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Abstract. Copulas became a popular tool in multivariate modelling, with several
fitting methods readily available. In an earlier paper [19] we focused on the good-
ness of fit for copulas. These tests are based on independent samples. To assume
complete independence for time series data is usually too optimistic. Now, as in
real applications time dependence is a common feature, we turn to the investiga-
tion of the effect of this phenomenon to the proposed test-statistics, especially to
the Kendall’s process approach of [5] and [6]. The block bootstrap methodology
is used for defining the effective sample size for time dependent bivariate obser-
vations. The critical values are then computed by simulation from independent
samples with the adjusted size, determined by these bootstrap methods. The meth-
ods are illustrated by 2-dimensional modelling of the weekly maxima of 50-years
observations of wind data for German sites. We also propose methods for assessing
the reliability of the prediction regions, introduced in [18].
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1. Introduction

In the last decade the question of multivariate modelling of high-dimensional data
has become also tractable, mainly due to the vast number of recorded data and the
powerful computing equipment readily available. However, most of the methodology
has been developed for the case of independent (multivariate) observations. In this
paper, we focus on the effect of the serial dependence, naturally arising in many time
series data. In an earlier paper, [19] we investigated the possibilities for checking the
validity of the copula models. Copulas are simple yet powerful tools, which ensure the
separation of marginal modelling and the dependence structure. They have been re-
invented in the 1990s and their use has been expanded rapidly since then. One natural
area of their applications is in the analysis of environmental data, where they are often
used to model the dependence structure of extreme events at different sites. Here we
apply the methodology to weekly maxima of wind gusts at 2 different German sites.
The data spans about 50 years, from 1957 to 2007.

In Section 2, we first briefly review the needed elements of copula theory and
present the notations. In Section 3, we summarize the most recent approaches for
measuring the goodness of fit (GoF) for copula models, including the modifications
suggested in [19]. Our proposed weighted GoF test is based on the Kendall’s trans-
form of the joint distribution (see [5] and [6]), which reduces the multivariate problem
to one dimension. Section 4 is devoted to the bootstrap resampling method, including
the block bootstrap approach, which is suitable for the case of serial dependence. In
Section 5 we model the bivariate dependence structure of the wind data set. We show
the effect of the serial dependence on the model selection. The prediction regions are
useful tools in visualisation of the estimated model (see [18]). We use the block boot-
strap methodology of Section 4 to investigate the uncertainty in the model estimation.
The conclusion summarizes our findings and gives ideas for future research.

2. Copula concepts

Consider a random vector X = (X1, ..., Xd) with joint distribution function H
and margins F1(x1), ..., Fd(xd). Due to Sklar’s theorem to any continuous d-variate
distribution function H, with univariate margins Fi there exists a copula C, a distri-
bution over the d-dimensional unit cube with uniform margins, such that

(2.1) H(x1, ..., xd) = C(F1(x1), ..., Fd(xd)).

Moreover, the copula C is unique if the marginal distributions are continuous. This
construction allows capturing the dependence structure without specifying the marginal
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distributions. In the recent literature various families of copulas have been introduced,
for an overview and examples see e.g. the textbooks of [2], [13] and [14].

In this paper, we concentrate on some of the most widely used copulas from the
Archimedean family. In our cases, these provided the best results when fitting to the
data, but of course the proposed methodology can be carried out for other copulas (e.g.
elliptical ones) as well.

2.1. Archimedean copulas

A broad class of copulas is called the Archimedean copula family. It is frequently
used due to its very convenient structure. Let us consider a so-called copula generator
function: ϕ(u) : [0, 1] → [0,∞], which is continuous and strictly decreasing with
ϕ(1) = 0. Then a d-variate Archimedean copula function is

Cϕ(u) = ϕ−1

( d∑
i=1

ϕ(ui)

)
.

In the course of the next sections we will present the Clayton and Gumbel copula fam-
ily, but we emphasize that the presented methods can be adapted to any Archimedean
models exactly in the same way. The Gumbel copula has the generator ϕθ(u) =
[−log(u)]θ,where θ ∈ [1,+∞). Thus, the Gumbel d-copula function is given by

CGumbel(u) = exp

−

(
d∑

i=1

(− log ui)
θ

) 1
θ

 .

