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Abstract. Alon’s Combinatorial Nullstellensatz (Theorem 1.1 from [2]),
and in particular the resulting nonvanishing criterion (Theorem 1.2 from
[2]) is a very useful algebraic tool in combinatorics. It has several re-
markable applications, see [4], [5], [7], [9], [10], [14], [15] for some recent
examples. It is a theorem on polynomial functions on a discrete box
S = S1 × · · · × Sn, where Si, i = 1, . . . , n are finite subsets of a field
F. It is a natural question to ask: what other finite subsets X ⊆ F allow
a similar result? Here we characterize those sets X ⊆ F

n, whose vanishing
ideal I(X) has a Gröbner basis similar to the Gröbner basis of I(S).

1. Introduction

We introduce first some notations. F will stand for an arbitrary field,
the ring of polynomials over F in variables x1, . . . , xn will be denoted by
F [x1, . . . , xn] = F [x] and, to shorten our notation, we will write f(x) for
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f(x1, . . . , xn). Vectors of length n will be denoted by boldface letter, for ex-
ample s = (s1, . . . , sn).

Let S1, S2, . . . , Sn be finite nonempty subsets of F and let

S = S1 × S2 × · · · × Sn ⊆ F
n.

For i = 1, . . . , n put

gi = gi(xi) =
∏
s∈Si

(xi − s) ∈ F [x] .

Alon’s Combinatorial Nullstellensatz (Theorem 1.1 in [2]) is a specialized and
strengthened version of the Hilbertsche Nullstellensatz for the ideal I(S) of all
polynomial functions vanishing on S. It states that if a polynomial f(x) ∈ F [x]
vanishes over all the common zeros of g1, . . . , gn (i.e. f ∈ I(S)), then there are
polynomials h1, . . . , hn ∈ F [x], satisfying deg(hi) ≤ deg(f)− deg(gi), so that

f =

n∑
i=1

higi.

From this a simple and widely applicable nonvanishing criterion (Theorem 1.2
in [2]) has been deduced. It provides a sufficient condition for a polynomial
f ∈ F [x] for not vanishing everywhere on S.

The usefulness of the Combinatorial Nullstellensatz leads naturally to the
question: what finite point sets X ⊆ F

n (other than discrete boxes) allow
a similar, possibly not much weaker, theorem to hold. Here we formulate a
weaker version of the Theorem (Theorem 3.1 (ii)) in terms of lexicographic
standard monomials. Moreover we characterize those finite point sets X for
which the weaker Nullstellensatz holds. In fact, we give two characterizations,
one in terms of the vanishing ideal I(X) of X, and one other in terms of some
combinatorial properties of X.

This note is organized as follows. After the introduction in Section 2 we
present the basic notions and facts from the theory of Gröbner bases and van-
ishing ideals. Next in Section 3 we state our main result, Theroem 3.1, and
provide some important examples. Section 4 is devoted to the proof of Theorem
3.1. At the end, in Section 5, we make some possible suggestions for further
study.

2. Preliminaries

A total order ≺ on the monomials of F [x] is a term order, if 1 is the minimal
element of ≺, and ≺ is compatible with multiplication with monomials. For an
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example of term orders consider the lexicographic ordering of monomials (lex
order for short). We have xw1

1 . . . xwn
n ≺lex xu1

1 . . . xun
n if and only if wi < ui

holds for the smallest index i such that wi �= ui.

The leading monomial lm(f) of a nonzero polynomial f ∈ F [x] is the largest
monomial (with respect to a fixed term order ≺) which appears with nonzero
coefficient in f , when written as the usual linear combination of monomials.
The leading monomial of a polynomial f together with its coefficient is called
the leading term of f and is denoted by lt(f). We denote the set of all leading
monomials of polynomials of a given ideal I�F [x] by Lm(I) = {lm(f) : f ∈ I}.
A monomial is called a standard monomial of I, if it is not a leading monomial
of any f ∈ I. Sm(I) denotes the set of standard monomials of I. Standard
monomials have some very nice properties, among other things they form a
linear basis of the F-vector space F [x] /I. The vanishing ideal of a point set
X ⊆ F

n, denoted by I(X), is the collection of all polynomials f ∈ F [x] for
which f(v) = 0 for all v ∈ X. In the case of vanishing ideals of finite point sets
|Sm(I(X))| = |X|, in particular Sm(I(X)) is finite. Ideals, where Sm(I) is
finite, i.e. F [x] /I is a finite dimensional F-vector space, are called called zero
dimensional ideals. For further details on term orders and standard monomials
see [1].

