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Abstract. Lovász and his coauthors in [4] defined the notion of micro-
canonical ground state energy Êa(G, J) – borrowed from the statistical
physics – for weighted graphs G, where a ∈ Pdq is a probability distribu-
tion on {1, ..., q} and J is a symmetric q × q matrix with real entries. We
define a new version of the ground state energy Êc(G, J) = inf

a∈Ac

Êa(G, J),

called lower threshold ground state energy, where Ac = {a ∈ Pdq : ai ≥
c, i = 1, . . . , q}. Both types of energies can be extended for graphons W ,
the limit objects of convergent sequences of simple graphs. The main re-
sult of the paper is Theorem 3.2 stating that if 0 ≤ c1 < c2 ≤ 1, then the
convergence of the sequences (Êc2/q(Gn, J))n≥1 for each J ∈ Symq implies

convergence of the sequences (Êc1/q(Gn, J))n≥1 for each J ∈ Symq. As a
byproduct one can derive in a natural way the testability of minimum bal-
anced multiway cut densities – one of the fundamental problems of cluster
analysis – proved in [2].
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1. Preliminaries and notation

The main goal of this paper is to introduce and to reveal the properties of an
intermediate object between the microcanonical ground state energy (MGSE)
and ground state energy (GSE) of weighted graphs defined in [4]. For this
purpose we need to define the fundamental notions used in [3], [4], and [5] and
to cite the main results therein necessary for us, these will be given below.
The main contribution of the paper is that we give a convergence hierarchy
with respect to the aforementioned intermediate objects that are Hamiltonians
subject to certain conditions. This can be regarded as a refined version of
Theorem 2.9 (ii) from [4] combined with the equivalence assertion of Theorem
2.8 (v) from the same paper. In short, these state that MGSE convergence
implies GSE convergence. Counterexamples are provided indicating that the
implication is strict. We also reprove with the aid of the established hierarchy
one of the main results of [2]. Our motivation comes from cluster analysis,
where the minimal cut problem is a central subject of research. The graph
limit theory of Lovász et al. sheds new light on this, especially their statistical
physics correspondence suits for application in the cluster analysis setting.

We consider both unweighted simple graphs G (graphs without loops and
multiple edges) and weighted graphs. We denote the node and edge sets of G
by V (G) and E(G), respectively. Usually we denote by αi = αi(G) > 0 the
weight associated with the node i and βij = βij(G) ∈ R the weight associated
with the edge ij. We set αG =

∑
i

αi(G).

Definitions 1.1 - 1.9 (except 1.7) are borrowed from [3] and [4]. In order to
facilitate the reading, at every definition we indicate its exact place of occur-
rence.

Definition 1.1. ([3] Definition 3.1.) Let W denote the space of bounded
symmetric measurable functions W : [0, 1]2 → R, that is W (x, y) = W (y, x).
Assume that the functions W ∈ W take their values in an interval I and call
them graphons.

Usually I = [0, 1]. We can think of the interval [0, 1] as the set of nodes
of graph with a node set that has cardinality continuum, and of the values
W (x, y) as the weight of the edge xy.

Definition 1.2. ([4] Definition 2.4.) Let G and G′ be two weighted graphs
with node set V and V ′, respectively. For i ∈ V and u ∈ V ′ set μi = αi(G)/αG

and μ′u = αu(G
′)/αG′ . Then we define the set of fractional overlays χ(G,G′)

as the set of probability distributions X on V × V ′ (or couplings of μ and μ′)
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such that∑
u∈V ′

Xiu = μi for all i ∈ V, and
∑
i∈V

Xiu = μ′u for all u ∈ V ′,

and set

(1.1) δ�(G,G′) = min
X∈χ(G,G′)

max
S,T⊂V×V ′

∣∣∣∣∣∣∣∣
∑

(i,u)∈S
(j,v)∈T

XiuXjv (βij(G)− βuv(G
′))

∣∣∣∣∣∣∣∣ .
The distance defined in Definition 1.2 can be extended to graphons in terms

of the cut norm.

