorithm
can only be used as a starting point.

All graph figures in this paper were created with this approach implemented
in C++ using our own number theory library [9] and the Boost Graph Library
(BGL) [7] together with Graphviz [8], but to study greater numbers another
approach is needed.

2.2. Second approach

The second algorithm starts like the first one, but instead of creating graphs
it records only the current path and checks the recurrent elements in every step.
When there are no new primes left to be processed, every cycle including the
p starting point is discovered. This algorithm works fine, especially when any
particular number is in the focus of the study and essential for smaller numbers
that might be special cases of the generalizations below.

However, it still takes much time to find the cycles for every prime number
in a given interval using this algorithm. The bulk of the time has to be spent
on factorization and primality testing, but this can be reduced significantly.

2.3. Further improvements

The most important observation is the prerequisite to have (at least some)
strictly increasing pk prime sequences where pk is the largest prime factor of
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F (pk−1) and p0 = p, otherwise it is not possible to find any new cycles. Let
us suppose that p1 can be divided by 3, the smallest prime that can be a real
divisor of an odd number. As p1/3 = (2p+1)/3 < p for every p prime, p1 must
be prime to consider it relevant and to go on with the next iteration. The case
of p2 is quite similar, except that p2 = 4p+3 cannot be divided by 3, thus the
smallest possible divisor is 5. As (4p + 3)/5 < p for every (odd) p prime, p2
also must be prime to continue. There is a difference at p3 = 8p + 7 because
both 3 and 5 can be its divisor, and both (8p + 7)/3 > p and (8p + 7)/5 > p
if p ≥ 5. As a result, p3 does not have to be prime, it is sufficient to be the
product of a prime and 3 or 5.

To sum up, both p, 2p + 1 and 4p + 3 needs to be prime to have strictly
increasing pk numbers. Thus the set of p < P starting primes can be reduced
by the order of log(P )2 based on the Bateman-Horn conjecture [1], where P
denotes the upper limit of the interval to be checked.

This observation gives the basis of the program used to check the cycles
up to 248. To determine the reduced set of primes for which p, 2p + 1 and
4p+ 3 are primes, it is recommended to use the sieve of Eratosthenes [2] with
a modification: not only the solutions of the x ≡ 0 (mod s) congruence are
the numbers to be sieved out but also the solutions of x ≡ 2p+1 (mod s) and
x ≡ 4p + 3 (mod s) congruences, where s denotes the sieving prime. For this
special sieve, the sieving primes needs to reach

√
4P + 3 instead of

√
P . Thus

the result of the sieve will be exactly the reduced set of primes. However, this
sort of sieving takes three times longer than a usual sieve, but it reduces the
number of factorizations and primality tests to a great extent.

For the reduced set of primes the factors of 8p + 7 need to be examined
first. Fortunately, it is sufficient to check whether the number has any small
factors up to a number-specific limit. The reason behind that is if a number
has only small factors and its greatest prime factor u is greater than p, u needs
to be iterated as well. In other words, the same examination needs to be done
recursively for 2u+1 until its greatest factor will be less than or equal to p. The
smaller factors can be detached by trial divisions and after that, a deterministic
version of the Miller–Rabin primality test described in [4], see also [6] and [5]
can be used to determine if the remaining number is prime. If it is prime, it is
the greatest factor of the examining number that (and only that) needs to be
iterated further. The number-specific limit mentioned above is the minimum
of p and the greatest possible number v for that 'u/v( > p.

The cycles found with the described algorithm of strictly increasing itera-
tions is almost equivalent to the first and second variant. Let us suppose that
there is a p starting prime and the q < p prime is an element of a cycle of
p. Then, the enhanced algorithm stops when pk falls below p and may not
find q. But because q is an element of a cycle of p, there must be another
starting prime what already reached p and q. The fact that only one factor
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of the pk’s can be greater than p is taken advantage of. However, we cannot
guarantee that after some incrementation and stepping back the chain will not
increment above p2, but its probability is very low and depends on the size of
p. The bigger the p, the lower the probability, because for an l long iteration
the 2lp+ 2l − 1 > p2 inequality should be satisfied.

In the other case when p < q and q is an element of a cycle of p, the
algorithm reaches q by definition.

It is important to note that during the trial divisions it always has to be
checked whether the p starting prime is a divisor of the iterated number or not.
If so, the p is part of a cycle.