We should notice that the Gumbel copula belongs to another important family, too.
A copula C is called extreme value copula if C(ut

1, ..., u
t
d) = Ct(u1, ..., ud) for all

t > 0. This family consists of copulas of multivariate extreme value distributions. The
Gumbel copula is the only Archimedean copula, which is also included in the extreme
value copula family and actually it coincides with the often used logistic dependence
structure. The generator function of the Clayton copula (also known as Cook and
Johnson’s family) is given by ϕθ(u) = u−θ − 1,where θ > 0. Thus, the Clayton
d-copula function is the following

CClayton(u) =

( d∑
i=1

u−θ
i − d+ 1

)− 1
θ

.

For parameter estimation variants of the method of moments or pseudo-maximum
likelihood estimation are the most widely accepted method in the above cases. For
more details and for simulation methods see the Chapters 5-6 in [2]. For simulation
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and parameter estimation in practice the copula package of the open source R lan-
guage may be used. An illustration of the described copula models is shown by Figure
1. Here we can see the scatter plots of 2 dimensional simulations with the same sample
size n = 2000 and given strength of association (Kendall’s τ = 0.47).
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Figure 1. Left panel: simulations from the Clayton family (θ = 1.25). Right panel:
simulations from the Gumbel family (θ = 1.9). The Kendall’s τ is 0.47 in both cases.

2.2. Statistical inference from copula models

After fitting a copula model there is an important question how our choice in-
fluences the joint distribution. To tackle this, one has to transform back the results
to the original scale. As in most cases the most important questions are the quan-
tile estimators, a suitable parametric model may be preferable (especially in case of
high quantiles). In our case we assumed generalized extreme value (GEV) distributed
margins having cdf as

(2.2) F (x) = exp

{
−
(
1 + ξ

x− µ

σ

)− 1
ξ

}
,

where 1 + ξ x−µ
σ > 0. µ ∈ R is called the location parameter, σ > 0 the scale param-

eter and ξ ∈ R the shape parameter. (For instance Gumbel copula and GEV margins
together are equivalent to the well-known bivariate logistic extreme value distribu-
tion.) Instead of using the usual quantile curves obtained from the bivariate distri-
bution function, we propose constructing compact quantile-like regions by integrating
the bivariate density, as they are easily understandable graphical representations of the
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model. The bivariate density, based on the formula (2.1) can be written as

(2.3) h(x1, x2) = c(F (x1), F (x2))f1(x1)f2(x2),

where f1(x) = F ′
1(x) and f2(x) = F ′

2(x) are the marginal densities and c(u, v) =
∂2

∂u∂vC(u, v). Let

R̂(u) = {(x, y) : ĥ(x, y) ≥ u},

where ĥ is an estimator of the bivariate density h of (2.3). Then, following the notation
in [8], the prediction region for a given probability γ is defined to be R(ûγ), where
u = ûγ is the solution to the equation∫

R̂(u)

ĥ(x, y)dxdy = γ.

Prediction regions provide a rather intuitive method for visualizing the effect of the
copula choice on the original distribution.

3. Goodness-of-Fit tests

After estimating the model parameters one must be able to check the fit of the
results. Formally we intend to test the hypothesis

(3.1) H0 : C ∈ C0 = {Cθ, θ ∈ Θ},

that the dependence structure of the copula arises from a specific parametric family
C0 of copulas. The most obvious way for testing GoF is to consider multidimensional
χ2 approaches, but in this case we need to discretize the data, losing valuable infor-
mation. In order to avoid its use, dimension reducing methods can be utilized. As
usual in this context, we consider the Fj marginal distributions as nuisance parame-
ters and base all of the tests on ranks. Basically in a preliminary step we perform the
probability integral transformation (PIT) for the observations mapping them into the
d-dimensional unit cube as

Observations︷ ︸︸ ︷
Xi = (Xi1, ..., Xid) ∼ H −→PIT

Pseudo-observations︷ ︸︸ ︷
Ui = (Ui1, ..., Uid) ∼ C, for i = 1, ..., n.