Definition 1.3. ([3] formula (3.3)) The cut norm of a graphon W is given
by

‖W‖� = sup
S,T⊂[0,1]

∣∣∣∣∣∣
∫

S×T

W (x, y)dxdy

∣∣∣∣∣∣(1.2)

= sup
f,g : [0,1]→[0,1]

∣∣∣∣∫ W (x, y)f(x)g(y)dxdy

∣∣∣∣ ,
where the suprema go over measurable subsets and functions, respectively.

Definition 1.4. ([4] formula (3.3)) The cut distance of two graphons U
and W is defined as

(1.3) δ�(U,W ) = inf
φ

‖U −Wφ‖�,

where the infimum goes over all measure preserving permutations of [0, 1], and
Wφ is given by Wφ(x, y) = W (φ(x), φ(y)).

Now we define three versions of the ground state energies (GSE) borrowed
from the statistical physics that are the objects investigated in this paper (for
the mathematical treatment of statistical physics, see, e.g. Sinai’s book [6]).
They are defined in terms of a finite set of states [q] = {1, . . . , q}, and a sym-
metric q × q matrix J with entries in R, the set of these matrices is denoted
by Symq. A spin configuration on a simple or weighted graph G is given by a
map φ : V (G) → [q].

Definition 1.5. ([4] formulae (2.8) and (2.11)) The energy density of a
spin configuration of G with respect to J is given by

(1.4) Eφ(G, J) = − 2

|V (G)|2
∑

uv∈E(G)

Jφ(u)φ(v).
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The ground state energy (GSE) of G with respect to J is

Ê(G, J) = min
φ : V (G)→[q]

Eφ(G, J).

For a graphon W and a ρ = (ρ1, . . . , ρq) with ρi : [0, 1] → [0, 1] being measurable
and satisfying

∑
i

ρ(x) = 1 for each x ∈ [0, 1] called q-fractional partition the

energy is defined as

Eρ(W,J) = −
q∑

i,j=1

Jij

∫
[0,1]2

ρi(x)ρj(y)W (x, y)dxdy,

and the GSE is
E(W,J) = min

ρ
Eρ(W,J).

Let Pdq be the set of all probability distributions on [q].

Imposing some restrictions on the set where the minimum is taken in the
above definition we can define another version of energies that are important
in graph limit theory.

Definition 1.6. ([4] formula (2.14)) The microcanonical ground state en-
ergy (MGSE) of G with respect to J ∈ Symq and a probability distribution
a = (a1, . . . , aq) ∈ Pdq is defined using the set

(1.5) Ωa(G) =
{
φ : V (G) → [q] :

∣∣|φ−1({i})| − ai|V (G)|∣∣ ≤ 1 for all i ∈ [q]
}
,

and is the quantity

(1.6) Êa(G, J) = min
φ∈Ωa(G)

Eφ(G, J).

Let ωa =

{
ρ :

1∫
0

ρi(x)dx = ai for all i ∈ [q]

}
be a subset of q-fractional parti-

tions. Then the MGSE of a graphon W is defined as

Ea(W,J) = min
ρ∈ωa

Eρ(W,J).

Next we introduce the central object of our current investigation.

Definition 1.7. Let G be a simple graph, q ≥ 1, J ∈ Symq, and 0 ≤ c ≤
1/q. We define the set Ac = {a ∈ Pdq : ai ≥ c, i = 1, . . . , q}, and with its
help the lower threshold ground state energy (LTGSE):

(1.7) Êc(G, J) = inf
a∈Ac

Êa(G, J).
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In a similar manner we introduce the LTGSEs for a graphon W for q ≥ 1,
J ∈ Symq, and 0 ≤ c ≤ 1/q lower threshold:

(1.8) Ec(W,J) = inf
a∈Ac

Ea(W,J).

We remind the reader of the definition of testability of simple graph pa-
rameters. Before doing it, we should define the randomization procedure for
graphs, used here.

Definition 1.8. ([3] Introduction of Section 2.5.3.) For a graph G and a
positive integer k let G(k,G) denote the random induced subgraph G[S] where
S is chosen uniformly from all subsets of V (G) of cardinality k.

Definition 1.9. ([3] Definition 2.11.) A real function f defined on the set
of simple graphs is a testable simple graph parameter, if for every ε > 0 there
exists a k = k(ε) ∈ N such that for every simple graph G on at least k vertices

P (|f(G)− f(G(k,G))| > ε) < ε.