2.4. Statistics

The purpose of this paper was to collect every cycles up to 248. On the
other hand, it seems to be also interesting to create statistics on how long the
routes go above the starting primes. Because the routes need to start with
Cunningham chains of the first kind, it was evident to collect the incremented
chains and its lengths. These values can be seen on Figure 1.
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Figure 1. Number of iterations up to 248
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Length № of F iterations № of Cunningham chains
3 19 295 197 476 20 320 683 726
4 2 008 345 618 1 092 882 580
5 212 992 947 115 612 273
6 22 643 793 11 709 518
7 2 529 529 1 065 672
8 295 207 84 857
9 36 298 6 289

10 3 922 334
11 437 24
12 42 3
13 7 0

Table 1. Number of route lengths up to 248

Using the implementation of the first approach, up to 230 only two kind
of cycles have found: the cycles of 3 ([3, 7, 3], [3, 7, 5, 11, 23, 47, 19, 3] and
[3, 7, 5, 11, 23, 47, 19, 13, 3]) and the cycles of 5 ([5, 11, 23, 47, 5], [5, 11, 23,
47, 19, 3, 7, 5] and [5, 11, 23, 47, 19, 13, 3, 7, 5]). Most likely, these are the
only cycles that can be produced by the iterates of the F (p) = 2p+1 function.
As it is seen on Figure 2, the iterates of 3 and 5 form a closed subgraph.

15

39

95

27

95

15

39
11 13

23 19

47

35

7

Figure 2. The graph of the iterates of 3 and 5

The lengths of the incremented routes have been collected up to 248 and
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the maximum length is 13. The first route with that length starts with the
number 554 688 278 429.

Number Length
5 4
11 5

359 6
179 7
89 8

14 145 539 9
16 911 299 10

2 966 476 949 11
260 559 395 669 12
554 688 278 429 13

Table 2. First occurrences of the found route lengths

Number Attribute
554 688 278 429 p

1 109 376 556 859 p1
2 218 753 113 719 p2
4 437 506 227 439 p3
8 875 012 454 879 p4

17 750 024 909 759 p5
35 500 049 819 519 p6
71 000 099 639 039 p7
142 000 199 278 079 p8
284 000 398 556 159 p9
568 000 797 112 319 p10

1 136 001 594 224 639 p11
119 579 115 181 541 p12/19

Table 3. First occurrence of a 13 long route

3. The F (p) = 2p− 1 case

All the programs developed for the F (p) = 2p + 1 case can be used easily
for the F (p) = 2p− 1 case with some obvious modifications. Therefore, let us
see the results up to without further explanation.
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Here also, we have found two kinds of cycles up to 234: the cycle of 3 (3, 5,
3) and the cycle of 19 (19, 37, 73 29, 19).
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Figure 3. The graph of the iterates of 3 and 19

4. The F (p) = ap + b case

To look into the F (p) = ap + b case, some limitations need to be defined
first. The most important is that a and b have to be coprime, otherwise the
results will be dependent. For negative b the F (p) values can be negative as
well. As it is not defined how to interpret these numbers when applying on
F , it was decided to stop the iteration for the negative numbers. Then, be-
cause the computations are based on 64-bit arithmetic, every pk value needs
to be less than 264 and maybe the values greater than that limit are ignored.
The algorithm for proving the primality can be used only for numbers below
341 550 071 728 321 [5]. Above that limit, we cannot be sure whether the num-
ber is a prime or a strong pseudoprime for several bases. For these reasons,
there is a risk that the results are not absolutely precise.

The main goal was to compare the different (a, b) values by the number of
cycles. For that, the algorithm described as the first approach was used with
some experimenting of the sets of a, b and p. The first observation is that
in most cases the algorithm finds every cycle of (a, b) with smaller p starting
primes as well (p < 100). Taking this into account, the starting primes were
used in the range of 2 to 10000. In the following some cycle statistics can be
seen where a is between 0 and 100, and b is between −50 and 50.
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Figure 4. F (p) = ap+ b where b ∈ [−50..50], p ∈ [2..10000]

On Figure 4 the minimum, maximum and average number of cycles are
shown. The tendency in all three diagrams is increasing. The maximum num-
ber of cycles is found in the a = 91, b = 30 case where 80 cycles was counted.
The top ten cases with the most of cycles was studied further with starting
primes up to 1 000 000 to see whether additional cycles could be found or not.
The results are the following: at a = 98, b = 45 the 71. cycle starts with 228731
as a new cycle; at a = 100, b = −21 the 69. new cycle starts with 15647; at
a = 70, b = 33 the 69. new cycle starts with 35507, and probably there are no
new cycles.

To have a closer look on the tendency of the maximum cycle values, an
additional statistic was created with smaller starting primes where p is less
then 100, but a is between 0 and 1000, and b is in the range of −50 and 50.
The resulting diagram is on Figure 5. It is possible that not every cycle was
collected, especially for the bigger a’s, because the 264 limit can be reached in a
few steps even though the F (pk) values are composites very often what results
fallbacks. To have an overview on the number of overflows, see Figure 6. The
first overflow occurred at a = 132 (and b = 25), and 5022 overflows have been
recorded in total.

Finally, the 3-dimensional distribution of cycles can be seen in Figure 7.
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Figure 5. F (p) = ap+ b where b ∈ [−50..50], p ∈ [2..100]
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Figure 6. F (p) = ap+ b where b ∈ [−50..50], p ∈ [2..100]
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