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Abstract. It is known that for every set of interpolation nodes, there ex-
ists a continuous function for which the sequence of Lagrange interpolation
polynomials is not uniformly convergent. In the case of the Chebyshev
abscissas, G. Grünwald constructed a process that is uniformly conver-
gent for all continuous functions on the whole interval [−1, 1]. However,
M.S. Webster showed that for the roots of the Chebyshev polynomials of
the second kind, the analogous construction is uniformly convergent only
in closed subintervals of (−1, 1). Our aim is to improve this result by us-
ing weighted Lagrange interpolation. We shall prove that the weighted
Grünwald–Rogosinski process is uniformly convergent on the whole inter-
val [−1, 1] in suitable weighted function spaces. Order of convergence will
also be investigated.

1. Introduction

In 1914, G. Faber [1] proved the following fundamental result (see also e.g.
[15]): For any fixed interpolation matrix

X = {xk,n | k = 1, 2, . . . , n; n = 1, 2, . . .} ⊂ R
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there exists a continuous function f for which the sequence of Lagrange interpo-
lation polynomials Ln(f,X, ·) (n ∈ N = {1, 2, . . .}) is not uniformly convergent.
In 1935 and 1936, for the Chebyshev matrix

T =
{
xk,n = cos

2k − 1

2n
π

∣∣∣ k = 1, 2, . . . , n; n = 1, 2, . . .
}

(where the order of the Lebesgue function is the smallest possible) G. Grünwald
[2], [3] and J. Marcinkiewicz [5], [6] proved the following theorem: there exists
a continuous function f such that the sequence Ln(f, T, x) (n ∈ N) is divergent
for all points x of the interval [−1, 1]. (See the survey paper [12].)

Therefore the following result, which was proved by G. Grünwald [4] in
1941, is interesting.

Theorem A. Let f be a continuous function on [−1, 1]. Then

(1.1)
lim

n→∞
1
2 {Ln [f, T, θ − ϕn] + Ln [f, T, θ + ϕn]} = f(x),

x = cos θ ∈ [−1, 1],

and the convergence is uniform on the whole interval [−1, 1]. Here Ln[f, T, θ]
denotes the Lagrange interpolation polynomial Ln(f, T, x) after the substitution
x = cos θ and ϕn = π

2n (n = 1, 2, . . .).

It is known that between the interpolation polynomials Ln(f, T, ·) (n ∈ N)
and the partial sums of the trigonometric Fourier series of the even function f
there is a far reaching analogy. Moreover the above theorem of G. Grünwald
is analogous with the well known theorem of Rogosinski in the theory of
the trigonometric Fourier series. The process (1.1) will be called Grünwald–
Rogosinski process.

In 1943, M.S. Webster [19] obtained a similar result for the roots of the
Chebyshev polynomials of the second kind, i.e. when the interpolation matrix
is given by

(1.2) U =
{
xk,n = cos

k

n+ 1
π

∣∣∣ k = 1, 2, . . . , n; n = 1, 2, . . .
}
.

He proved the following result.

Theorem B. Let f be a continuous function on [−1, 1] and ϕn = π
2(n+1)

(n = 1, 2, . . .). Then

(1.3)
lim

n→∞
1
2 {Ln [f, U, θ − ϕn] + Ln [f, U, θ + ϕn]} = f(x),

x = cos θ ∈ (−1, 1),
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and the convergence is uniform only on any interval [a, b] ⊂ (−1, 1). In general,
convergence does not hold for x = 1 or x = −1. In addition, ϕn may be replaced
by pπ/2(n+ 1), where p is any fixed odd integer.

In 1975, P. Vértesi [16] generalized Webster’s result for the roots of Jacobi

polynomials P
(α,β)
n with arbitrary parameters α, β > −1.