All the above definitions can be extended to weighted graphs in an analogous
way.

This paper is organized as follows. In the second section we prove yet
another equivalent condition to left-convergence of a graph sequence relying
on a subclass of MGSE, the reasoning will be instrumental for the proof of
our main result in the subsequent section. In the third section we study the
convergence of LTGSEs, see (1.8) for their definition. We will consider c : N →
[0, 1] threshold functions with the property that c(q)q is constant as a function
of q. For this case we will prove that if 0 ≤ c1(q) < c2(q) ≤ 1/q (for all q),
then the convergence of (Ec2(q)(Wn, J))n≥1 for all q ≥ 1, J ∈ Symq implies the

convergence of (Ec1(q)(Wn, J))n≥1 for all q ≥ 1, J ∈ Symq.

In the fourth section we provide some examples of graphs and graphons
which support the fact, that the implication of convergence in the third sec-
tion is strict in the sense that convergence of LTGSE sequences with smaller
threshold do not imply convergence of LTGSE sequences with larger threshold
in general. We also present a one-parameter family of block-diagonal graphons
whose elements can be distinguished by LTGSEs for any threshold c > 0, but
not by GSEs.

2. Microcanonical convergence

We start by showing that for each discrete probability distribution with
rational probabilities there exists a uniform probability distribution, such that
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the microcanonical ground state energies (MGSE) of it can be expressed as
MGSEs corresponding to the uniform distribution.

Lemma 2.1. Let q, q′ ≥ 1, and a ∈ Pdq be such that a = (a1, . . . , aq), and
aiq

′ is a positive integer for all i ∈ [q]. Then for all J ∈ Symq there exists a
J ′ ∈ Symq′ , such that for b = (1/q′, . . . , 1/q′) ∈ Pdq′ and every graphon W it
holds that

Ea(W,J) = Eb(W,J ′).

Proof. If the i-th component of a is 0, then erase this component from a, and
also erase the i-th row and column of J . This transformation clearly will have

no effect on the value of the GSE. Set k0 = 0, and ki = q′
i∑

j=1

aj for each i ∈ [q].

Let us define the q′ × q′ matrix J ′ by blowing up rows and columns of J in
the following way. For each u, v ∈ [q′] let J ′uv = Jij , where ki−1 < u ≤ ki and
kj−1 < v ≤ kj . The matrix J ′ defined this way is clearly symmetric.

Now we will show that for every q-fractional partition with distribution a
there exists a q′-fractional partition ρ′ with distribution b such that Eρ(W,J) =
Eρ′(W,J ′), and vice versa. On one hand, for 1 ≤ u ≤ q′ let ρ′u = ρi

ki−ki−1
, where

ki−1 < u ≤ ki. Then

Eρ′(W,J ′) = −
q′∑

u,v=1

J ′u,v

∫
[0,1]2

ρ′u(x)ρ
′
v(y)W (x, y)dxdy

= −
q∑

i,j=1

Ji,j

ki∑
l=ki−1+1

kj∑
h=kj−1+1

∫
[0,1]2

ρ′l(x)ρ
′
h(y)W (x, y)dxdy

= Eρ(W,J).

On the other hand, for 1 ≤ i ≤ q let ρi :=
ki∑

l=ki−1+1

ρ′l. Then

Eρ(W,J) = −
q∑

i,j=1

Ji,j

∫
[0,1]2

ρi(x)ρj(y)W (x, y)dxdy

= −
q∑

i,j=1

Ji,j

ki∑
l=ki−1+1

kj∑
h=kj−1+1

∫
[0,1]2

ρ′l(x)ρ
′
h(y)W (x, y)dxdy

= −
q′∑

u,v=1

J ′u,v

∫
[0,1]2

ρ′u(x)ρ
′
v(y)W (x, y)dxdy = Eρ′(W,J ′).
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So we conclude that

Ea(W,J) = inf
ρ∈ωa

Eρ(W,J) = inf
ρ′∈ωb

Eρ′(W,J ′) = Eb(W,J ′).

�
First we show that the MGSE with fixed parameters W , J are close, when-

ever their corresponding probability distribution parameters are close to each
other.

