
Annales Univ. Sci. Budapest., Sect. Comp. 43 (2014) 39–55

THEORETICAL FOUNDATIONS OF ENTITY
RESOLUTION MODELS

Csaba István Sidló (Budapest, Hungary)

András József Molnár (Budapest, Hungary)

Gábor Lukács (Budapest, Hungary)

András A. Benczúr (Budapest, Hungary)

Dedicated to András Benczúr on the occasion of his 70th birthday

Communicated by János Demetrovics

(Received June 1, 2014; accepted July 1, 2014)

Abstract. Data quality is crucial in all information systems. As a
key step in obtaining clean data, record linkage or entity resolution (ER)
groups database records by the underlying real world entities. In this pa-
per we give practical motivating examples and review the available ER
formal models. The formal model for matching and merging records de-
termines not just the power and quality, but also the algorithmic cost of
the resolution process. Starting from a naive definition that may lead to
unbounded entities or infinite loops and also discussing the shortcomings
of the standard axioms, we give algebraic properties that lead to efficient
record partitioning. Finally we describe algorithms suitable for complex
entity resolution problems that may include fuzzy clustering to split a par-
tition of records into potentially overlapping entities.

Key words and phrases: entity resolution, deduplication, record linkage, data quality, lattice
theory
The publication was supported by the grant OTKA NK 105645, the EC FET Open project
“New tools and algorithms for directed network analysis” (NADINE No 288956), and the

TÁMOP-4.2.2.C-11/1/KONV-2012-0001 project. The project is supported by the European
Union, co-financed by the European Social Fund.

https://doi.org/10.71352/ac.43.039

https://doi.org/10.71352/ac.43.039

40 Cs.I. Sidló, A.J. Molnár, G. Lukács and A.A. Benczúr

1. Introduction and related work

Data are of high quality “if they are fit for their intended uses in operations,
decision making and planning” [11]. Emerging technologies for “Big Data”,
data science and NoSQL drive the development of advanced methods and tools
for data management [17]. As a central step in obtaining quality data, entity
resolution (ER) [13] is the task of identifying duplicate records and merging
them into a single entity with clean attributes inherited from the original,
potentially incomplete records.

In this paper, we give an overview of the available entity resolution methods,
and after defining a generic formal model, we discuss the practical constraints of
various approaches. We show how entity resolution in practice can be reduced
to the problem of finding connected components of linked entities and then
breaking up these components into possibly overlapping groups of entities.

In our previous work we gave efficient distributed algorithms for large scale
entity resolution problems [19] and described theoretical restrictions to keep the
methods feasible for over millions of records [14]. In this paper we concentrate
on the theoretical property of entity lattices arising in different variants of the
problem.

The seminal work of Fellegi and Sunter [8] introduced the problem of record
linkage, which has been discussed under several different names later, e.g. du-
plicate detection, record matching or linkage, merge/purge or entity resolution.
These names basically refer to the problem of finding and grouping together
all records of real-world entities, for example all records of a client, of an item,
or all Web pages referring to a person. Entity resolution is considered to be a
major task of data quality assurance; [20] describes the process in this general
context.

Early results (see [7] for a survey) concentrate on methods for pairwise
record matching, metrics reflecting business needs and optimization methods
speeding up the matching process (the join operators). A drawback of the
pairwise record matching approach is that real-life data sets usually contain
record pairs not similar at first, but which can be linked to the same entity
in multiple inference steps. The simplest models enabling indirect inference
employ partial algebras of records with an arbitrary match relation. These
may however result in unbounded entities (when for example the merge of two
entities concatenates their content), or infinite loops (if the merge overwrites
the previous content with the new).

Some of the early results, such as [9] or [3], see the problem as a link mining
task, useful for example to process Web data.

The influential Swoosh algorithms in [2] consider ER as an iterative process
that finds indirect connections between entities by using black box functions

Theoretical foundations of entity resolution models 41

for matching and then merging entities. These black box functions should
satisfy four properties, Idempotence, Commutativity, Associativity and Rep-
resentativity (ICAR) [2]. Not emphasized in their original paper, ICAR is a
slight weakening of an equivalence relation over entities in that associativity
is required only for matching entities and in practice typically an equivalence
relation is assumed.