In [6] Felszeghy, Ráth and Rónyai proposed an efficient algorithm for de-
termining the standard monomials of the vanishing ideal of a finite point set
X ⊆ F when ≺ is the lexicographic order. Their method revealed that the
family of standard monomials is independent, in a sense explained below,
from F and from the embedding of X in F

n, it depends only on the prop-
erty whether 2 points coincide at some coordinate or not: if A ⊆ F is the
collection of all field elements that occur as coordinates in X, m = |A| − 1 and
if ϕi : A→ {0, 1, . . . ,m} ⊆ R, i = 1, 2, . . . , n are real valued injective functions,

then the standard monomials of the vanishing ideal I(X̂) � R[x] of the point
set

X̂ = {(ϕ1(s1), ϕ2(s2), . . . , ϕn(sn)) | (s1, s2, . . . , sn) ∈ X} ⊆ {0, 1, . . . ,m}n ⊆ R
n

with respect to the lexicographic term order are the same as those of the van-
ishing ideal I(X)� F [x].

For 1 ≤ i ≤ n, the i-section of Y ⊆ {0, 1, . . . ,m}n for n − 1 arbitrary
elements

α1, . . . , αi−1, αi+1, . . . , αn ∈ {0, 1, . . . ,m}
is defined as

Yi(α1, . . . , αi−1, αi+1, . . . , αn) = {α | (α1, . . . , αi−1, α, αi+1, . . . , αn) ∈ Y }.
Using i-sections one can define Di, the downshift operation at coordinate i.
For any finite point set Y ⊆ {0, 1, . . . ,m}n, Di(Y ) is the unique point set in
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{0, 1, . . . ,m}n, for which
(Di(Y ))i(α1, .., αi−1, αi+1, .., αn) = {0, 1, .., |Yi(α1, .., αi−1, αi+1, .., αn)| − 1}

whenever Yi(α1, . . . , αi−1, αi+1, . . . , αn) is nonempty, otherwise it is empty as
well.

From Section 10 of [13] we know that if Y ⊆ {0, 1, . . . ,m}n and ≺ is the
lexicographic term order, then for the vanishing ideal I(Y )� R[x] we have

Sm(I(Y )) = {xu | u ∈ Dn(Dn−1(. . . D1(Y ) . . . ))}.

For an ideal I � F [x] a finite subset G ⊆ I is a Gröbner basis of I with
respect to a term order ≺, if for every f ∈ I there exists g ∈ G such that lm(g)
divides lm(f). It is not hard to verify that G is actually a basis of I, that is, G
generates I as an ideal of F [x].

Let f, g ∈ F [x] and consider an arbitrary term order ≺. Suppose that there
is a monomial xw in f with nonzero coefficient cf that is divisible by lm(g).
Let the coefficient of lm(g) in g be cg and let

f̂(x) = f(x)− cf ·xw

cg·lm(g)g(x).

This operation is called a reduction of f with g. We replace xw in f by
monomials strictly less (with respect to ≺) than xw. A Gröbner basis is called
reduced if no polynomial g from G can be reduced with G\{g}.

It is a fundamental fact that every nonzero ideal I of F [x] has a Gröbner
basis (and a unique reduced Gröbner basis). The existence can be proven using
S-polynomials. The S-polynomial of nonzero polynomials f, g ∈ F [x] is

S(f, g) =
L

lt(f)
f − L

lt(g)
g,

where L is the least common multiple of the monomials lm(f) and lm(g).
Buchberger’s theorem (Theorem 1.7.4. in [1]) states that a finite set G of
polynomials in F [x] is a Gröbner basis for the ideal generated by G iff the
S-polynomial of any two polynomials from G can be reduced to 0 using G.