The PIT is defined by Uij =
nF̂j(Xij)

n+1 =
Rij

n+1 , where F̂j denotes the empirical dis-
tribution function of the jth margin, Rij is the rank of Xij among X1j , ..., Xnj and
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n
n+1 is just a scaling factor avoiding possible problems at the boundary of [0, 1]d.
Therefore the pseudo-observations U1, ...,Un can be interpreted as a sample from
the underlying copula C. In the review paper [7] it is strongly emphasized that the
pseudo-observations are of course not really mutually independent and their compo-
nents are only approximately independent, so any construction of GoF tests should
take this fact into account, otherwise the testing procedures fail to hold their nominal
level.

One of our main aims in this paper is to give methods for investigating the effect of
(even slight or stronger) autocorrelation in the marginal components on the GoF-tests.
We have chosen Cramér-von Mises type tests as they are generally proven to be one
of the most powerful GoF methods formulated (not denoting the dependence on the
parameters) as

T = n

∞∫
−∞

(F̂ (x)− F (x))2Φ(x)dF (x),

where F̂ is the empirical cdf, F is the cdf which is to be fitted and Φ(x) is a weight
function. In the simplest case, when Φ(x) = 1 we get the Cramér-von Mises statistics,
or if the focus is on the tails we may set the weight function as Φ(x) = 1

F (x)(1−F (x)) ,
leading to the Anderson-Darling statistics

(3.2) TAD = n

∞∫
−∞

(Fn(x)− F (x))2

F (x)(1− F (x))
dF (x).

In many cases when only one of the tails is important (usually maximum for environ-
mental or insurance loss data), the Φ(x) = 1

1−F (x) weight function is suggested with
Φ(x) = 1

F (x) if the minima are in the focus of attention. The advantage of using these
weights in comparison to standard Anderson-Darling in (3.2) is that the sensitivity is
concentrated to discrepancies at the relevant tail of the distribution: see Zempléni’s
test in [11]. The computation of these statistics is straightforward. We come back to
the critical value estimation in Section 4.

3.1. Kendall’s transform

An important, widely used class of multivariate GoF statistics can be based on
the Kendall’s transform, which is the distribution function of the probability integral
transformation of the joint distribution

(3.3) K(θ, t) = P (Cθ(F1(X1), ..., Fd(Xd)) ≤ t) = P (Cθ(U1, ..., Ud) ≤ t).
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In the case of the Archimedean copula family, (3.3) can be computed as

K(θ, t) = t+

d−1∑
i=1

(−1)i

i!

[
ϕθ(t)

i
]
fi(θ, t),

where fi(θ, t) = di

dxiϕ
−1
θ (x)|x=ϕθ(t). Note that actually fi+1(θ, t) = f1(θ, t)

∂
∂tfi(θ, t),

i ∈ {1, ..., d− 1}. The K function defined this way is invariant on the marginal distri-
butions, hence it depends only on the copula of X.

The empirical version of K can be computed by the rank based pseudo-observations
as

Kn(t) =
1

n

n∑
i=1

1(Ein ≤ t), t ∈ [0, 1],

where

Ein =
1

n

n∑
j=1

1(Uj1 ≤ Ui1, ..., Ujd ≤ Uid).

For illustrations see Figure 2.
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Figure 2. Comparison between parametric Kθ of fitted copula families and the empir-
ical version Kn for the wind data.

Known tests for checking the match of the theoretical and empirical version of the
Kendall’s transform K use continuous functionals of Kendall’s process

κn(t) =
√
n(K(θn, t)−Kn(t))

having favorable asymptotic properties. There are two different kind of approaches
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investigated in [4], Cramér-von Mises type

Sn =

1∫
0

(κn(t))
2dt

and Kolmogorov-Smirnov type

Tn = sup
0≤t≤1

|κn(t)|

statistics. As the second approach is generally less powerful in detecting discrepancies
near the tails, we based our inference on the test statistics summarized by Table 1,
where (ti)

m
i=1 is an appropriately fine division of the interval (0, 1).

Table 1. Numerically approximated test statistics.