Efficiency considerations impose additional constraints orthogonal to the
ICAR properties. ER is a complex problem since finding matching input item
pairs already has O(n2) time complexity over n records. Performance issues are
therefore crucial, especially when dealing with large data sets. We show that
if we impose additional constraints, ICAR turns to an equivalence relation, i.e.
the set of records is partitioned by the merge operation, which can be computed
efficiently. The record equivalence relation based entity resolution solutions are
however overly restrictive and among others do not allow overlapping entities.
We describe the connection between more practical non-equivalence and the
more easily computable equivalence relation-based problems.

Recently, several approaches were published that provide speed and scala-
bility. Indexing methods are surveyed in [5]. Blocking methods are described
in [23] in detail. As ease in implementation while keeping flexibility, the model
is defined by attributes and combination of attributes called features by [13].
Our previous results on using indexes for ER is described in [18]. Paralleliza-
tion as a common technique to build scalable systems is also used increasingly.
That is not surprising if we look at how widespread distributed platforms and
NoSQL solutions became in the last decade. For pairwise matching, distributed
set-similarity join methods are published, e.g. [21]. We compare the usability
of three distributed software frameworks for entity resolution in [19].

The key of efficiency in all approaches is to gradually build entities by
extending them with a single record. As a step beyond ICAR abstraction,
we give natural algebraic requirements of accessibility and absorptivity that
guarantees the correctness of the single record methods. Our main Theorem 2
states that if the two new requirements are added to (even a weakening of)
ICAR, the entities arise as subsets of the records. We define the union of all
overlapping entities as the entity closure, a partition of the original records,
and show that the entity closure can be efficiently computed.

A drawback of all the efficient algorithms, which build entities as a partition
of the record set, is that they cannot handle more complex tasks such as iden-
tifying overlapping households in customer records. As a natural requirement,
we would like to allow entities with fuzzy boundaries and overlaps, for example
by using data confidences [13] or evolving rules [22].

In our approach we consider entity resolution as a clustering problem, where
many relatively small clusters have to be found that will eventually form po-
tentially overlapping entities. Our algorithm first builds the entity closure and
then uses a combination of the standard agglomerative clustering and the Apri-

42 Cs.I. Sidló, A.J. Molnár, G. Lukács and A.A. Benczúr

Figure 1. Matching customer records.

ori algorithms [16, Sections 8.3 and 6.2]. Note, however, that by the negative
results of [12], it is unlikely that the structure of overlapping entities has an
algebraic characterization similar to the entity closure task.

The rest of this paper is organized as follows. Section 2 introduces use cases
and practical examples as motivation. Section 3 is devoted to defining various
algebraic formulations of entity resolution, including the ICAR properties [2]
and our new notions of accessibility and absorptivity, with the main Theorem 2
in Section 3.3. Section 4 describes algorithms for various restricted problems,
including the entity closure, the clustering approach for overlapping entities,
and temporal evolving entities such as households that change in time.

2. Motivation

ER problems appear in several fields of application, for example problems
of customer, product, Web, map or location data all occur in practice. We
focus on customer data as a main application area, since CRM, master data
management and analytical solutions all require precise knowledge of the user
base. The following common practical use cases motivate the development of
our ER models.

Figure 1 illustrates a common scenario with rule-based matching of person-
alities, where the goal is to group and merge customer records according to the
real-life customer entities. Here pairwise matching is carried out based on ID or
email address equality, until we get an entity consisting all four records. Note,
that e.g. the third and fourth records do not match directly, we can reason only
indirectly that they belong to the same person.

Figure 1 depicts records as structured relational tuples of attributes. The
ER problem however can be interpreted on semi-structured, set based or arbi-
trary elements, which we also call records in the following.

As the output of the resolution process, we may obtain entities different
from the primary type of the individual data elements. For example, we can

Theoretical foundations of entity resolution models 43

Figure 2. Overlapping household entities of personal identity records.

create households from customer records, as seen in the example of Figure 2.
On the left hand side identical names suggest that records only differ because
of a name change after marriage, therefore three records are grouped together
in one household. On the right hand side, however, in a similar scenario, postal
addresses suggest the existence of two households. A record r2 contains both
addresses (as mailing and permanent addresses for example), for a person who
belongs to two overlapping but different households.