For proofs and a detailed introduction to Gröbner bases see [1].

If a finite set G of polynomials is a Gröbner basis of I for every term order,
then G is called a universal Gröbner basis. In terms of Gröbner bases Alon’s
Combinatorial Nullstellensatz actually states that the polynomials g1, . . . , gn
form a universal Gröbner basis of the vanishing ideal I(S) and that

Sm(I(S)) = {xs | si < |Si| for all i}
for every term order.



A note on the Combinatorial Nullstellensatz 253

3. Main result

The main result of this note is a generalization of Alon’s Combinatorial
Nullstellensatz to a wider class of finite sets, not merely discrete boxes.

Let X ⊆ F
n be a finite point set. For 1 ≤ k ≤ n define the projection of X

to the last n− k + 1 coordinates as

Xk = {(sk, . . . , sn) | ∃s1, . . . , sk−1 ∈ F such that (s1, . . . , sn) ∈ X)} ⊆ F
n−k+1.

Theorem 3.1. For a nonempty finite set X ⊆ F
n and for positive integers

d1, . . . , dn the following are equivalent:

(i) Sm(I(X)) = {xu | ui < di for all 1 ≤ i ≤ n} with respect to the lex
order.

(ii) With respect to the lex order the reduced Gröbner basis of I(X) is of the
form {F1, . . . , Fn}, where for all 1 ≤ i ≤ n we have lm(Fi) = xdi

i .

(iii) For all k = 1, . . . , n− 1 the size of

{s ∈ F | (s, sk+1, . . . , sn) ∈ Xk}

is dk for all (sk+1, . . . , sn) ∈ Xk+1, and |Xn| = dn.

�

Several examples of such point sets can be found:

Example 3.2. Let S = S1×· · ·×Sn be a discrete box as in Alon’s original
Nullstellensatz. Here we have di = |Si| and Fi(xi, . . . , xn) = Fi(xi) =

∏
s∈Si

(xi−
s) for all i. This example shows that Theorem 3.1 is indeed a generalization of
the Combinatorial Nullstellensatz.

Example 3.3. Let a1, . . . , an be different elements from F, and consider
all possible permutations of these elements as vectors in F

n.

Pn(a1, . . . , an) = {(aπ(1), aπ(2), . . . , aπ(n)) | π ∈ Sn},

where Sn is the symmetric group of degree n. In [8] the reduced Gröbner basis
of I(Pn(a1, . . . , an)) was determined with respect to the lex order, where we
have di = i for 1 ≤ i ≤ n. For the precise polynomials and proofs see [8].
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Example 3.4. Let A be an n × n matrix with entries ai,j, 1 ≤ i, j ≤ n
from the field F, and suppose that each column contains n different elements,
i.e. ai1j �= ai2j for all j and i1 �= i2. Put

P(A) = {(a1π(1), a2π(2), . . . , anπ(n)) | π ∈ Sn},
where Sn is the symmetric group of degree n. Sets of the form P(A) are the gen-
eralizations of permutations, and clearly satisfy the the combinatorial condition
(iii) from Theorem 3.1.

In connection with norm graphs ([3]), the polynomials

fi(x1, . . . , xn) =

n∏
j=1

(xj − aij), i = 1, . . . , n

turn up, where the field elements aij satisfy the same condition as above. Their
set of common zeros is exactly P(A).

Example 3.5. For this example let F = C and for n different nonzero
complex numbers z1, z2, . . . , zn put

f(x, y) = xn − y,

g(y) = (y − z1)(y − z2) · · · (y − zn).

For 1 ≤ i ≤ n let wi be one nth root of zi, and let ε be a primitive nth root of
unity. The vanishing set of I = 〈f, g〉� C[x, y] is

X = {(εkwi, zi) | 1 ≤ i, k ≤ n} ⊆ C
2,

clearly possesses the desired combinatorial property with d1 = d2 = n, and
hence by Theorem 3.1 for the lex order we have Sm(I(X)) = {xαyβ | α, β < n}.
f, g ∈ I(X) by definition, moreover, using f and g any polynomial h ∈ C[x, y]

can be reduced to some polynomial h̃ whose degree is smaller than n both in
x and in y, and so h̃ is a linear combination of standard monomials. This
implies that f and g form a reduced Gröbner basis of I(X) with respect to the
lex order, in particular I(X) = 〈f, g〉.