The aim of this paper is to improve Webster’s result. We shall consider
the point system (1.2) and modify the process (1.3) by using the weighted La-
grange interpolation polynomials (see (2.4)). We shall prove that the weighted
Grünwald–Rogosinski process (2.6) is uniformly convergent on the whole inter-
val [−1, 1] in suitable weighted spaces Cwγ

(see (2.1)). Order of convergence
will also be investigated.

2. Result

Let C(I) be the linear space of real valued continuous functions defined on
the interval I ⊂ R. For a parameter γ ≥ 0 we consider the Jacobi weight

wγ(x) := (1− x2)γ
(
x ∈ [−1, 1]

)
,

and define the weighted function space

(2.1) Cwγ :=
{
f ∈ C(−1, 1) : lim

|x|→1
(fwγ)(x) = 0

}
if γ > 0. If γ = 0 (i.e. wγ ≡ 1) then let Cwγ = C[−1, 1].

Then ∥∥f∥∥
wγ

:=
∥∥fwγ

∥∥
∞ := max

x∈[−1,1]

∣∣(fwγ)(x)
∣∣ (

f ∈ Cwγ

)
is a norm on Cwγ and

(
Cwγ , ‖ · ‖wγ

)
is a Banach space.

Let us consider the Chebyshev polynomials of the second kind:

(2.2)
Un(x) =

sin(n+ 1)θ

sin θ
,

x = cos θ, x ∈ [−1, 1], θ ∈ [0, π], n = 0, 1, 2, . . . .

They are orthogonal on the interval [−1, 1] with respect to the weight w1/2(x) =

=
√
1− x2 (x ∈ [−1, 1]). The roots of Un (n = 1, 2, . . .) are

(2.3) xk,n = cos θk,n = cos
k

n+ 1
π (k = 1, 2, . . . , n).
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The weighted Lagrange interpolation polynomials of a function f ∈ Cwγ
on

the point system (2.3) are defined by

(2.4)
Ln

(
f, U,wγ , x

)
:= wγ(x)

n∑
k=1

f(xk,n)�k,n(U, x)(
x ∈ [−1, 1], n = 1, 2, . . .),

where

(2.5)
�k,n(x) := �k,n(U, x) =

Un(x)

U ′
n(xk,n)(x− xk,n)(

x ∈ [−1, 1]; k = 1, 2, . . . , n; n = 1, 2, . . .
)

are the Lagrange fundamental polynomials. It is clear that

Ln

(
f, U,wγ , xj,n

)
= wγ

(
xj,n

)
f
(
xj,n

)(
j = 1, 2, . . . , n; n = 1, 2, . . .

)
.

Let
ϕn :=

π

2(n+ 1)
(n = 1, 2, . . .)

and for a given cos θ = x ∈ [−1, 1] and n ∈ N we define

x+ := cos θ+ := cos (θ + ϕn) = x cosϕn −
√
1− x2 sinϕn,

x− := cos θ− := cos (θ − ϕn) = x cosϕn +
√
1− x2 sinϕn.

For the point system (2.3) the weighted Grünwald–Rogosinski process will
be defined by

(2.6)
(Anf)(x) := An(f, U,wγ , x) :=

1
2 {Ln(f, U,wγ , x+) + Ln(f, U,wγ , x−)}

(n ∈ N, x ∈ [−1, 1], f ∈ Cwγ
).

Recall that the number

En(f, wγ) := inf
p∈Pn

‖(f − p)wγ‖∞ (n ∈ N)

is called the best nth degree weighted polynomial approximation of the function
f ∈ Cwγ , where Pn denotes the linear space of algebraic polynomials of degree
at most n. It is known that

lim
n→∞En(f, wγ) = 0,
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i.e. the set of the weighted polynomials wγp (p is an arbitrary algebraic poly-
nomial) is dense in the Banach space

(
Cwγ

, ‖ · ‖wγ

)
(see e.g. [14, Section 3]).

