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Abstract. Several 2-adic cosine and sine functions are constructed on
the 2-adic field expressed by the S̃-valued exponential functions and the
characters vn of the 2-adic additive group. Then follows the construction

of some analogies of the Chebyshev polynomials on the 2-adic field (I,
•
+, •)

using these cosine and sine functions. Orthogonality of these Chebyshev
polynomials is also investigated.

1. Introduction

Chebyshev polynomials are important for example in approximation theory
(the resulting interpolation polynomial provides an approximation that is close
to the polynomial of best approximation to a continuous function under the
maximum norm), and other fields of applications. In classical analysis the
Chebyshev polynomials of the first and second kind can be expressed through
the identities

Tn(x) = cos(n arccosx), Un(x) =
sin [(n+ 1) arccosx]

sin(arccosx)
(x ∈ [−1, 1], n ≥ 0),
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where the cosine and sine functions can be given by means of the exponential

function: cosx = eix+e−ix

2 and sinx = eix−e−ix

2i . Each of the Chebyshev poly-
nomials of the first and second kind form an orthogonal system with respect
to the weight function (1− x2)−1/2 and (1− x2)1/2, respectively.

In this work we will construct some analogies of the Chebyshev polynomials

on the 2-adic field (I,
•
+, •) using several kinds of 2-adic cosine and sine func-

tions. We present two opportunities to construct 2-adic trigonometric functions
expressed by the additive characters (vn, n ∈ N) or by the S̃-valued exponential
functions, which is in connection with the multiplicative characters. In this way
we will obtain first two dyadic martingale structure preserving transformations
of (vn, n ∈ N), which will yield a UDMD-product system, thus complete and
orthonormal. Then follows two further types of Chebyshev polynomials, which
will also fulfil orthogonality.

The algebraic structure is presented in details in [5] and [4]. Denote by
A := {0, 1} the set of bits and by

B := {a = (aj , j ∈ Z) | aj ∈ A and lim
j→−∞

aj = 0}

the set of bytes. Special bytes are θ := (0, 0, · · · ), e := (δn0, n ∈ Z), and for
k ∈ Z let ek := (δnk, n ∈ Z) where δnk is the Kronecker-symbol. The order of
a byte x ∈ B \ {θ} is π(x) := min{n ∈ N | xn = 1}, and set π(θ) := +∞. The
norm of a byte x is defined by ‖x‖ := 2−π(x) for x ∈ B \ {θ}, and ‖θ‖ := 0.
By an interval in B of rank n ∈ Z and center a ∈ B we mean a set of the form
In(a) = {x ∈ B | xj = aj for j < n}. Set In := In(θ) (n ∈ Z), I := I0, and
S := {x ∈ I | x0 = 1}.

The 2-adic field (B,
•
+, •) is given by the following operations. The 2-adic

(or arithmetical) sum a
•
+ b of elements a = (an, n ∈ Z), b = (bn, n ∈ Z) ∈ B is

defined by a
•
+ b := (sn, n ∈ Z) where the bits qn, sn ∈ A (n ∈ Z) are obtained

recursively as follows:

qn = sn = 0 for n < m := min{π(a), π(b)},
and an + bn + qn−1 = 2qn + sn for n ≥ m.

The 2-adic (or arithmetical) product of a, b ∈ B is a • b := (pn, n ∈ Z),
where the sequences qn ∈ N and pn ∈ A (n ∈ Z) are defined recursively by

qn = pn = 0 (n < m := π(a) + π(b))

and
∞∑

j=−∞
ajbn−j + qn−1 = 2qn + pn (n ≥ m).
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The reflection x− of a byte x = (xj , j ∈ Z) is defined by:

(x−)j :=

{
xj , for j � π(x)

1− xj , for j > π(x).

We will use the following notation: a
•
− b := a

•
+ b−.

Definition 1. For x ∈ I and n ∈ N∗ define n · x := x
•
+ x

•
+ . . .

•
+ x︸ ︷︷ ︸

n times

and let

0 · x := θ.