Similar examples can be given in higher dimensions as well.

Example 3.6. For our last example suppose that for 1 ≤ i ≤ N we are
given a positive integer ni, a point set X(i) ⊆ F

ni satisfying property (iii)
from Theorem 3.1 and a reduced Gröbner basis Gi = {Fi1, . . . , Fini} of the
vanishing ideal I(X(i))� F[xi1, . . . , xini

] with respect to the lex order such that

lm(Fij) = x
dij

ij , 1 ≤ j ≤ ni. Now let

X = X(1) ×X(2) × · · · ×X(N) ⊆ F

N∑
i=1

ni
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and

G =

N⋃
i=1

Gi.

From the construction it follows that X satisfies the given combinatorial prop-
erty as well, and so by Theorem 3.1 for the lex order we have

Sm(X) = {xu | uij < dij for all 1 ≤ i ≤ N and 1 ≤ j ≤ ni}.
On the other hand using G any polynomial f in the variables xij, 1 ≤ i ≤ N ,

1 ≤ j ≤ ni can be reduced to a form f̃ where the degree in each variable xij is

less than dij, and so f̃ is the linear combination of standard monomials. This
implies that G is a reduced Gröbner basis of I(X).

This direct product construction allows us to combine the earlier examples
and to obtain more complicated ones.

Remark 3.1. A Gröbner basis G is called degree reducing, if for every
element g ∈ G the leading monomial lm(g) is the unique monomial of maximal
degree, i.e. deg(lm(g)) = deg(g) and for any other monomial xu occurring in
g with nonzero coefficient we have deg(xu) < deg(lm(g)).

If X ⊆ F
n is such that I(X) has a degree reducing Gröbner basis, then the

original proof of the Nonvanishing Theorem from [2] applies to obtain

Proposition 3.7. Let X ⊆ F
n be a nonempty set such that I(X) has a

degree reducing Gröbner basis for some term order. If a polynomial f ∈ F [x]
of degree d contains a standard monomial for I(X) of degree d with nonzero
coefficient, then there is some point s ∈ X where f does not vanish, i.e. f(s) �=
0.

Note that in the original case of the Nonvanishing Theorem in [2] the poly-
nomials g1, . . . , gn formed a universal degree reducing Gröbner basis. An in-
teresting feature of Example 3.5 is that it provides an example of a point set
that is not a discrete box, but we still have a degree reducing Gröbner basis
and hence a Nonvanishing Theorem. Moreover in this case by Theorem 3.1 the
condition in Proposition 3.7 reduces to a simple degree bound as in the original
Nonvanishing Theorem.

4. The proof of Theorem 3.1

In the rest of the paper ≺ will always stand for the lexicographic term
order (though the statement of Lemma 4.1 holds for any term order). First we
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prove, that (i) and (ii) in Theorem 3.1 are actually equivalent for every zero
dimensional ideal.

Lemma 4.1. Let I�F [x] be an ideal and d1, . . . , dn positive integers. Then

Sm(I) = {xu | ui < di for all 1 ≤ i ≤ n}
iff the reduced Gröbner basis of I is of the form {F1, . . . , Fn}, where for all
1 ≤ i ≤ n we have lm(Fi) = xdi

i .

Proof. First suppose that Sm(I) = {xu | ui < di for all i}. By assumption
xdi
i is a leading monomial, hence for all i there is a polynomial Fi ∈ I such

that lm(Fi) = xdi
i . The fact that the leading monomial of Fi is x

di
i just means,

that xj with j < i does not occur in Fi, i.e.

Fi ∈ F[xi, . . . , xn] ⊆ F[x1, . . . , xn] = F [x] ,

and the degree of xi in any other monomial in Fi is smaller than di. Take
an arbitrary polynomial f from I. As its leading monomial is not a standard
one, there must an index i, such that lm(Fi) = xdi

i |lm(f), meaning that the
set of polynomials G = {F1, F2, . . . , Fn} is a Gröbner basis of I with respect
to ≺. Moreover we may also assume that they form a reduced Gröbner basis,
otherwise take the polynomials one-by-one, starting with Fn, and when dealing
with Fi reduce it with respect to {Fi+1, . . . , Fn}.