In the common case of overlapping entities, the match relation is not tran-
sitive: if r1 is in relation with r2 and r2 with r3, then r1 is not necessarily in
relation with r3. We can also observe that entities are often time-dependent: a
person and the corresponding data elements may belong to different households
at different times.

Matching may use similarity and fuzzy measures, e.g. two identity records
might be merged as a household entity if postal addresses and family names
are similar enough. This brings further complexity to ER: as Figure 3 depicts,
entities might not match until all the records of the two sides are matched.

As an example of an entity that cannot be formed from its records in an
obvious way, let household entities be merged by an address-based feature. If
matching is using validity date intervals (somebody lived somewhere between
two dates) with a threshold on the number of days with the same address, then
intermediate entities might not match until we get the final union of intervals.

Entity boundaries might be fuzzy, too. For example, somebody moving
from one household to an other may result in records associating him or her to
both. Somebody belonging to a household with a partner and to an other one
with the parents to some extent, at the same time, also results in overlapping,
not accurately defined entities. As another example, a person may appear
as a private customer and at the same time the representative of a business
customer. It is a question of business needs if such client entities should overlap,
should be merged or should be kept distinct in such cases.

44 Cs.I. Sidló, A.J. Molnár, G. Lukács and A.A. Benczúr

e
2

e
5

e
1

e
1
 e
2

e
4
 e
5

e
1
 e
2
e
3

e
4

e
4
 e
5
e
6

e
6

e
3

Figure 3. Entities that match only after several merge steps.

3. Defining entity resolution problems

The simplest deduplication task is finding the matching pairs of an R record
set. Finding record pairs is not considered to be an ER task, but the model
and methods discussed in this paper are still useful for solving it. Pairwise
matches, a.k.a. similarity joins without merging, for example, can be supported
by feature indexing of Section 3.7. Next we provide a more general ER model,
derived from our previous model in [14].

Let a set of records be R = {r1, r2, . . . , rm}, and E be a set of entities,
with R ⊆ E. Records represent input elements to be merged, considered to be
simple entities initially. (As an alternative definition entities could be defined
as sets of records, but the generic model dealing with entities proved to be
more useful.) Let a match function be a Boolean function over E × E. A
corresponding merge is a partial function, mapping matching entity pairs to
entities. A match is denoted as · ∼ ·, a merge as 〈·, ·〉∼, or simply 〈·, ·〉.

Let E = (E, 〈·, ·〉) be a partial algebra, where entities are generated by the
record set:

E0 = R,(3.1)

Ei = Ei−1 ∪ {〈x, y〉|x, y ∈ Ei−1 ∧ x ∼ y},(3.2)

E =

∞⋃
i=0

Ei.(3.3)

Let the entity resolution ER(E) be the set of all maximal elements of E,
i.e. the elements that cannot be extended by merging matching elements, i.e.
performing the valid matches:

ER(E) = {x ∈ E | ∀y ∈ E : (y ∼ x⇒ 〈y, x〉 = x) ∧ (x ∼ y ⇒ 〈x, y〉 = x)}.
(3.4)

Theoretical foundations of entity resolution models 45

Our ER model is flexible, allowing E to contain sets of records, lists, semi-
structured or any other data structures. E is however not necessarily finite,
and also maximal elements might be generated by applying the merge operator
infinitely many times. For example, a merge function concatenating record
values results in values growing ever longer. As another, cyclic example, if the
match function keeps the most recently added value, then E may not contain
maximal elements at all.

3.1. ICAR and domination

The “generic” ER model with ICAR conditions of [2] is considered a stan-
dard definition of the entity resolution problem, and is used often in practice.
The model and methods are generic in the sense that they use black box match
and merge functions without studying the internal details of these functions.
ICAR stands for the followings properties:

Idempotence: For all e ∈ E: e ∼ e and 〈e, e〉 = e. An entity always matches
itself, and merging it with itself still yields the same entity.

Commutativity: For all e1, e2 ∈ E: e1 ∼ e2 iff e2 ∼ e1, and if e1 ∼ e2, then
〈e1, e2〉 = 〈e2, e1〉.