Note, that 2 · x = x
•
+ x = e1 • x (x ∈ I) and 2n · x = en • x (x ∈ I, n ∈ N).

Recall, that multiplication by ek shifts bytes: (ek • x)l = xl−k (k, l ∈ Z).
For n ∈ N with dyadic expansion n =

∑∞
j=0 nj2

j the reversal of n is n̂ =

=
∑∞

j=0 nj2
−j−1. The reversal map is a bijection from N onto Q ∩ [0, 1] with

Q := {p2m | p,m ∈ Z}. Consider the Rademacher system (rn, n ∈ N) with

rn(x) := (−1)xn (x ∈ I). Consider the Haar-measure μ on the field (I,
•
+, •).

The concept of UDMD systems is due to F. Schipp. (See [4] and [5].)
Denote with A the σ-algebra generated by the intervals In(a) (a ∈ I, n ∈ N).
I,A, and the restriction of μ on I gives a probability measure space (I,A, μ).
Let An be the sub-σ-algebra of A generated by the intervals In(a) (a ∈ I).
Let L(An) denote the set of An-measurable functions on I. The conditional
expectation of an f ∈ L1(I) with respect to An is of the form

(Enf)(x) :=
1

μ(In(x))

∫
In(x)

fdμ (x ∈ I).

A sequence of functions (fn, n ∈ N) is called a dyadic martingale if each fn is
An-measurable and Enfn+1 = fn (n ∈ N). The sequence of martingale diffe-
rences of (fn, n ∈ N) is the sequence φn := fn+1 − fn (n ∈ N). The martingale
difference sequence (φn, n ∈ N) is called a unitary dyadic martingale difference
sequence or a UDMD sequence, if |φn(x)| = 1 (n ∈ N). According to Schipp
[4], (φn, n ∈ N) is a UDMD sequence if and only if

(1) φn = rngn, gn ∈ L(An), |gn| = 1 (n ∈ N).

A system ψ = (ψm,m ∈ N) is called a UDMD product system if it is a
product system generated by a UDMD system, i.e., there is a UDMD sys-
tem (φn, n ∈ N) such that for each m ∈ N, whose binary expansion is given by
m =

∑∞
j=0 mj2

j (mj ∈ A), the function ψm satisfies ψm =
∏∞

j=0 φ
mj

j (m ∈ N).

We consider ε(t) = exp(2πit) (t ∈ R). The character set of the group (I,
•
+)

is the product system (vm,m ∈ N) generated by the functions

v2n(x) = ε
(xn

2
+

xn−1

22
+ · · ·+ x0

2n+1

)
(x ∈ I, n ∈ N),
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that is, vm(x) =
∏∞

j=0(v2j (x))
mj (m ∈ N). It is well-known, that (vn, n ∈ N)

is a UDMD-product system on I.

The notion of DMSP-functions and some properties of compositions with
them were presented by the author in I. Simon[8].

Definition 2. We call a function B : I → I a dyadic martingale structure
preserving function or shortly a DMSP-function if it is generated by a system
of bijections (ϑn, n ∈ N), ϑn : A → A, and an arbitrary system (ηn, n ∈
∈ N∗), ηn : An → A in the following way:

(B(x))0 := ϑ0(x0),

(B(x))n := ϑn(xn) + ηn(x0, x1, . . . , xn−1) ( mod 2) (n ∈ N∗).

We will refer to some restrictions of DMSP-functions on dyadic intervals
also as DMSP-functions, as they fulfil the same properties. We will use the
following properties:

(i) For each bijection system (ϑn, n ∈ N) and arbitrary system (ηn, n ∈
∈ N∗), the generated DMSP-function B is a bijection on I and its inverse
function, B−1 is also a DMSP-function.

(ii) Let B : I→ I be a DMSP-transformation. The function system (fn, n ∈
∈ N) is a UDMD system on I, if and only if (fn ◦ B, n ∈ N) is a UDMD
system on I.

(iii) DMSP-transformations are measure-preserving.