For the other direction, suppose that the reduced Gröbner basis of I�F [x] is
of the form {F1, F2, . . . , Fn}, where for all 1 ≤ i ≤ n we have that lm(Fi) = xdi

i .
By the properties of Gröbner bases for any leading monomial xu ∈ Lm(I) there
is an index i such that lm(Fi) = xdi

i |xu. On the other hand, if for some mono-

mial xu there is an index i such that xdi
i |xu (i.e. di ≤ ui), then xu is the

leading monomial of the polynomial xu

x
di
i

Fi ∈ I. These facts together imply

that Sm(I) = {xu | ui < di for all 1 ≤ i ≤ n}. �

For (ii) =⇒ (iii) suppose that X ⊆ F
n is such that the reduced Gröbner

basis of I(X) is of the form G = {F1, . . . , Fn}, where for all 1 ≤ i ≤ n we
have that lm(Fi) = xdi

i . As observed in the proof of Lemma 4.1, lm(Fi) = xdi
i

implies that Fi ∈ F[xi, . . . , xn]. For k = 1, 2, . . . , n put Gk = {Fk, Fk+1, . . . , Fn}
and Ik = 〈Gk〉 � F[xk, . . . , xn]. As a special case we have that G = G1 and
I(X) = I1.

Lemma 4.2. If a polynomial f ∈ F[xk, . . . , xn] reduces to 0 using G inside
F[x1, . . . , xn], then it reduces to 0 using Gk inside F[xk, . . . , xn].

Proof. The first step in the reduction of f by G can only be by a polynomial
g ∈ Gk ⊆ G, as only these have their leading term in F[xk, . . . , xn]. For the
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polynomial f̃ , obtained after the first reduction step we have f̃ ∈ F[xk, . . . , xn]
as Gk ⊆ F[xk, . . . , xn]. The claim now follows by induction on the length of the
reduction process. �

Lemma 4.3. Gk is the reduced Gröbner basis of Ik for 1 ≤ k ≤ n.

Proof. Recall that by Buchberger’s theorem Gk is a Gröbner basis of Ik iff
the S-polynomial of any two polynomials in Gk can be reduced to 0 using Gk
inside F[xk, . . . , xn]. Now take Fi, Fj , k ≤ i < j ≤ n, and let S(Fi, Fj) be their
S-polynomial. Since G is a Gröbner basis of I(X), S(Fi, Fj) ∈ F[xi, . . . , xn] can
be reduced to 0 using G inside F[x1, . . . , xn], and so by Lemma 4.2 it can be
reduced to 0 using Gi ⊆ Gk inside F[xi, . . . , xn] ⊆ F[xk, . . . , xn].

The fact that Gk is a reduced Gröbner basis easily follows as it is a subset
of G which is a reduced basis. �

It is easily seen that Ik is a zero dimensional ideal, however a bit more is
true.

Lemma 4.4. I(Xk) = Ik

Proof. Ik ⊆ I(Xk) follows directly from the definitions. For the other direc-
tion let f be an arbitrary polynomial in I(Xk) � F[xk, . . . , xn]. Since Gk is a
Gröbner basis of Ik, to prove that f ∈ Ik it suffices to show that it can be
reduced to 0 using Gk. f ∈ I(Xk) implies that f ∈ I(X), and hence it can be
reduced to 0 using G inside F[x1, . . . , xn]. Again by Lemma 4.2 this means that
it can be reduced to 0 using Gk inside F[xk, . . . , xn] as well. �

Lemma 4.3 and 4.4 together imply that Gk = {Fk, . . . , Fn} is the reduced
Gröbner basis of the vanishing ideal I(Xk) � F[xk, . . . , xn]. Now Lemma 4.1
implies that

Sm(I(Xk)) = {xuk

k · · ·xun
n | ui < di for all k ≤ i ≤ n},

and hence by the properties of standard monomials of vanishing ideals we get

that |Xk| = |Sm(I(Xk))| =
n∏

i=k

di, in particular |Xn| = dn.