For a function f ∈ C[−1, 1] the second order modulus of smoothness is
defined by

ω2(f, t) := sup
0<h≤t

‖Δh(f, ·)‖∞ (t > 0),

where

Δh(f, x) = f(x+ h) + f(x− h)− 2f(x) (x ∈ [−1 + h, 1− h]).

Theorem. The weighted Grünwald–Rogosinski process (2.6) is uniformly con-
vergent in the function space Cwγ

, i.e.

(2.7) lim
n→∞ |An(f, U,wγ , x)− (fwγ)(x)| = 0

holds uniformly on the whole interval [−1, 1] for every function f ∈ Cwγ if and
only if the parameter γ satisfies the relation

(2.8)
1

2
≤ γ ≤ 2.

For the order of convergence we have

(2.9)
|An(f, U,wγ , x)− (fwγ)(x)| = O(1)

(
En−1(f, wγ) + ω2(fwγ , ϕn)

)
(x ∈ [−1, 1], n ∈ N, f ∈ Cwγ ).

Remarks. 1. From the proof of Theorem it follows that the process (2.6)
is uniformly convergent on arbitrary closed interval [a, b] ⊂ (−1, 1) for every
parameter γ ≥ 0. If γ = 0 then we obtain Webster’s result (see Theorem B),
also Vértesi’s result for Jacobi parameters α = β = 1/2.

2. From a general summation theorem Zs. Németh [8, Theorem 3.2] ob-
tained the uniform convergence of the process (2.6) on the whole interval [−1, 1],
but only for parameter γ = 1/2.

3. There is an other possibility to achieve the uniform convergence of the
Grünwald–Rogosinski process on the whole interval [−1, 1]. This is the so-called
additional nodes method (see e.g. [7, 4.2.2] and [9]). L. Szili [11, 7.3] proved
the following statement: If to the point system (2.3) we add the endpoints ±1,
then the (unweighted) Grünwald–Rogosinski process is uniformly convergent
on [−1, 1] for every continuous function f ∈ C[−1, 1].

4. L. Szili and P. Vértesi defined the weighted Grünwald–Rogosinski process
in another way, using suitable summation of Lagrange interpolation (see [13,
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Example 7, p. 328]). In [14, Corollary 3.4 (d)] they obtained that that process
on the point system (1.2) is uniformly convergent in Cwγ

if (cf. (2.8))

(2.10) 0 < γ < 2.

3. A Lemma

It is clear that for all fixed n ∈ N (see (2.6))

An :
(
Cwγ

, ‖ · ‖wγ

)
→

(
C[−1, 1], ‖ · ‖∞

)
is a bounded linear operator and its norm is defined by

‖An‖ := sup
{
‖Anf‖∞ : ‖f‖wγ

≤ 1
}
.

Lemma. There exists a constant c > 0 independent of n such that

‖An‖ ≤ c (n ∈ N)

if and only if the weight parameter γ satisfies (2.8).

Remark. It is interesting to compare the operator norms ‖An‖ (n ∈ N) with
the norms of the weighted Lagrange interpolation operators (they are also called
the weighted Lebesgue constants) on the roots of the Chebyshev polynomials of
the second kind. It is known that (see [7, p. 271]) they are given by

∥∥Ln(wγ)
∥∥ = max

x∈[−1,1]

n∑
k=1

wγ(x)

wγ(xk,n)

∣∣�k,n(x)∣∣ (
n ∈ N, γ ≥ 0

)
.

G. Szegő’s classical result states that (see [7, Theorem 4.2.1] and [10, Theo-
rem 14.4]) in the unweighted case (i.e. when γ = 0)

∥∥Ln(w0)
∥∥ ∼ n (n ∈ N),

where the constants in ”∼”∗ are independent of n. G. Faber [1] proved that for
any interpolation matrix X the order of the Lebesgue constants is at least log n.
P. Vértesi [17] showed the analogous result for weighted Lagrange interpolation
for arbitrary Jacobi weights. It is also known that (see [7, Theorem 4.3.1]) on
the point system U (see (1.2)) this optimal order can be attained if and only
if the Jacobi parameter γ satisfies the conditions (cf. (2.8))

(3.1)
1

2
≤ γ ≤ 3

2
.