(iv) Let (Bn : I → I, n ∈ N) be a system of DMSP-transformations. The
function system (fn, n ∈ N) is a UDMD system on I, if and only if
(fn ◦Bn, n ∈ N) is a UDMD system on I.

(v) The composition of DMSP-functions is also a DMSP-function.

The first three properties were proved in [8]. (iv) can be shown in the same
way as (ii). (v) is trivial.

The S̃-valued exponential function on I: A 2-adic exponential function
is presented in Schipp–Wade [5], pp. 59-60. We will use now a similar one

determined by a slightly different base, starting from b1 = e
•
+ e2 instead of

e
•
+ e1. We consider first the following base:

Definition 3. Let b1 := e
•
+ e2, bn := bn−1 • bn−1 (n ≥ 2).
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Definition 4. Let S̃ := {x ∈ S : x1 = 1} = I2(e
•
+ e1). Define the S̃-valued

exponential function on I by:

ζ(x) :=

∞∏
j=1

b
xj−1

j (x = (xj , j ∈ N) ∈ I).

This function is similar to those defined in Schipp–Wade[5], pp. 59-60, thus
with similar arguments we have the following three propositions:
a) ζ is a continuous function satisfying the functional-equation

(2) ζ(x
•
+ y) = ζ(x) • ζ(y) (x, y ∈ I).

b) The base has the following structure:

(3) bn = e
•
+ en+1

•
+ dn+1 (n ≥ 1) with π(dn+1) ≥ n+ 2.

c) With the notations of Definition 1, the function ζ has the following repre-
sentation:

(4) ζ(x) =
∞∏
j=1

(e
•
+ ej+1

•
+ dj+1)

xj−1 =

∞∏
j=1

[
e

•
+ xj−1(ej+1

•
+ dj+1)

]
.

Let us note, that as bn = b2
n−1

1 (n ≥ 1), we have

ζ(x) =

∞∏
j=1

b
2j−1xj−1

1 = b
∑∞

j=1 xj−12
j−1

1 (x ∈ I)(5)

which yields ζ(x) = b
β(x)
1 for x ∈ I ∩ B+ and also ζ(x) = b

α(x̂)
1 for x ∈ I,

where B+ := {a ∈ B | limj→+∞ aj = 0}, β(x) :=
∑∞

j=−∞ xj2
j (x ∈ B+) and

α(x) :=
∑∞

j=−∞ xj2
−j−1 (x ∈ B). Thus function ζ corresponds to function 5x

while we identify B+ ∩ I with N by means of β or ζ corresponds to function
( 58 )

x while we identify I with [0, 1] by means of α.

The structure of this base will be essential, and we will need the first 6
digits of the first four exactly, which can be calculated simply:

(6)

b2 = e
•
+ e3

•
+ e4 = e

•
+ e3

•
+ d3, π(d3) ≥ 4,

b3 = e
•
+ e4

•
+ e5

•
+ e6

•
+ e9 = e

•
+ e4

•
+ d4, π(d4) ≥ 5,

b4 = e
•
+ e5

•
+ e6

•
+ e7

•
+ e8

•
+ . . . = e

•
+ e5

•
+ d5, π(d5) ≥ 6,

where d3 := e4, d4 := e5
•
+ e6

•
+ e9 d5 := e6

•
+ . . .

The reversal t̂ of a byte t ∈ B is defined by t̂ := β(α−1(t)) (t ∈ Q+). That
is, if the expansion of t is t =

∑∞
j=−∞ tj2

−j−1, then t̂ =
∑∞

j=−∞ tj2
j . This

notion will be used in the proof of Theorem 2 and in perceiving the significance
of the function system (COSn) defined in Definition 6.
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2. 2-adic sine and cosine functions

In this section we present two ways of constructions of 2-adic trigonometric
functions. The first one is expressed by the S̃-valued exponential functions,
which is in connection with the 2-adic multiplicative characters. See [5], pp.
72–73. An other way of the construction is expressed by the additive characters
and results a complex-valued function.