Focused Regions Test Statistics
Global K1 = 1

m

∑
ti∈[ε,1−ε]

(K(θn, ti)−Kn(ti))
2

Upper Tail K2 = 1
m

∑
ti∈[ε,1−ε]

(K(θn,ti)−Kn(ti))
2

1−K(θn,ti)

Lower Tail K3 = 1
m

∑
ti∈[ε,1−ε]

(K(θn,ti)−Kn(ti))
2

K(θn,ti)

Lower and Upper Tail K4 = 1
m

∑
ti∈[ε,1−ε]

(K(θn,ti)−Kn(ti))
2

K(θn,ti)(1−K(θn,ti))

As the limit distribution of the above statistics is not distribution-free, a simulation
algorithm is needed to get critical values. The algorithm can be performed as follows:

1. Simulate a sample from the copula model Cθ under the null-hypothesis.

2. Re-estimate θ̂ from the simulation.

3. Calculate the test statistics.

Finally one should repeat the above steps as many times as needed to an accurate
estimation of the p values, which can be compared to the computed test statistics. As
this procedure may be time consuming (especially in higher dimensions), it is worth
mentioning that in the paper [10] a quicker procedure was proposed, which is based
on a new bootstrap approach.
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4. Bootstrap methods

The bootstrap is a computer-intensive, usually non-parametric or semi-parametric
statistical method to estimate the distribution of a statistics of interest. The basic
bootstrap concept was introduced by Efron in 1979 (see [3]) and has become a popular
tool in solving many statistical problems.

4.1. The bootstrap principle

Let X1,X2, . . . be i.i.d. random variables with unknown common distribution F .
Suppose that we have a random sample Xn = {X1, . . . , Xn} and let Tn = tn(Xn;F )
be a statistics of interest. Let Gn denote the sampling distribution of Tn. Our main
purpose is to approximate the unknown distribution of Tn or its function of interest,
for example the standard error.

The (mostly referred as i.i.d.) basic bootstrap method is the following. For given
Xn, we draw a simple random sample X∗

m = {X∗
1 , . . . , X

∗
m} of size m (usually

m ≈ n) with replacement from Xn. Therefore, the common distribution of the X∗
i ’s

is given by the empirical distribution F̂n = n−1
n∑

i=1

δXi
, where δz is the probability

measure having unit mass at z. In the next step, we define the bootstrap alterego of Tn:
T ∗
m,n = tm(X∗

m; F̂n). By repeating this procedure, we can approximate the unknown
distribution Gn by its bootstrap counterpart G∗

n.

4.2. Serial dependence

Up to now, we have considered independent, identically distributed observations
for copula estimation or in the simulation of test statistics. However, in realistic cases
there is a serial correlation between the neighbouring observations. This phenomena
is widely investigated in time series analysis, and has got substantial attention in the
field of extreme value modelling. As a new utilization of copulas, Rakonczai et al.
[17] have recently published a paper on the so-called autocopulas, as a powerful tool
in investigating the serial dependence in univariate time series. The approaches above
are different from our case, where we are interested in the effect of serial dependence
on the GoF tests and on copula modelling in general.

If we have dependent data, one of the most commonly used methods is the so-
called block bootstrap, see [12] for details. In our work, we use the circular block
bootstrap (CBB) which can be defined as follows. First, we wrap the data X1, . . . , Xn

around a circle, i.e., define the series Yt = Xtmod(n)
(t ∈ N), where mod(n) denotes

"modulo n". For some m, let i1, . . . , im be a uniform sample from the set {1, 2, ..., n}.



12 P. Rakonczai, L. Varga and A. Zempléni

After that, for a specific block size (or block length) b, we construct n′ = m · b
(n′ ≈ n) pseudo-data:

Y ∗
(k−1)b+j = Yik+j−1, where j = 1, . . . , b and k = 1, . . . ,m.

At last, we can calculate the function of interest, for example the bootstrap sample
mean: Y

∗
n′ =

Y ∗
1 +...+Y ∗

n′
n′ .

Block length plays an important role in the process, and it is not trivial to determine
its optimal value. For instance, [16] suggests an "automatic" block length selection
algorithm (its correction was published in [15]) - but the practical applications of this
method is far from obvious due to the needed parameter selection.