(Weak) Associativity : For all e1, e3, X ∈ E such that 〈〈e1, X〉, e3〉 and
〈e1〈X, e3〉〉 exist: 〈〈e1, X〉, e3〉 = 〈e1, 〈X, e3〉〉.

Representativity: If e1, e2, e3 ∈ E and e3 = 〈e1, e2〉, then for any e4 ∈ E
such that e1 ∼ e4, we also have e3 ∼ e4.

Representativity is a strong condition not allowing overlapping or fuzzy
entities. When searching for households for example, this strict requirement
causes problems.

Although the original paper [2] defines the third property as associativity,
it is in fact weaker than the usual definition that also requires the existence of
〈r1, 〈r2, r3〉〉, whenever 〈〈r1, r2〉, r3〉 exist. The stronger version of associativity
does not hold in practice either, since r1 may share an attribute with r3 but
may be distinct from r2. In the example of Fig. 2, r1 may not be similar to r2
while 〈〈r1, r2〉, r3〉 may exist and correspond to the person as an entity. This
type of ER is called “consistent ER” in [1]: If there exist multiple derivations
involving the same set of records, then they should all produce the same result.

In addition to ICAR, entity domination as a partial ordering on entities is
used to capture maximal elements: An e1 entity dominates e2 if e1 ∼ e2, and
〈e1, e2〉 = e1. The entity resolution of [2] is then defined as the derived entity
set not containing dominated elements, where domination corresponds to the
maximality property of (3.4).

46 Cs.I. Sidló, A.J. Molnár, G. Lukács and A.A. Benczúr

3.2. Accessibility and absorptivity

We reduce the complexity of the ER problem but weaken ICAR by in-
troducing the following constraints, holding for all e1, e2, e3 ∈ E where the
appropriate merge exists, i.e. where the merge operands match:

idempotence: 〈e1, e1〉 = e1,(3.5)

commutativity: 〈e1, e2〉 = 〈e2, e1〉,(3.6)

associativity: 〈〈e1, e2〉, e3〉 = 〈e1, 〈e2, e3〉〉.(3.7)

For e ∈ E, let rank(e) be the minimum number of generator elements in R,
with multiplicities, needed to generate e. Similar to [4], let the accessibility
property be the following:

For all e ∈ E there is an r ∈ R

and an x ∈ E with rank(x) < rank(e)

such that e = 〈x, r〉.
(3.8)

Let an accessible entity be e = 〈. . . 〈〈r1, r2〉, r3〉 . . . , rk〉, where k > 1. The
operators are absorptive, if for all j ∈ 1..k:

e ∼ rj ⇒ 〈e, rj〉 = e,

rj ∼ e⇒ 〈rj , e〉 = e.
(3.9)

3.3. The accessible subset: Equivalence with set union

Having the requirements (3.5) through (3.9), E with the merge operation is
a partial semilattice of records. We show that this semilattice has an isomorphic
partial semilattice with equivalence classes of 2R (subsets of R) and a partial
set union operator. As a consequence, we may simply consider subsets of R
instead of general expressions generated by R. The accessible subset model
then uses the properties of Section 3.2 and the set union operator.

Theorem 1. Let SE be the set of record subsets in which the records have at
least one valid sequence of merge operations. There exists a homomorphism
from record subsets SE ⊆ 2R with a partial set union operator ∪∼ to the set
of entities E with an idempotent, commutative, associative, accessible and ab-
sorptive merge operator.

Proof. Let the relation ∪∼ be the set union operator for sets in SE. Let the
mapping φ : SE → E be the following, for all r ∈ R:

φ({r}) = r,

φ(A ∪∼ {r}) = 〈φ(A), r〉 for all A ∈ SE.

Theoretical foundations of entity resolution models 47

We show that φ is well defined, i.e. there is no ambiguity for any set B in
the recursive definition of a φ(B), regardless of how an r and A is chosen
with A = B \ {r}, B = {r} ∪ A, and preserves the operation. That is, for all
A,B ∈ SE: φ(A ∪∼ B) = 〈φ(A), φ(B)〉.