Definition 5. Define the 2-adic cosine and sine function on I as follows:

cosx := (ζ(x)
•
+ ζ(x−)) • e−1 (x ∈ I),

sinx := (ζ(x)
•
− ζ(x−)) • e−1 (x ∈ I).

Definition 6. To any n ∈ N define the 2-adic COSn and SINn functions on
I as follows:

COSn(x) :=
vn(x) + vn(x

−)
2

(x ∈ I, n ∈ N),

SINn(x) :=
vn(x)− vn(x

−)
2i

(x ∈ I, n ≥ 2).

As the reversal map establishes a contact between the discrete exponen-
tial system (einx, n ∈ N) and the character system (vn(x), n ∈ N) (v2n(x) =

= einβ̂(x)), we have that the reversal map takes the classical real cosine sys-
tem (cos(nx), n ∈ N) into (COSn(x), n ∈ N). Similar statement holds for
(sin(nx), n ∈ N) and (SINn(x), n ∈ N). Thus these systems can be perceived
as the 2-adic discrete cosine and sine systems.

Addition formulas for 2-adic sine and cosine functions are a result of the
functional equation (2) of the exponential function, and can be derived as in
the real case but resulting slightly different coefficients. We state first that by
x− = x • e− (x ∈ B) and by the distributivity of the 2-adic operations we have

(x
•
+ y)− = x− •

+ y−. Furthermore, 2a := a
•
+ a = a•e1, thus a = (a

•
+ a)•e−1,

and e−1 • e−1 = e−2. Now,

cos(x
•
+ y) =

(
ζ(x

•
+ y)

•
+ ζ(x− •

+ y−)
)
• e−1 =

=
(
ζ(x) • ζ(y)

•
+ ζ(x−) • ζ(y−)

)
• e−1 =

=
(
[ζ(x) • ζ(y)

•
+ ζ(x−) • ζ(y)]

•
+ [ζ(x−) • ζ(y−)

•
+ ζ(x) • ζ(y−)]

•
+

•
+ [ζ(x) • ζ(y)

•
− ζ(x) • ζ(y−)]

•
+ [ζ(x−) • ζ(y−)

•
− ζ(x−) • ζ(y)]

)
• e−2 =

= cosx • cos y
•
+ sin y • sinx.
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Similarly, sin(x
•
+ y) = sinx•cos y

•
+ cosx•sin y (x, y ∈ I). Clearly, cosine is

even and sine is odd, that is, cos(x−) = cos(x), and sin(x−) = (sin(x))− (x ∈ I).

Thus also holds cos(x
•
− y) = cosx • cos y

•
− sinx • sin y, and so, by addition

turns out, that

cos(x
•
+ y)

•
+ cos(x

•
− y) = cosx • cos y • e1.

Thus the 2-adic cosine and sine functions satisfy the so-called d’Alembert
equation and sine-cosine functional equation investigated also in Sahoo[2] and
Staetker[3].

Evidently, we have

cos 2x = cos2 x
•
+ sin2 x, sin 2x = sinx • cosx • e1,

e = cos(θ) = cos2 x
•
− sin2 x,

cosu
•
+ cos v = cos

(
[u

•
+ v] • e−1

)
• cos

(
[u

•
− v] • e−1

)
• e1.

Clearly, COSn is even and SINn is odd, that is COSn(x
−) = COSn(x),

and SINn(x
−) = −SINn(x) (x ∈ I, n ∈ N). Addition formulas are in this

case also a result of the functional equation vn(x
•
+ y) = vn(x)vn(y) of the

characters:

COSn(x
•
+ y) = COSn(x)COSn(y)− SINn(x)SINn(y),

COSn(x
•
− y) = COSn(x)COSn(y) + SINn(x)SINn(y), thus

COSn(x
•
+ y) + COSn(x

•
− y) = COSn(x)COSn(y) (x, y ∈ I, n ∈ N).