As practically sample size is the single parameter we can modify in the critical
value simulation algorithm, we suggest to use the notion of effective sample size,
denoted by ne. It originates from the survey sampling literature (see [9]) and is used
widely in different subjects, [20] being one of the recent applications, in the area of
genetics. As an illustration of the method for determining the effective sample size,
let X1, ..., Xn be univariate stationary observations with expectation µ and standard
deviation σ and let our statistics of interest be the sample mean X . In case of i.i.d.
observations we get Var

(
X
)
= σ2

n . However, if the data are serially dependent, then
the variance of the sample mean is greater than σ2

n . In its original definition, the
effective sample size practically means the size of an independent sample from the
distribution of X1, . . . , Xn, for which the variance of the sample mean coincides with
its observed variance

Var(X) =
σ2

ne
.

From an empirical sample, σ has to be estimated as well as the variance of the sample
mean. For estimating the latter we use the circular block bootstrap method.

If the observations are multivariate, the definition of the effective sample size
changes a bit. Let X1, ...,Xn be multivariate stationary observations with expecta-
tion µ and covariance matrix Σ. Then ne is the ne ≤ n sample size for which

(4.1) tr
(
Σ(X)

)
=

tr(Σ)
ne

,

where tr(.) denotes the trace operator. In our case we have another statistics in mind,
the Kendall’s transform from above. The distribution of (3.3) can be approximated by
the circular block bootstrap as well. We use the bootstrap as defined above for this
investigation. In the next Section we present an example as an illustration to the above
methodology.
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5. Application to wind speed maxima

We applied the described modelling procedures to a 2-dimensional wind speed
dataset. The observations are daily maxima measured for the recent 50 years at Ham-
burg and Fehmarn, two locations in North Germany (from 1958 till 2007). First, the
periodicity was removed by standard local regression: the minimum of the daily av-
erages was 5.6 m/s and the maximum 6.8 m/s for both locations. Next, the trend was
removed by a linear regression (which was weak, but significant – pointing downwards
– in both of the cases). The effect of this decrease was around 0.8 m/s during the 50
years period for both locations. Finally, we calculated weekly maxima of the residuals
in order to achieve a better fit of the marginal GEV model. The autocorrelation of the
resulting approximately stationary sequence Xt is shown in Figure 3.

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Hamburg

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Fehmarn

Figure 3. Autocorrelation functions of weekly maxima of wind speed after trend
removal in Hamburg and Fehmarn.

The weekly maxima of the original data are shown on the left panel of Figure 4.
The points in the upper right corner represent weeks when there was extremely high
wind measured at both of the places. These kind of events could cause rather danger-
ous consequences (e.g. from insurance point of view) so we were more focused on
whether the fitted model was appropriate in these upper regions. As it was mentioned
in Section 3, for fitting the different models the pseudo-observations have been used.
Therefore, in the first step of the analysis we transformed the data into the unit square
with the help of the empirical univariate margins. The dependence structure among
the pseudo-observations is shown on the right panel of Figure 4.

Next we fitted a 2 dimensional VAR(1) model to Xt

Xt = AXt−1 + εt,
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Figure 4. Left panel: Weekly maxima of wind speed data (m/s). Right panel: pseudo-
observations after marginal transformations by the empirical distribution functions.

where A and C = Σ(εt) are 2×2 parameter matrices. For details about the model, see
[1] for example. The fit was reasonable, so this model was used to determine the opti-
mal block length for the block bootstrap as follows. From the estimated parameters of
the VAR(1) model we can calculate the trace of the covariance matrix of the sample
mean, which will be denoted by tr(ΣVAR(X)). After that we took for each block size
in the range of 1 to 30, 1000 circular block bootstrap samples and estimated the trace
of the covariance matrix of the sample mean, denoted by tr(Σ∗i(X)) (i = 1, . . . , 30).
The values are given in Table 2. The estimated trace derived from the VAR model
is 0.6086, so we can see from Table 2 that the closest value is for block size 8. The
final results are represented in Table 3. The Σ in the fourth column is the covariance
matrix of i.i.d. observations, simply estimated with the sample covariance matrix. The
original sample size for weekly observations was 2580 therefore the effective sample
size becomes 1571.

Table 2. The estimated trace of the covariance matrix of the bootstrapped sample mean
for different block sizes.

Block size (i) tr(Σ∗i(X)) Block size (i) tr(Σ∗i(X))

3 0.5084 10 0.6268
4 0.5361 11 0.6355
5 0.5612 12 0.6481
6 0.5790 13 0.6593
7 0.5941 14 0.6647
8 0.6101 15 0.6742
9 0.6159 16 0.6727
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Table 3. Optimal block length and sample size reduction for the pair Hamburg and
Fehmarn.