Lemma 2.2. Let q ≥ 1, J ∈ Symq, and W be an arbitrary graphon. Then
for a,b ∈ Pdq we have that

|Ea(W,J)− Eb(W,J)| < 2‖a− b‖1‖W‖∞‖J‖∞.

Proof. Let ρ ∈ ωa, let us construct according to this a ρ′ ∈ ωb the following
way. First let us line up those i’s, for which bi ≥ ai, for simplicity index them
by integers from 1 to k. Let ρ′1 be such, that ρ1(x) ≤ ρ′1(x) ≤ 1 for each

x ∈ [0, 1] and
1∫
0

ρ′1(x)dx = b1. It is clear that such a function exists. We

define ρ′2 in similar fashion: let ρ2(x) ≤ ρ′2(x) ≤ 1− ρ′1(x) for all x ∈ [0, 1] and
1∫
0

ρ′2(x)dx = b2, the existence is again clear. We define subsequently ρ′i for i’s

obeying bi ≥ ai by taking care that

ρi(x) ≤ ρ′i(x) ≤ 1−
⎡⎣i−1∑
j=1

ρ′j(x)

⎤⎦
holds at each step. In the other case, when bi < ai, we reverse the inequality
we wish to be satisfied by the functions ρi and ρ′i, and define ρ′i accordingly.
For the constructed ρ′i either ρ′i(x) ≤ ρi(x) for all x ∈ [0, 1], or ρ′i(x) ≥ ρi(x)
for all x ∈ [0, 1], and additionally

∑
i

ρi(x) = 1. Hence

‖ρ− ρ′‖1 =

q∑
i=1

1∫
0

|ρi(x)− ρ′i(x)| dx =

q∑
i=1

∣∣∣∣∣∣
1∫

0

ρi(x)− ρ′i(x)dx

∣∣∣∣∣∣
=

q∑
i=1

|ai − bi| = ‖a− b‖1.
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Now we give an upper bound on the deviation of MGSEs.

|Eρ(W,J)− Eρ′(W,J)|

=

∣∣∣∣∣∣∣
q∑

i,j=1

Ji,j

∫
[0,1]2

(ρi(x)ρj(y)− ρ′i(x)ρ
′
j(y))W (x, y)dxdy

∣∣∣∣∣∣∣
≤ ‖W‖∞‖J‖∞

q∑
i,j=1

∫
[0,1]2

∣∣ρi(x)ρj(y)− ρi(x)ρ
′
j(y)
∣∣

+
∣∣ρi(x)ρ′j(y)− ρ′i(x)ρ

′
j(y)
∣∣ dxdy

≤ ‖W‖∞‖J‖∞
q∑

i,j=1

ai‖ρj − ρ′j‖1 + bj‖ρi − ρ′i‖1

= 2‖a− b‖1‖W‖∞‖J‖∞.

The second inequality follows by Fubini’s theorem. From the definition of
MGSE the statement of the lemma follows. �

With the aid of the two previous lemmas we are able to prove the main
assertion of the section. In the statement of the following theorem the LTGSE
expression E1/q(W,J) (which is equal to Eb(W,J), with b = (1/q, . . . , 1/q))
appears, the notion will further be generalized in what follows later on.

Theorem 2.1. Let I be a bounded interval, and (Wn)n≥1 a sequence of
graphons from WI . If for all q ≥ 1 and J ∈ Symq the sequences (E1/q(Wn, J))n≥1

converge, then for all q ≥ 1, a ∈ Pdq, and J ∈ Symq the sequences (Ea(Wn, J))n≥1

converge.

Proof. Let q ≥ 1, a ∈ Pdq and J ∈ Symq be arbitrary and fixed. We
will prove that whenever the conditions of the theorem are satisfied, then
(Ea(Wn, J))n≥1 is Cauchy convergent. Fix an arbitrary ε > 0. Let q′ be
such that 4 q

q′ ‖I‖∞‖J‖∞ < ε
3 , and let b ∈ Pdq be such that bi = [ai/q

′]

(i = 1, . . . , q − 1), bq = 1−
q−1∑
i=1

bi (where [x] is the lower integer part x). Then

‖a− b‖1 =

q∑
i=1

|ai − bi| ≤ 2
q − 1

q′
< 2

q

q′
.