Thus COSn and SINn satisfy the so-called d’Alembert equation and sine-
cosine functional equation investigated for example in Sahoo [2] and in Staet-
ker [3]. We have furthermore: COS2

n(x) + SIN2
n(x) = 1 (x ∈ I, n ∈ N).

As the inverse function of cos is needed in the chosen construction of Cheby-
shev polynomials, we determine now a set S̃, on which cos is bijective. It is not
injective on the original domain I, thus we consider its restriction on S̃ and we
determine the range also: S†.

Notation 1. Recall that S̃ := I2(e
•
+ e1) = e

•
+ e1

•
+ I2 = {x ∈ S : x1 = 1}.

Consider the following sets of bytes

S� := I3(e) = e
•
+ I3 = {e

•
+ t : t ∈ I3} = {x ∈ I : x0 = 1, x1 = x2 = 0 },

S† := I6(e
•
+ e3

•
+ e5) = {x ∈ I : x0 = x3 = x5 = 1, x1 = x2 = x4 = 0 } ⊂ S�,

S̃l := Il+2(el
•
+ el+1), Sl = el

•
+ Il+1 = Il+1(e1) (l ∈ N).
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Theorem 1. a) The function cos takes S to S†. Specially, cos : S̃ ⊂ S→ S† is
a bijection.

b) The function cos takes I to S�.

Proof. a) If x ∈ S, then x0 = (x−)0 = 1 and (x−)j = 1 − xj (j ≥ 1). Thus
with the notations of (3) and representation (4) we have:

cos(x) = bx0
1 •

⎛⎝ ∞∏
j=2

b
xj−1

j

•
+

∞∏
j=2

b
1−xj−1

j

⎞⎠ • e−1 =

b1 • e−1

⎛⎝ ∞∏
j=2

[
e

•
+ xj−1(ej+1

•
+ dj+1)

] •
+

∞∏
j=2

[
e

•
+ (1− xj−1)(ej+1

•
+ dj+1)

]⎞⎠ .

Now, set z := (b1)
−1 • e1 • cos(x), which is the expression in the huge round

brackets. Let us investigate the digits of z: each of the products belongs to S,

thus the first terms are e
•
+ e = e1, and the next possibly nonzero digit is z3.

So, we compute the digits from the 3rd to the 8th using the structure (6) of
the base and establishing also the rests qi determined by the 2-adic sum:

z3 + 2q3 = x1 + (1− x1) = 1 ⇒ z3 = 1, q3 = 0

z4 + 2q4 = x2 + (1− x2) + (d3)4︸ ︷︷ ︸
=1

(x1 + (1− x1)) + q3 = 2 ⇒ z4 = 0, q4 = 1

z5 + 2q5 = x3 + (1− x3) + (d3)5︸ ︷︷ ︸
=0

(x1 + (1− x1)) + (d4)5︸ ︷︷ ︸
=1

(x2 + (1− x2))+

+ q4︸︷︷︸
=1

= 3 ⇒ z5 = q5 = 1

(7)
z6 + 2q6 = x4 + (1− x4) + (d3)6︸ ︷︷ ︸

=0

+(d4)6︸ ︷︷ ︸
=1

+(d5)6︸ ︷︷ ︸
=1

+ q5︸︷︷︸
=1

= 4 ⇒ z6 = 0, q6 = 2

z7 + 2q7 = x5 + (1− x5)︸ ︷︷ ︸
always=1

+ [x1x2 + (1− x1)(1− x2)]︸ ︷︷ ︸
depends on x1,x2

(e3 • e4)7︸ ︷︷ ︸
=1

+(d3)7 + (d4)7+

+ (d5)7 + (d6)7 + q6

z8 = 1 + [x1x3 + (1− x1)(1− x3)]︸ ︷︷ ︸
depends on x1,x3

+ϕ(x1, x2) (mod 2)

...