For sets containing only one record φ is well defined. It preserves the opera-
tion, because merge is idempotent: ∀r ∈ R : r ∼ r, 〈r, r〉 = r. Next we consider
{r1, r2, r3 . . . , rn} ∈ SE, with n ∈ N and i ∈ [1, n], ri ∈ R.

First we show that the record merge order has no effect on the merge re-
sult. The merge sequence does not necessarily exist for all the merge sequence
variants, because merge is only defined for matching entities, but if the merge
exists, associativity and commutativity ensures that different record merge or-
derings result in the same entity.

Second, we show that all elements x ∈ E can be constructed by merging
records r ∈ R in a way that all records are used only once. If a record r ∈ R
occurs in the merge sequence of an entity x ∈ E multiple times, it has no
effect on the merged element. Because the order has no effect on the result and
absorptivity holds, we only have to show that every x ∈ E can be generated as

〈. . . 〈〈r1, r2〉, r3〉 . . . , rk〉

using every generator ri at most once. Let us take the lowest rank counterex-
ample x and use accessibility to get x = 〈y, r〉. If r appears in the description
of y using every generator at most once, then x = y by absorption and hence
x is not a counterexample. Otherwise 〈y, r〉 is the required form of x.

Order-independence and multiplicity-independence ensures that φ is well-
defined and the merge operation behaves as the set union. The definition of
φ ensures operation-preservation for φ(A ∪ B) where |B| = 1. For larger sets,
operation preservation can be proven by induction.

The accessibility property of the merge and the construction φ(A∪∼ {r}) =
〈φ(A), r〉 of φ ensures that 〈φ(A), φ(B)〉 can be constructed by merging the
records of A and B. Because φ is well-defined and the merge is order- and
multiplicity-independent, 〈φ(A), φ(B)〉 = φ(A ∪∼ B). �

Given the mapping φ, entities in E could have multiple representatives in
SE. In order to define a union operator over the set of entities, we show that
entities of E can be substituted by elements in equivalence classes of SE. By
the next theorem, the merge operation behaves the same way as the set union
operator.

Theorem 2. A set of entities E with an idempotent, commutative, associative,
accessible and absorptive merge operation is isomorphic to equivalence classes
of SE ⊆ 2R with the partial set union operator ∪∼.

Proof. Let sets A,B ∈ SE be equivalent if φ(A) = φ(B) using the homomor-
phism φ of Theorem 1. By the construction of φ, the equivalence classes are

48 Cs.I. Sidló, A.J. Molnár, G. Lukács and A.A. Benczúr

well defined. The proof follows by mapping the entities in E to the equivalence
classes of SE. �

The original (E, 〈·, ·〉) problem can be solved on SE with the partial set
union operator. To decide whether the union of two elements in SE exists (if
they match), the corresponding elements in E have to be found and matched.
That is, a merge sequence of the records have to be constructed, where all
merges exist, i.e. all merge operands match.

3.4. The entity closure

We introduce further constraints to facilitate practical use: a match function
which is an equivalence relation leads us to the entity closure problem.

Let the entity closure for an ER(SE,∪∼) entity resolution problem be
ER(SE,∪∼∗), where ∼∗ is the transitive, symmetric and reflexive closure of the
∼ match function.

3.5. Relational records

Optionally, we may define the structure of records similar to unnamed rela-
tional algebra tuples. For a fixed k and for each i ∈ [1..k], let the ith attribute
be a function ai : R → DOM∗

i = DOMi ∪ {∅}, where DOMi can be any set
as the attribute domain, and ∅ denotes missing values (NULL). This way an r
relational record is described by k number of attribute values a1(r), . . . ,
ak(r).

3.6. Features

Features facilitate expressing match relations, in a way that suits real-world
business concepts and ER algorithms well. Three distinguishing aspects are
used to describe domain knowledge of entity matching. First, independent
properties of the entities are isolated as feature functions. Second, the entity
match relation is transformed using these properties. Third, efficient compu-
tation is supported by assigning representative values to feature values.

Let a feature-based match function of a feature f be a Boolean partial
function on F × F .

A feature-based matching of entities through the feature function is denoted
as ∼f . To combine features f1, . . . , fk, let the match of entities e, e′ ∈ E be

e ∼f1,...,fk e′ ⇔ e ∼f1 e′ ∨ e ∼f2 e′ ∨ . . . ∨ e ∼fk e′.