∗an ∼ bn means that c1 ≤ an/bn ≤ c2 (n ∈ N), where 0 < c1 ≤ c2.
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Proof. We prove the Lemma in several steps.

Step 1. First we write the norm of the operator An in trigonometric form.
Since the weighted Grünwald–Rogosinski process (2.6) can be written as

(Anf)(x) =

n∑
k=1

f
(
xk,n

) (wγ�k,n)(x−) + (wγ�k,n)(x+)

2
=

=
n∑

k=1

(fwγ) (xk,n

) (wγ�k,n)(x−) + (wγ�k,n)(x+)

2wγ(xk,n)
=:

=:
n∑

k=1

(fwγ) (xk,n)Sk,n(x)

(
x ∈ [−1, 1]; k = 1, 2, . . . , n; n ∈ N; f ∈ Cwγ

)
,

(3.2)

thus the norm of the operator An is given by

‖An‖ = max
x∈[−1,1]

n∑
k=1

|Sk,n(x)| .

If x = cos θ ∈ [−1, 1] then

wγ(x) = (1− x2)γ = sin2γ θ.

By (2.2) and (2.5)

U ′
n(xk,n) = (−1)k+1 n+ 1

1− x2
k,n

= (−1)k+1 n+ 1

sin2 θk,n
,

�k,n(x) = (−1)k+1 sin2 θk,n
n+ 1

· sin(n+ 1)θ

sin θ(cos θ − cos θk,n)
,

(wγ�k,n) (x) = (−1)k+1 sin2 θk,n
n+ 1

· sin2γ−1 θ · sin(n+ 1)θ

cos θ − cos θk,n
,

thus we get

Sk,n(x) =
(−1)k+1

2(n+ 1)
· sin2−2γ θk,n·

·
(
sin2γ−1 θ+ sin(n+ 1)θ+

cos θ+ − cos θk,n
+

sin2γ−1 θ− sin(n+ 1)θ−
cos θ− − cos θk,n

)
.

Since

sin(n+ 1)θ± = sin[(n+ 1)(θ ± π
2(n+1) )] = ± cos(n+ 1)θ
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thus using the notation

K(θ) := Kγ(θ) := sin2γ−1 θ
(
θ ∈ (0, π)

)
the above form of Sk,n(x) may be simplified as

Sk,n(x) =
(−1)k+1

2(n+ 1)
sin2−2γ θk,n · cos (n+ 1)θ ·

·
( K(θ+)

cos θ+ − cos θk,n
− K(θ−)

cos θ− − cos θk,n

)
.

Finally we get

(3.3) ‖An‖ = max
x∈[−1,1]

n∑
k=1

|Sk,n(x)| =

= max
θ∈[0,π]

| cos(n+ 1)θ|
2(n+ 1)

n∑
k=1

sin2−2γ θk,n

∣∣∣ K(θ+)

cos θ+ − cos θk,n
− K(θ−)

cos θ− − cos θk,n

∣∣∣.
Step 2. Since the functions K(θ±)/(cos θ± − cos θk,n) are defined only for

θ± 	= θk,n (i.e. θ 	= θk,n ± ϕn) therefore we have to split the sum in (3.3) into
two parts. For this purpose, let us introduce the following notation.

For a fixed point θ of the interval [0, π] let us denote by θj,n (one of) the
closest node(s) to θ, i.e.

(3.4) min
1≤k≤n

∣∣θ − θk,n
∣∣ = ∣∣θ − θj,n

∣∣.
Moreover let

n∑
k=1

|Sk,n(x)| =
∑

k=j−1,j,j+1

|Sk,n(x)|+
∑

1≤k≤n

k 
=j−1,j,j+1

|Sk,n(x)| =:

=:
∑

I
+

∑
II

.