b is a q′-rational distribution, so by Lemma 2.1 there exists J ′ ∈ Symq′ , such
that for all n ≥ 1

Eb(Wn, J) = E1/q′(Wn, J
′).
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It follows from the conditions of the theorem that there exists n0 ∈ N such that

for all m,n ≥ n0 it is true that
∣∣∣E1/q′(Wn, J

′)− E1/q′(Wm, J ′)
∣∣∣ < ε

3 . Applying

Lemma 2.2 to all m,n ≥ n0 we get that

|Ea(Wn, J)− Ea(Wm, J)| ≤ |Ea(Wn, J)− Eb(Wn, J)|
+ |Eb(Wn, J)− Eb(Wm, J)|+ |Eb(Wm, J)− Ea(Wm, J)|

≤ 2‖a− b‖1‖I‖∞‖J‖∞ +
∣∣∣E1/q′(Wn, J

′)− E1/q′(Wm, J ′)
∣∣∣

+ 2‖a− b‖1‖I‖∞‖J‖∞
≤ ε

3
+

ε

3
+

ε

3
= ε.

�
We remark that Theorem 2.1 also appears in [4] as Corollary 7.4, but its

proof follows a different line of thought in the present paper.

3. Weaker convergence, lower threshold microcanonical ground state
energies

In various cases of testing, for certain cuts of graphs neither the notion of
ground state energies, nor the notion of microcanonical ground state energies
is satisfactory. For example when investigating clusteredness of a graph in a
certain sense the GSE notion becomes useless, because the partition for which
energies attain the minimal value are trivial partitions. On the other hand, in
many applications one only asks for a lower bound on the size of these classes to
keep a grade of freedom of the ground state case and at the same time achieve
a balance with respect to the sizes of classes. Our setting can be regarded as
an intermediate energy notion that manages to get rid of values corresponding
to trivial partitions. Recall Definition 1.7 of the lower threshold ground state
energies.

The next theorem will deliver an upper bound on the difference of the
MGSEs of G and WG for fixed a and J , WG is the graphon constructed from
the adjacency matrix of G in the natural way. A straightforward consequence
of this will be the analogous statement for the LTGSEs.

Theorem 3.1. [4] Let G be a weighted graph, q ≥ 1, a ∈ Pdq, and J ∈
Symq. Then∣∣∣Êa(G, J)− Ea(WG, J)

∣∣∣ ≤ 6q3
αmax(G)

αG
βmax(G)‖J‖∞.
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Since the upper bound in the theorem for a given q does not depend on a,
it is easily possible to apply it to the LTGSEs.

Corollary 3.1. Let G be a weighted graph, q ≥ 1, 0 ≤ c ≤ 1/q, and
J ∈ Symq. Then∣∣∣Êc(G, J)− Ec(WG, J)

∣∣∣ ≤ 6q3
αmax(G)

αG
βmax(G)‖J‖∞.

Based on the preceding facts we are able to perform analysis on the LTGSEs
in the same way as the authors of [4] did in the case of MGSE.

Corollary 3.2. Let Gn be a sequence of weighted graphs with uniformly

bounded edge weights, and αmax(Gn)
αGn

→ 0 (n → ∞). Then for all q ≥ 1,

0 ≤ c ≤ 1/q, and J ∈ Symq the sequences (Êc(Gn, J))n≥1 converge if, and only
if (Ec(WGn

, J))n≥1 converge, and in that case

lim
n→∞ Êc(Gn, J) = lim

n→∞ Ec(WGn , J).

Recall the definition of testability, Definition 1.9. It was shown in [3], among
presenting other characterizations, that the testability of a graph parameter f is
equivalent to the existence of a δ�-continuous extension f̂ of f to the space WI ,
where extension here means that f(Gn)− f̂(WGn) → 0 whenever |V (Gn)| → ∞
(see [3], Theorem 6.1, the equivalence of (a) and (d)). Using this we are able
to present yet another consequence of Theorem 3.1, that was verified earlier
using a different approach in [2] (see also [1], Chapter 4).