Theoretical foundations of entity resolution models 49

3.7. Feature indexes

Indexable features support fast evaluation of feature-based matches by en-
abling the use of usual indexing techniques. Let the feature mapping func-
tion of a feature f be a partial function repf : F → 2O with some ordered set
O, assigning representative elements to feature values. A feature f is index-
able, if a feature mapping function exists so that all matching entities e, e′ ∈ E
can be found through the equality of representative values

e ∼f e′ ⇒ ∃ o ∈ O : o ∈ repf (f(e)) ∧ o ∈ repf (f(e
′)).

4. Algorithms for entity resolution

A naive solution to solve the ER problem would be to iterate through the
input entity set and find matching pairs, as long as such pairs exist. Such
algorithms, including G-swoosh [2, Algorithm 2] and even the improved R-
swoosh, run in quadratic time and are hence inefficient for large data sets.

The starting point of our results is F-swoosh [2, Algorithm 4] that merges
records by compositions of matching attribute values. In that algorithm, the
graph of entity mergers along matching values of various attributes may form an
arbitrary graph. The need for connected component identification is described
first in the iterative blocking algorithm of [23]. Highly efficient distributed
implementations are given in [19].

4.1. Solving the entity closure problem

As a first task, we give an algorithm for computing the entity closure as
defined in Section 3.4. Finding the entity closure is equivalent to the problem
of finding maximal connected components of the graph over records with edges
corresponding to matching records.

Algorithm 1 works by iterating through all the features and all the record
pairs to enumerate the edges in the record graph. The last step of Algorithm 1
calls a connected component algorithm in the graph formed by the match re-
lation. Feature indexes are used to narrow down the amount of record pairs to
be checked for matching, by providing match candidates. If two records match
according to the given feature, then they will be match candidates.

50 Cs.I. Sidló, A.J. Molnár, G. Lukács and A.A. Benczúr

Algorithm 1 Feature-based Entity Closure

input: Record set R of entities
output: ER(SE,∪∼) generated by R, where SE ⊆ 2R

1: for all features fi do
2: for all representative values repi(r) of r ∈ R do
3: for all pairs of records r, r′ with repi(r) = repi(r

′) do
4: if r ∼i r

′ then
5: add (r, r′) edge to graph G
6: find and output connected components of G

4.2. Clustering non-transitive entities

Although several methods such as R-swoosh [2] solve the Entity Closure
problem, its limitation is that it does not allow fuzzy matching by confidence
levels or learning based approaches. In fact, in most of the previous work [15,
6, 10] an exact match function is assumed, where a Boolean pairwise match
function is used, with no fuzzy merge and confidence values.

We progress beyond Entity Closure limitations by considering the closures
as efficient candidates. We consider the entity closure output as an efficient way
to distribute the work of sophisticated match functions. Note that splitting
by post-processing is proposed among others in [23]. Also, we may easily
accommodate complex match criteria or even use our solutions to distribute
machine learning.

The entity closure is an upper bound for the original entity resolution: the
solution of the original problem can be reached by separating closure entities.
Real-world entities are usually small, with minor number of instances where
transitivity, commutativity or idempotence is violated. Therefore, we expect
the computation of the closure to be profitable, despite of the necessary post-
processing steps splitting the entities.

Standard agglomerative clustering algorithms [16, Section 8.3] are capable
of breaking the elements of the entity closure into smaller entities, resulting
in non-overlapping entities. For all pairs of records, we may define weight
or confidence values that the pair of records match. Entity closure uses the
single link strategy, i.e. if two entities have two elements with weight above
a minimum threshold, the corresponding entities will be merged. Given the
entity closure, we may efficiently implement any other strategies (complete
link, average weight, etc.) to partition the entity closure.

In order to obtain overlapping entities, we give an apriori-like [16, Sec-
tion 6.2] level-wise algorithm next. In Algorithm 2 we start out from all records
as single-element entity candidates. In iteration k, we build (k + 1)-element
candidates Ck from k-element ones by testing the match likelihood for all ele-

Theoretical foundations of entity resolution models 51

e
2

e
3

e
1

e
1
 e
2

e
2
 e
3

e
1
 e
3

e
1
 e
2
e
3

Figure 4. Simple example of a semilattice and a partial semilattice.

ments. For match likelihood computation, we may use any of the agglomerative
clustering strategies (single, complete linkage, etc.). If there is no matching el-
ement, the candidate forms an entity. Otherwise, new candidates Ck+1 are
generated. The collection of Ck for all k form a semilattice as illustrated in
Fig. 4.