(3.5)

Since

(3.6) |�k,n(x)| < 2 (−1 ≤ x ≤ 1; k = 1, 2, . . . , n; n = 1, 2, . . .),

(see [18]) thus we have

(3.7)

∑
k=j−1,j,j+1

|Sk,n(x)| =
∑

k=j−1,j,j+1

∣∣∣ (wγ�k,n)(x−) + (wγ�k,n)(x+)

2wγ(xk,n)

∣∣∣ ≤ c

(
x ∈ [−1, 1], n ∈ N, γ ≥ 0

)
.



On the weighted Grünwald–Rogosinski process 171

Step 3. For the estimation of
∑

II in (3.5) we introduce the functions: if
θ ∈ [0, π] and θ± 	= θk,n (i.e. θ 	= θk,n ± ϕn) then for k = 1, 2, . . . , n and n ∈ N
let

(3.8) Fk,n(θ) :=
K(θ+)

cos θ+ − cos θk,n
− K(θ−)

cos θ− − cos θk,n
.

Then by (3.3) and (3.5) we have for θ ∈ [0, π] and n ∈ N∑
II
≤ c

n

∑
1≤k≤n

k 
=j−1,j,j+1

sin2−2γ θk,n|Fk,n(θ)|.

Using that θ± = θ ± ϕn we get

K(θ+)
(
cos θ− − cos θk,n

)
−K(θ−)

(
cos θ+ − cos θk,n

)
=

= −
[
K(θ+)−K(θ−)

]
cos θk,n +K(θ+) cos θ− −K(θ−) cos θ+ =

= −
[
K(θ+)−K(θ−)

]
cos θk,n +K(θ+)

(
cos θ cosϕn + sin θ sinϕn

)
−

−K(θ−)
(
cos θ cosϕn − sin θ sinϕn

)
=

= 1
2

[
K(θ+)−K(θ−)

](
cos θ+ − cos θk,n + cos θ− − cos θk,n

)
+

+
[
K(θ+) +K(θ−)

]
sin θ sinϕn.

Since

(3.9) |K(θ+)−K(θ−)| = 2ϕn|K ′(θ∗)| ≤ c

n
sin2γ−2(θ∗),

where θ∗ ∈
(
θ−, θ+

)
thus we have

(3.10)

∣∣Fk,n(θ)
∣∣ ≤ c

n
sin2γ−2 θ∗

(
1

| cos θ+ − cos θk,n|
+

1

| cos θ− − cos θk,n|

)
+

+
c

n

|K(θ+) +K(θ−)| sin θ
| cos θ+ − cos θk,n| · | cos θ− − cos θk,n|

.

If θ 	= θk,n ± ϕn then let

Gk,n(θ) :=
1

n2

(
sin θk,n
sin θ∗

)2−2γ (
1

| cos θ+ − cos θk,n|
+

1

| cos θ− − cos θk,n|

)
,

Hk,n(θ) :=
sin2−2γ θk,n

n2

|K(θ+) +K(θ−)| sin θ
| cos θ+ − cos θk,n| · | cos θ− − cos θk,n|

,

Mn(θ) :=
∑

1≤k≤n

k 
=j−1,j,j+1

(
Gk,n(θ) +Hk,n(θ)

)
.
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By (3.10) we get

(3.11)
∑

1≤k≤n

k 
=j−1,j,j+1

|Sk,n(x)| ≤ c
∑

1≤k≤n

k 
=j−1,j,j+1

(
Gk,n(θ) +Hk,n(θ)

)
= cMn(θ).

For the proof of the Lemma we have to show that the functions Mn(θ)
(θ ∈ [0, π], n ∈ N) are uniformly bounded if and only if γ satisfies (2.8).

Step 4. Now we prove that if 1
2 ≤ γ ≤ 2 then there exists a constant c > 0

independent of n such that

(3.12) Mn(θ) ≤ c
(
θ ∈ [0, π], n ∈ N

)
.