zk = 1 + [x1xk−5 + (1− x1)(1− xk−5)]︸ ︷︷ ︸
depends on x1,xk−5

+ϕ(x1, x2, . . . , xk−6) (mod 2) (k ≥ 7).
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This computation resulted, that the 1st, 3rd and 5th digits of z were equal
to 1, and the others were 0 until the 6th digit. Thus

cos(x) = b1 • e−1 •
(
e1

•
+ e3

•
+ e5

•
+ d̃6

)
= e

•
+ e3

•
+ e5

•
+ d′5

with some d̃6 ∈ I7, d′5 ∈ I6. Thus y = cos(x) ∈ S† and cos : S→ S†.
Computation (7) also implies, that z7 can take either 0 or 1 depending on

x1 and x2, and so do the following digits, too, but depending on further digits
of x. Thus setting condition x1 = 1, which is the case for x ∈ S̃, the 7th digit
of z determines x2, the 8th one determines x3, the k-th digit of z determines
xk−5 (k ≥ 7), and by an inductive argument follows the existence of a unique
x ∈ S̃ with the required property. Thus to any given y ∈ S† there exists an
x ∈ S̃ uniquely such that cosx = y.

b) When x ∈ I \ S, then only base elements bi of higher indexes (i ≥ 2) will
occur in cos(x), thus the nonzero coordinates except of the 0th are shifted to
the right, so cos(x) ∈ S and (cos(x))1 = (cos(x))2 = 0 holds in each case, thus
the image of cos on I is a subset of S�. �

Notation 2. Let us denote the inverse of cos : S̃ → S† by arccos, which has
domain S†.

We will use the following lemma in the next section.

Lemma 1. f(t) := cos(e−4 • t) is a DMSP-function on S̃4 = I6(e4
•
+ e5), and

also on S4 \ S̃4 = I6(e4).

Proof. If t ∈ S̃4, than x = e−4 • t ∈ S̃. Computation (7) implies that if x ∈ S̃
we have for z = (b1)

−1 • e1 • cos(x) recursion form:

zk = xk−5 + ϕ(x2, x3, . . . , xk−6) ( mod 2) (k ≥ 6)

with some ϕ : Ak−7 → A. As b1 ∈ S, b1 • z ∈ S has the same type of recursion,
furthermore follows for y = cosx = e−1 • b1 • z the recursion form

(8) yk = xk−4 + ϕ(x2, x3, . . . , xk−5) ( mod 2) (k ≥ 5)

with some ϕ : Ak−6 → A. As multiplying by e−4 shifts bytes, we have xk−4 =
= (t • e−4)k−4 = tk (k ∈ Z). Thus by (8) follows that f(t) = cos(e−4 • t) is a
DMSP-function on S̃4.

Computation (7) also implies that for x ∈ S\S̃ we have x1 = 0 and recursion

zk = 1− xk−5 + ϕ(x2, x3, . . . , xk−6) ( mod 2) (k ≥ 6)

with some ϕ : Ak−7 → A. Thus similarly follows in this case also that f(t) =
= cos(e−4 • t) is also a DMSP-function on S4 \ S̃4. �
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Remark. Similar investigation shows, that sin : S→ I3(e+ e2) is a bijection,
and a simple recursion yields the digits of y = e−2 •sinx, thus x &→ e−2 • sin(x)
is a DMSP-function on S.

Theorem 2. The systems (COS0, COS1,
√
2COS2,

√
2COS3, . . .) and

(
√
2SINn, n ≥ 2) are orthonormal systems.

Proof. Let n,m ∈ N.∫
I

COSn(x)COSm(x)dμ(x) =
1

4

∫
I

vn(x)vm(x)dμ(x)+

+
1

4

∫
I

vn(x)vm(x−)dμ(x)+

+
1

4

∫
I

vn(x
−)vm(x)dμ(x) +

1

4

∫
I

vn(x
−)vm(x−)dμ(x) =:

=:
1

4
(I1 + I2 + I3 + I4).