Algorithm 2 Level-wise algorithm for finding overlapping entities

input: a set C of the entity closure
C1 ← {r : r ∈ C}
for k = 1, . . . , |C| do
for all X ∈ Ck do

entity← true
for all r ∈ C −X do
if r ∼ X then
Ck+1 ← Ck ∪ {X ∪ {r}}
entity← false

if entity = true then
add X to the output entities

By the negative results of [12], it is unlikely that the structure of overlapping
entities has an algebraic characterization similar to the entity closure task.

4.3. Temporal entities

Entity boundaries, as in the motivating example of household resolution,
might be fuzzy. A person may for example move from the parents and therefore
belong to multiple households. Defining the model with overlapping entities
results in a more complex problem however. We show a simple process for
time-dependent entities to reduce the problem to the entity closure, avoiding
the complexity overhead of computing overlapping entities.

Our main assumption is that records in practice are often snapshots of
the entity’s state at a particular point in time. They also frequently employ

52 Cs.I. Sidló, A.J. Molnár, G. Lukács and A.A. Benczúr

r
1

[)

r
2

r
3

r
3

[[[))

r
1
' r

2
' r

3
' r

4
' time

Figure 5. Snapshot- and time-interval records of an entity.

attributes indicating the time of recording. From time to time, we get the up-
to-date properties of the entity, and have no updates in between these points of
time. Figure 5 depicts how records of an entity are recorded, and how we can
interpret them on a timeline. We assume the entity to be unchanged between
the observations (r1, r2, . . .), and transform the records to describe states for
validity time intervals of the entity (r′1, r

′
2, . . .).

Match features can be extended to match records only if they have feature
values with overlapping time intervals. The size of the intersecting time interval
can also be used as a weight to decide matches. For example, we may consider
two identity records belonging to the same household if they share a postal
address for a sufficiently long time.

These new temporal records with the extended match logic often fit the
practical use cases better than the original record set. Moving between house-
holds for example can be captured more easily: Resulting entities may consist
of records indicating that someone lived in a household between two exact time
points instead of the original broader statement.

For another example, when resolving identity records to find people, their
roles might change in time. Someone might be a client for some time as an
individual, and later on be a representative of a company as a legal entity.
They are usually considered as different entities, which are however hard to be
differentiated without using temporal records.

Note, that such a transformation is not always possible: if, for example,
somebody belongs to a household with a partner and to an other one with the
parents to some extent, at the same time.

Transforming snapshot records to temporal records can be achieved by sort-
ing the snapshot records according to the timestamp and forming the time
intervals using the adjacent records.

5. Conclusions and future work

In this paper we introduced a generalized and flexible theoretical approach
for entity resolution (ER) problems, including a formal framework to define
matching. We described practical distributed ER algorithms and demonstrated

Theoretical foundations of entity resolution models 53

the usability of our methods by identifying clients and households of insurance
client records. We showed that even complex ER tasks involving overlapping
entities, for example households, can be efficiently solved by first computing
the entity closure and then splitting the components.

As an open theoretical problem, we pose the question of finding algebraic
definitions of entity resolution problems that result in entity structures more
complex than the equivalence relation in Theorem 1 or the entity closure of
Section 3.4.

References

[1] Benjelloun, O., H. Garcia-Molina, H. Kawai., T.E. Larson, D.
Menestrina, Q. Su, S. Thavisomboon and J. Widom, Generic entity
resolution in the serf project, Tech. report 2006-14, Stanford InfoLab, 2006.

[2] Benjelloun, O., D. Garcia-Molina, D. Menestrina, Q. Su, S.E.
Wang and J. Widom, Swoosh: A generic approach to entity resolution,
VLDB J., 18 (1) (2009), 255-276.

[3] Bhattacharya, I. and L. Getoor, Collective entity resolution in rela-
tional data, ACM Trans. Knowl. Discov. Data, 1 (1:5) (2005).