Block Reduction Sample Effective
length tr(Σ∗8(X)) tr(ΣVAR(X)) tr(Σ)

n
factor size sample size

8 0.6101 0.6086 0.3715 1.6422 2580 1571

We used the two copula models of Section 2 as candidates for our data. The
parameters of the fitted copulas were θ = 1.904 for the Gumbel, and θ = 1.247 for
the Clayton copula. See Figure 1 for simulations from these. (The models were fitted
by the copula package of R, using the widely proposed pseudo-ML estimators.) As
the next step we investigated the GoF by the K-tests, as described in Section 3. The
fitted K(θn, t) functions are displayed in Figure 2 together with the empirical Kn(t)
of the observations.

After performing the tests we found that our approach played an important role as
the critical values have increased substantially (Table 4 and Table 5). While the Clay-
ton copula was rejected for all investigated levels, the Gumbel model was accepted
for α = 0.002 when the sample size correction was taken into account (2nd and 4th
columns in Table 5). This relatively poor fit is not unusual in data analysis for sam-
ple sizes over 1000, so we carried on the modelling with the relative best option, the
Gumbel copula.

Table 4. Bootstrapped statistics with observed and critical values for Clayton copula.
The original critical values were calculated with sample size 2580, the adjusted critical
values with the effective sample size 1571.

Global Global (Adj.) Upper Tail Upper Tail (Adj.)
Observed statistics 0.00174 0.00174 0.02534 0.02534

95% 0.00007 0.00012 0.00039 0.00065
Critical values 99% 0.00011 0.00017 0.00058 0.00093

99.8% 0.00025 0.00034 0.00116 0.00166

We calculated the prediction regions to the nominal levels of 50%, 75%, 95% and
99%, as described in Section 2. These regions are depicted in Figure 5. We were
also interested in the reliability of these estimations. The possible fluctuation of the
regions were estimated based on bivariate block bootstrap samples. The block size
was 8, because this was found as the optimal size. We used the following algorithm:

1. Resampling from the wind database by block bootstrap with given b = 8 block
size.
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Table 5. Bootstrapped statistics with observed and critical values for Gumbel copula.
The original critical values were calculated with sample size 2580, the adjusted critical
values with the effective sample size 1571.

Global Global (Adj.) Upper Tail Upper Tail (Adj.)
Observed statistics 0.00028 0.00028 0.00084 0.00084

95% 0.00006 0.00010 0.00021 0.00036
Critical values 99% 0.00009 0.00014 0.00030 0.00051

99.8% 0.00016 0.00032 0.00055 0.00089

2. Estimation of its marginal GEV parameters.

3. Estimation of the parameter of the Gumbel copula (by pseudo-ML) for the boot-
strap sample.

4. Computation of the prediction regions based on the fitted model’s density.

5. After completing steps 1-4 200 times, the upper and lower confidence bounds
(inner and outer black curves on Figure 5) were computed as the 5% and 95%
level curves of the bootstrapped regions.

The number of replicas shown on Figure 5 was chosen as low as 20 just to allow the
comparison of the individual regions. The computation was quick enough to allow for
several hundreds of runs in a reasonable time.

6. Conclusions

We can summarize our findings as follows.

The serial dependence has a substantial impact on the critical values of the GoF
tests, and by the block bootstrap methodology we were able to estimate its effect. We
do hope that the effective sample size, as an easily interpretable notion will find its
place in the publications of the field. The theoretical background – in the flavour of
similar consistency results for the bootstrap – is a conjecture at the moment, we hope
to be able to prove and publish it soon. There is a straightforward generalization of the
methods to the multivariate cases, although the curse of dimensionality will definitely
hinder its applications in really high dimensions.

Another important use of the block bootstrap is in the estimation of the variability
of the prediction regions. We plan to implement it as part of the mgpd package,
within the framework of the bivariate threshold models, which is maintained by the
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Figure 5. Prediction regions estimation by bootstrap.

first author of this paper. And we do hope that other relevant packages will soon
provide similar options as they are indeed useful visualizations of the variability of
the estimated regions.
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