Since x &→ x− is measure-preserving, I4 = I1. As the system (vn, n ∈ N) is
orthonormal, we have I4 = I1 = δn,m.

vn(x)vm(x−) = vn(x)vm(x) = v
n

•
+m

(x) where operation
•
+ on N is defined in

the following way: n
•
+ m := α(α−1(n)

•
+ α−1(m)) = (n̂+ m̂ P mod 2)̂. Now,

n
•
+ m = 0 ⇔ n = m = 0 or n = m = 1. Thus, I2 =

∫
I
vn(x)vm(x−)dμ(x) =

=
∫
I
v
n

•
+m

(x)dμ(x) = δmn(δn0 + δn1).

In case of (n,m) ∈ {(0, 0), (1, 1)} we make use of the definition μ(I) = 1,
which implies I2 = I3 = 1, thus

∫
I
COSn(x)COSm(x) = 1. Otherwise I2 =

= I3 = 0 and so
∫
I
COSn(x)COSm(x) = 1

2δmn.

As
∫
I
SINn(x)SINm(x)dμ(x) = 1

4 (I1 − I2 − I3 + I4), the statement for
(SINn, n ∈ N \ {0, 1}) follows similarly. �

3. The 2-adic Chebyshev polynomials

It seems at first sight to have exaggerated in the next two definitions by
using k twice in tk, but the first one ensures that the system will be a UDMD-
product system, and the second one belongs to the nature of Chebyshev poly-
nomials.
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Definition 7. Define the 2-adic Chebyshev polynomials of the first kind as the
product system of tk(x) := v2k+6 (cos[(2k + 1) arccos(x)]) (x ∈ S†, k ∈ N), that
is,

(9) Tn(x) :=

∞∏
k=0

[v2k+6 (cos[(2k + 1) arccos(x)])]
nk (x ∈ S†, n ∈ N).

Definition 8. Let us define the 2-adic Chebyshev polynomials of the second
kind as the product system of uk(x) := v2k+3 (sin[(2k + 1) arccosx]) (x ∈ S†, k ∈
∈ N), that is

(10) Un(x) :=

∞∏
k=0

[v2k+3 (sin[(2k + 1) arccos(x)])]
nk (x ∈ S†, n ∈ N).

In order to see the orthogonality, we need first to examine the functions
x &→ cos((2n+ 1) arccosx) and x &→ sin((2n+ 1) arccosx) (x ∈ S†).

Lemma 2. The functions x &→ cos ((2n+ 1) arccosx) (x ∈ S†) and x &→ e3 •
• sin((2n+ 1) arccosx) (x ∈ S†, n ∈ N) are DMSP-functions on S†.

Proof. The first function is obtained by a composition of functions

f1(x) := e4 • arccos(x), f1 : S† → S̃4

f2(x) := (2n+ 1) · x = x
•
+ x

•
+ . . .

•
+ x︸ ︷︷ ︸

2n+1 times

, f2 : S̃4 → S4

f3(x) := cos(x • e−4), f3 : S4 → S†.

The distributivity implies that (2n+1) · (e4 • y) = e4 • [(2n+1) · y] (y ∈ B),
thus (f3 ◦ f2 ◦ f1)(x) = cos((2n+ 1) arccosx) (x ∈ S†).

We have already seen in Lemma 1, that f3 is a DMSP-function on S̃4 and
on S4 \ S̃4, too. Thus property i) of DMSP-functions results that f1 is also a
DMSP-function on S†.

Let us examine f2. With the dyadic expansion n =
∑∞

i=0 ni2
i we have

n · x =
∑∞

i=0 ni(2
i · x) =

∑∞
i=0 ni(ei • x), where the sum is taken in sense

•
+.

Thus (n · x)k =
∑k

i=0 nixk−i (k ∈ N, x ∈ I), which contains xk if and only if
n0 = 1, that is, if n is odd. Thus f2(x) = (2n + 1) · x is a DMSP-function on
S̃4. Given n ∈ N the range of f2 is either S̃4 or S4 \ S̃4 depending on n1 ∈ A.