We will distinguish three cases.

Case 1. Let θ ∈ ( c
n ,

π
2 ] with a positive fixed constant c. In this case for the

index j = j(n) defined by (3.4) we have 1 ≤ j ≤ [Cn] with a constant C > 0.

In order to estimate the sum in (3.11), we split it into four parts:

(3.13)
∑

1≤k≤n
k 
=j−1,j,j+1

=
∑

1≤k≤j/2

+
∑

j/2<k≤2j
k 
=j−1,j,j+1

+
∑

2j<k≤[cn]

+
∑

[cn]<k≤n

,

where c ∈ (0, 1) is independent of n ∈ N such that θk,n ∈ [0, 3π
4 ], if 1 ≤ k ≤ [cn].

For 1 ≤ k ≤ [cn] and n ∈ N we use the following estimations:

sin θk,n ∼
k

n
,

sin θ, sin θ±, sin θ∗ ∼ j

n
,

| cos θ± − cos θk,n| ∼
|j2 − k2|

n2
.

So we have

∑
1≤k≤j/2

Gk,n(θ) ∼
∑

1≤k≤j/2

(
k

j

)2−2γ
1

|j2 − k2| ∼

∼ j2γ−4
∑

1≤k≤j/2

(
1

k

)2γ−2

∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log j

j
, if 2γ − 2 = 1,

j2γ−4, if 2γ − 2 > 1,

j−1, if 2γ − 2 < 1,

where we used that j ± k ∼ j. Moreover,
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∑
1≤k≤j/2

Hk,n(θ) ∼
∑

1≤k≤j/2

(
j

k

)2γ (
k

j2 − k2

)2

∼

∼ j2γ−4
∑

1≤k≤j/2

(
1

k

)2γ−2

∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log j

j
, if 2γ − 2 = 1,

j2γ−4, if 2γ − 2 > 1,

j−1, if 2γ − 2 < 1.

This means that these sums are bounded independently from j and n if
γ ≤ 2.

For the second part of (3.13) we use that k ∼ j, j + k ∼ j. Then for every
j and n we have

∑
j/2<k≤2j

k 
=j−1,j,j+1

Gk,n(θ) ∼
∑

j/2<k≤2j
k 
=j−1,j,j+1

(
k

j

)2−2γ
1

|j2 − k2| ∼

∼ 1

j

∑
j/2<k≤2j

k 
=j−1,j,j+1

1

|j − k| ≤ C
log j

j
≤ C

and ∑
j/2<k≤2j

k 
=j−1,j,j+1

Hk,n(θ) ∼
∑

j/2<k≤2j
k 
=j−1,j,j+1

(
j

k

)2γ (
k

j2 − k2

)2

∼

∼
∑

j/2<k≤2j
k 
=j−1,j,j+1

1

(j − k)2
≤ C,

which means that this part is uniformly bounded for every parameter γ ≥ 0.

For the third part using k
k−j ≤ 2, j

k < 1, j + k > k we obtain that

∑
2j<k≤[cn]

Gk,n(θ) ∼
∑

2j<k≤[cn]

(
k

j

)2−2γ
1

|j2 − k2| ≤

≤ Cj2γ−2
∑

2j<k≤[cn]

(
1

k

)2γ

∼

⎧⎪⎪⎨⎪⎪⎩
1

j
log

n

j
, if 2γ = 1,

1

n

(
j

n

)2γ−2

+
1

j
, if 2γ 	= 1,
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which is uniformly bounded for every j and n if γ > 1
2 . However, if γ = 1

2 then
K(θ) = 1 (θ ∈ [0, π]), which means that (see Step 3)

∑
1≤k≤n

k 
=j−1,j,j+1

|Sk,n(x)| ≤ c
∑

1≤k≤n
k 
=j−1,j,j+1

Hk,n(θ),

so the above sum does not need to be bounded in this case.