[4] Boley, M., T. Horváth, A Poigné and S. Wrobel, Efficient closed
pattern mining in strongly accessible set systems, Knowledge Discovery in
Databases: PKDD 2007, 382-389.

[5] Christen, P., A survey of indexing techniques for scalable record linage
and deduplication, IEEE Trans. on Knowledge and Data Engineering, 99
(PrePrints), 2011.

[6] Dong, X., A. Halevy and J. Madhavan, Reference reconciliation
in complex information spaces, Proc. 2005 Int. Conf. on Management of
Data, ACM, 2005, 85-96.

[7] Elmagarmid, A., P. Ipeirotis and V. Verykios, Duplicate record
detection: A survey, IEEE Trans. on Knowledge and Data Engineering,
(2007), 1-16.

[8] Fellegi, I. and A. Sunter, A theory for record linkage, J. Amer. Stat.
Assoc., 64 (328) (1969), 1183-1969.

54 Cs.I. Sidló, A.J. Molnár, G. Lukács and A.A. Benczúr

[9] Getoor, L. and C. Diehl, Link mining: A survey, ACM SIGKDD Ex-
plorations Newsletter, 7 (2) (2005), 3-12.

[10] Hernández, M. and S. Stolfo, Real-world data is dirty: Data cleaning
and the merge/purge problem, Data Mining and Knowledge Discovery, 2
(1) (1998), 9-37.

[11] Juran, J. and A.B. Godfrey, Quality Handbook, McGraw-Hill, 1999.

[12] Kleinberg, J.M., An impossibility theorem for clustering, NIPS, (2002),
446-453.

[13] Menestrina, D., O. Benjelloun and H. Garcia-Molina, Generic en-
tity resolution with data confidences, CleanDB Workshop, 2006, 25-32.

[14] Molnár, A.J., A.A. Benczúr and C.I. Sidló, Flexible and efficient
distributed resolution of large entities, Proc. 7th Int. Conf. on Foundations
of Information and Knowledge Systems FoIKS’12, Springer, 244-263.

[15] Monge, A. and C. Elkan, An efficient domain-independent algorithm
for detecting duplicate database records, SIGMOD DMKD, 1997.

[16] Pang-Ning, T., M. Steinbach, V. Kumar et al., Introduction to data
mining, WP Co, 2006.

[17] Roebuck, K., Data Quality: High-impact Strategies - What You Need
TO Know: definitions, Adoptions, Impact, Benefits, Maturity, Vendors,
Emereo Pty Lim., 2011.

[18] Sidló, C.I., Entity resolution with heavy indexing, Proc. 2011 Int. Conf.
on Advances in Databases and Information Systems, CEUR Workshop
Proceedings, 2011.

[19] Sidló, C.I., A. Garzó, A. Molnár and A.A. Benczúr, Infrastructures
and bounds for distributed entity resolution, 9th Int. Workshop on Quality
in Databases in conjuction with VLDB 2011, 2011.

[20] Talburt, J., Entity Resolution and Information Quality, Elsevier Science,
2011.

[21] Vernica, R., M. Carey and C. Li, Efficient parallel set-similarity joins
using mapreduce, Proc. 2010 Int. Conf. on Management of Data, ACM,
2010, 495-506.

[22] Whang, S.E. and H. Garcia-Molina, Entity resolution with evolving
rules, Proc. VLDB Endow., 3 (2010), 1326-1337.

Theoretical foundations of entity resolution models 55

[23] Whang, S.E., D. Menestrina, G. Koutrika, M. Theobald and H.
Garcia-Molina, Entity resolution with iterative blocking, Proc. 35th Int.
Conf., on Management of Data, ACM, 2009, 219-232.

Csaba István Sidló
Gábor Lukács
András A. Benczúr
Computer and Automation Institute
Hungarian Academy of Sciences
(MTA SZTAKI)
University of Debrecen
Eötvös Loránd University
Budapest, Hungary
{sidlo,lukacsg,benczur}@ilab.sztaki.hu

András József Molnár
Research Institute for National Strategy
NSKI
Budapest, Hungary
jozsef.andras.molnar@nski.gov.hu