Property v) of DMSP-functions implies that f3 ◦f2 ◦f1 is a DMSP-function
on S†. �
Theorem 3. The 2-adic Chebyshev polynomials of the first and second kind
(Tn, n ∈ N) and (Un, n ∈ N) form UDMD product systems, thus they are
complete and orthonormal systems.
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Proof. As for each c ∈ I the system (v2k+6 , k ∈ N) is a UDMD-system on
I6(c), we have by property iii) of DMSP-transformations and Lemma 3 that
(tn, n ∈ N) is a UDMD-system on S†, which results that (Tn, n ∈ N) is a
UDMD-product system on S†, thus complete and orthonormal. (See Schipp-
Wade[5], pp. 92-94.) The proof is similar for the second kind Chebyshev
polynomials. �

Corollary 1. Fourier series of any f ∈ Lp(I) (p > 1) with respect to systems
(Tn, n ∈ N) and (Un, n ∈ N) converges a.e. to f .

This is a consequence of Theorem 4 in Schipp [6] stated in general for any
UDMD-product systems.

Corollary 2. (C, 1)-summability of any f ∈ L1(I) with respect to to systems
(Tn, n ∈ N) and (Un, n ∈ N) holds.

This is a consequence of Theorem 15 in Gát[1] stated for Vilenkin-like sys-
tems, a generalization of UDMD-product systems.

Remarks: 1) Theorem 3 remains valid if we use any proper UDMD-systems
instead of v2k+6 and v2k+3 (k ∈ N).

2) The 2-adic Chebyshev polynomials of the first and second kind can be

defined also on I by establishing a proper shift operation: S : I→ S† = I6(e
•
+

•
+ e3

•
+ e5), S(x) := x • e6

•
+ e

•
+ e3

•
+ e5. Now,

T̃n(x) :=
∞∏
k=0

[v2k+6 (cos[(2k + 1) arccos(S(x))])]
nk (x ∈ I, n ∈ N),

Ũn(x) :=

∞∏
k=0

[v2k+3 (sin[(2k + 1) arccos(S(x))])]
nk (x ∈ I, n ∈ N).

Notation 3. Consider shift operations:

S : I→ S†, S(x) := x • e6
•
+ e

•
+ e3

•
+ e5,

S′ : S̃→ I, S′(x) := [x
•
− e

•
− e1] • e−2.

Definition 9. Define the 2-adic Chebyshev polynomials of the third and fourth
kind by

(11)
Tn(x) := COSn[S

′(arccos(S(x)))] (x ∈ I, n ∈ N),

Un(x) := SINn[S
′(arccos(S(x)))] (x ∈ I, n ≥ 2).

Theorem 4. The 2-adic Chebyshev polynomials of the third and fourth kind
(Tn, n ∈ N), (Un, n ∈ N) are orthogonal systems in L2(I).
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Proof. The variable transformation B : x &→ S′(arccos(S(x))) is a DMSP-
transformation on I, thus it is measure-preserving. Hence,

(12)

∫
I

f ◦B dμ =

∫
I

fdμ (f ∈ L1(I)).

Let n,m ∈ N∗. By (12) and by the orthogonality of the systems (COSn, n ∈ N),
(SINn, n ∈ N) follows the statement:∫

I

Tn(x)Tm(x)dμ(x) =

∫
I

COSn(y)COSm(y)dμ(y) = 0 (n 	= m).

�

References

[1] Gát, G., On (C, 1) summability of integrable functions on compact totally
disconnected spaces, Studia Math., 144(2) (2001), 101–120.

[2] Sahoo, P. and P. Kannappan, Introduction to Functional Equations,
Boca Raton-London-New York: CRC Press, 2011, 131–160.

[3] de Place Frijs, P. and H. Stetkaer, On the cosine-sine functional equa-
tion on groups, Aequationes Mathematicae, 64(1-2) (2002), 145–164.

[4] Schipp, F., W.R. Wade, P. Simon and J. Pál, Walsh Series, An
Introduction to Dyadic Harmonic Analysis, Adam Hilger, Ltd., Bristol and
New York, 1990.

[5] Schipp, F. and W.R. Wade, Transforms on Normed Fields, Pécs, 1995.
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