Moreover

∑
2j<k≤[cn]

Hk,n(θ) ∼
∑

2j<k≤[cn]

(
j

k

)2γ (
k

j2 − k2

)2

≤

≤ C
∑

2j<k≤[cn]

1

k2
≤ C,

which means that this is uniformly bounded for every parameter γ ≥ 0.

If [cn] < k ≤ n and n ∈ N then we use the following estimations:

sin θk,n ∼
n+ 1− k

n
,

sin θ, sin θ±, sin θ∗ ∼ j

n
,

| cos θ± − cos θk,n| ≥ c.

So we have

∑
[cn]<k≤n

Gk,n(θ) ∼
∑

[cn]<k≤n

j2γ−2

n2
(n+ 1− k)2−2γ ∼

∼ j2γ−2

n2

n−[cn]∑
l=1

(
1

l

)2γ−2

∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

j log n

n2
, if 2γ − 2 = 1,

j2γ−2

n2
, if 2γ − 2 > 1,

j2γ−2

n2γ−1
, if 2γ − 2 < 1,

which is bounded independently from j and n if 1
2 ≤ γ ≤ 2.
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On the other hand,∑
[cn]<k≤n

Hk,n(θ) ∼
∑

[cn]<k≤n

j2γ

n4
(n+ 1− k)2−2γ ∼

∼ j2γ

n4

n−[cn]∑
l=1

(
1

l

)2γ−2

∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

j3 log n

n4
, if 2γ − 2 = 1,

j2γ

n4
, if 2γ − 2 > 1,

j2γ

n2γ+1
, if 2γ − 2 < 1.

This is bounded independently from j and n if γ ≤ 2.

Collecting the above formulas we have (3.12) for θ ∈ ( c
n ,

π
2 ] and n ∈ N.

Case 2. Let θ ∈ [0, c
n ] and x = cos θ. If 1 ≤ k ≤ [cn] then by (3.2) and (3.6)

we get

|Sk,n(x)| ≤ C
|wγ(x−)|+ |wγ(x+)|

wγ(xk,n)
= C

(sin2 θ−)γ + (sin2 θ+)
γ

sin2γ θk,n
≤

≤ C

(
1

n

)2γ (n
k

)2γ

= C

(
1

k

)2γ

,

and if [cn] < k ≤ n then (similarly)

|Sk,n(x)| ≤ C

(
1

n+ 1− k

)2γ

.

So we have

n∑
k=1

|Sk,n(x)| ≤ C

⎛⎝ [cn]∑
k=1

(
1

k

)2γ

+

n−[cn]∑
l=1

(
1

l

)2γ
⎞⎠ .

This is bounded in x and n ∈ N if γ > 1
2 .

On the other hand, when γ = 1
2 , k = 1, 2, . . . , [cn] and k 	= j − 1, j, j + 1

then we have

|Sk,n(x)| =
sin θk,n
2(n+ 1)

∣∣∣∣∣ sin(n+ 1)θ+
cos θ+ − cos θk,n

+
sin(n+ 1)θ−

cos θ− − cos θk,n

∣∣∣∣∣ =
=

sin θk,n
n+ 1

sinϕn

∣∣∣∣∣ sin θ · cos(n+ 1)θ(
cos θ+ − cos θk,n

)(
cos θ− − cos θk,n

) ∣∣∣∣∣ ≤ c
1

k3
,
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where we used that

sin θ ≤ c

n
, sin θk,n ∼

k

n
, sinϕn ∼

1

n
and | cos θ± − cos θk,n| ∼

k2

n2
.

If [cn] ≤ k ≤ n then using that sin θk,n ∼ n+1−k
n and | cos θ± − cos θk| ≥ c we

similarly get

|Sk,n(x)| ≤ c
n+ 1− k

n4
.

Consequently we obtain that

∑
1≤k≤n

k 
=j−1,j,j+1

|Sk,n(x)| ≤ C

⎛⎝ [cn]∑
k=1

(
1

k

)3

+

n∑
k=[cn]+1

n+ 1− k

n4

⎞⎠ ,

which is uniformly bounded.