Remark 4.1. From the general properties of elimination term orders (The-
orem 2.3.4. in [1]) we know that Gk is a Gröbner basis (and hence an ideal
basis) of the elimination ideal I(X) ∩ F[xk, . . . , xn] as well, and hence

I(X) ∩ F[xk, . . . , xn] = I(Xk).

Now fix 1 ≤ k ≤ n − 1, let (sk+1, . . . , sn) ∈ Xk+1 and put h(xk) =
Fk(xk, sk+1, . . . , sn). h is a polynomial in F[xk] of degree dk. If s ∈ F is
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such that (s, sk+1, . . . , sn) ∈ Xk, then h(s) = Fk(s, sk+1, . . . , sk) = 0, i.e. s
is a root of h. By the degree bound on h, the number of such elements s is
at most dk. However |Xk| = dk · |Xk+1|, what is possible only if for all fixed
(sk+1, . . . , sn) ∈ Xk+1 the number of suitable elements s is exactly dk. This
finishes the (ii) =⇒ (iii) part of the proof.

To complete the proof of Theorem 3.1, suppose that the finite set X ⊆ F
n

satisfies the given combinatorial condition, i.e. for all k = 1, . . . , n− 1 the size
of

{s ∈ F | (s, sk+1, . . . , sn) ∈ Xk}
is dk for all (sk+1, . . . , sn) ∈ Xk+1, and |Xn| = dn. Let A be the set of all
field elements occurring as a coordinate in X and put m = |A| − 1. Fix some
injective functions ϕi : A −→ {0, 1, . . . ,m} ⊆ R, i = 1, . . . , n, and using them,

define X̂ ⊆ {0, 1, . . . ,m}n ⊆ R
n as in Section 2. By the injectivity of the ϕi’s

X̂ inherits from X its structural property, i.e. for all 1 ≤ k ≤ n−1 the number
of elements α for which (α, αk+1, . . . , αn) ∈ X̂k is dk for all (αk+1, . . . , αn) ∈
X̂k+1, and |X̂n| = dn. However in this case it is immediately seen that

Dn(Dn−1(. . . D1(X̂) . . . )) = {u ∈ N
n | ui < di for all i},

and hence

Sm(I(X)) = Sm(I(X̂)) = {xu | ui < di for all 1 ≤ i ≤ n}.

This finishes the proof of Theorem 3.1. �

Remark 4.2. By earlier arguments one can also observe that for all fixed
(sk+1, . . . , sn) ∈ Xk+1 we have

h(xk) = Fk(xk, sk+1, . . . , sn) =
∏

s : (s,sk+1,...,sn)∈Xk

(xk − s).

5. Concluding remarks

Theorem 3.1 and our examples suggest two related problems for further
study.

In [11] and [12] the authors proved several generalizations of the Combina-
torial Nullstellensatz and the Nonvanishing Theorem, in particular a version
for multisets. It would be interesting to obtain an analogue of Theorem 3.1 in
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the multiset case as well, that relates the combinatorial properties of a given
multiset to the algebraic properties of its vanishing ideal.

In Example 3.5 we introduced a wider class of point sets, not merely dis-
crete boxes, where the Nonvanishig Theorem holds in its full generality. The
conditions of Theorem 3.1 are in general not sufficient for the Nonvanishing
Theorem to hold, for example in the case of permutations, if n > 1 and the
ai’s are all different, the polynomial

f(x1, . . . , xn) =

n∑
i=1

xi −
n∑

i=1

ai

has standard monomials in its maximal degree part (x2, x3, . . . , xn are all stan-
dard monomials), but it vanishes on the whole set of permutations (it is actually
a member of the reduced Gröbner basis). It would be interesting to develop an
understanding of the finite sets X ⊆ F

n for which a version of the Nonvanishing
Theorem holds.
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and Häggkvist with the polynomial method, European Journal of Combi-
natorics, 30 (2009), 1585–1592.

[5] Felszeghy, B., On the solvability of some special equations over finite
fields, Publ. Math. Debrecen, 68 (2006), 15–23.
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