Thus we proved (3.12) in Case 2.

Case 3. Let θ ∈
(
π
2 , π

]
and θ′ := π − θ. Then with the notations

wγ [θ] := wγ(cos θ), �k,n[θ] := �k,n(cos θ) Sk,n[θ] := Sk,n(cos θ)

we have

wγ [θ + ϕn] = wγ [θ
′ − ϕn], wγ [θ − ϕn] = wγ [θ

′ + ϕn],

and

lk,n[θ + ϕn] = ln+1−k,n[θ
′ − ϕn], lk,n[θ − ϕn] = ln+1−k,n[θ

′ + ϕn],

which means that Sn+1−k,n[θ
′] = Sk,n[θ]. So we have

n∑
k=1

|Sk,n[θ]| =
n∑

k=1

|Sn+1−k,n[θ
′]| =

n∑
l=1

|Sl,n[θ
′]|,

which is uniformly bounded if 1
2 ≤ γ ≤ 2, as we have shown before.

Thus (3.12) is completely proved.

Step 5. To prove that the conditions for the parameter γ are also necessary,
first let us assume that γ < 1

2 , and for the point θ = 0 we have

n∑
k=1

|Sk[0]| ≥
[cn]∑
k=1

|Sk[0]| =
1

n+ 1

[cn]∑
k=1

sin2−2γ θk,n sin
2γ−1 ϕn

| cosϕn − cos θk,n|
∼
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∼ 1

n

[cn]∑
k=1

(
k

n

)2−2γ (
1

n

)2γ−1
n2

k2
=

[cn]∑
k=1

(
1

k

)2γ

,

which is not uniformly bounded in n ∈ N.

Now, if γ > 2, we consider the point θ = π
2 :

n∑
k=1

|Sk

[
π
2

]
| ≥

[cn]∑
k=1

|Sk

[
π
2

]
| =

=
| cos (n+ 1)π2 || cos2γ−1 ϕn|

n+ 1

[cn]∑
k=1

sin2−2γ θk,n sinϕn

| cos2 θk,n − sin2 ϕn|
∼

∼
| cos (n+ 1)π2 |

n2

[cn]∑
k=1

(
k

n

)2−2γ
n2

n2 − (k2 + 1)
≥

≥ | cos (n+ 1)π2 |n
2γ−4

[cn]∑
k=1

(
1

k

)2γ−2

,

which is also not uniformly bounded in n ∈ N.

Thus the Lemma is completely proved. �

4. Proof of the Theorem

Since the operator norms ‖An‖ (n ∈ N) are not uniformly bounded if 0 ≤
γ < 1/2 or γ > 2 thus by the Banach–Steinhaus theorem we obtain that the
limit relation (2.7) is not true for every function f ∈ Cwγ .

Now, let 1/2 ≤ γ ≤ 2. For the proof of (2.7) let us denote by Pn ∈ Pn the
best weighted approximating polynomial of f of order at most n, that is

En(f, wγ) = ‖fwγ − Pnwγ‖∞ .

Then we have ∣∣An(f, wγ , x)− (fwγ)(x)
∣∣ =

=
∣∣An(f, wγ , x)− 1

2 {(Pn−1wγ)(x+) + (Pn−1wγ)(x−)}+
+ 1

2 {(Pn−1wγ)(x+)− (fwγ)(x+) + (Pn−1wγ)(x−)− (fwγ)(x−)}+
+ 1

2 {(fwγ)(x+)− 2(fwγ)(x) + (fwγ)(x−)}
∣∣ =

= O(1) (An(f − Pn−1, wγ , x) + En−1(f, wγ) + ω2(fwγ , ϕn)) =

= O(1) (En−1(f, wγ) + ω2(fwγ , ϕn)) ,

which proves (2.7). �
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