Corollary 3.3. For all q ≥ 1, 0 ≤ c ≤ 1/q, and J ∈ Symq the simple graph

parameter f(G) = Êc(G, J) is testable. Choosing J appropriately, f(G) can be
regarded as a type of balanced multiway minimal cut in [2].

Proof. Let q ≥ 1, 0 ≤ c ≤ 1/q and J ∈ Symq be fixed, and we define f̂(W ) =

Ec(W,J). It follows from Corollary 3.1 that f(Gn) − f̂(WGn) → 0 whenever

|V (Gn)| → ∞. It remains to show that f̂ is δ�-continuous. To elaborate on
this issue, let U,W ∈ WI and φ be a measure-preserving permutation of [0, 1]
such that δ�(U,W ) = ‖U − Wφ‖�, and let ρ = (ρ1, . . . , ρq) be an arbitrary
fractional partition. Then

∣∣Eρ(U, J)− Eρ(Wφ, J)
∣∣ ≤ q∑

i,j=1

|Jij |

∣∣∣∣∣∣∣
∫

[0,1]2

(U −Wφ)(x, y)ρi(x)ρj(y)dxdy

∣∣∣∣∣∣∣
≤ q2‖J‖∞‖U −Wφ‖� = q2‖J‖∞δ�(U,W ).(3.1)
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This implies our claim, as Ea(W,J) = Ea(Wφ, J) for any a ∈ Pdq, and any φ
that is a measure preserving permutation, and the fact that the right-hand side
of (3.1) does not depend on a, and that by definition Ec(W,J) = inf

a∈Ac

Ea(W,J).

�
In order to analyze the convergence relationship of LTGSEs with different

thresholds for a given graph sequence it is sensible to consider c as a function
of q. We restrict our attention to lower threshold functions c with c(q)q be-
ing constant, which means that in the case of graphons the total size of the
thresholds stays the same relative to the size of the interval [0, 1] (in the case
of graphs relative to the cardinality of the vertex set). The main statement
of the current section informally asserts that the convergence of LTGSEs with
larger lower threshold imply convergence of all LTGSEs with smaller ones. By
the results of the previous section we know that in the case of c(q) = 1/q the
convergence of these LTGSEs is equivalent convergence of the MGSEs for all
probability distributions, and by this, according to [4], to left convergence of
graphs. Moreover, in the case of c(q) = 0 it is equivalent to the convergence
of the unrestricted GSEs, that property is known to be strictly weaker than
left convergence. For technical purposes we introduce general LTGSEs and
will refer to the previously presented notion in all that follows as homogeneous
LTGSEs.

Definition 3.1. Let q ≥ 1, x = (x1, . . . , xq), x1, . . . xq ≥ 0, and
q∑

i=1

xi ≤ 1,

and let Ax = {a ∈ Pdq : ai ≥ xi, i = 1, . . . , q}. For a graphon W and J ∈
Symq we call the following expression the lower threshold ground state energy
corresponding to x:

Ex(W,J) = inf
a∈Ax

Ea(W,J).

The definition of Êx(G, J) for graphs is analogous.

Similarly to Lemma 2.1, the convergence of homogeneous LTGSEs is equiv-
alent to the convergence of certain general LTGSEs.

Lemma 3.1. Let I be a bounded interval, (Wn)n≥1 a sequence of graphons
in WI . Let c be a lower threshold function, so that c(q)q = h for all q ≥ 1
and for some 0 ≤ h ≤ 1. If for all q ≥ 1, and J ∈ Symq the sequences

(Ec(q)(Wn, J))n≥1 converge, then for all q ≥ 1, all

(3.2) x = (x1, . . . , xq) x1, . . . , xq ≥ 0

q∑
i=1

xi = h,

and J ∈ Symq, the sequences (Ex(Wn, J))n≥1 also converge.
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Proof. Fix an arbitrary graphon W from WI , q ≥ 1, and J ∈ Symq, and an
arbitrary vector x that satisfies condition (3.2). Select for each of these vectors
x a positive vector x′ that obeys the condition (3.2), and that has components
which are integer multiples of c(q′) (q′ will be chosen later), so that

‖x− x′‖1 ≤ 2qc(q′) = 2h
q

q′
.

The sets Ax and Ax′ have Hausdorff distance in the L1-norm at most ‖x−x′‖1,
in particular for every a ∈ Ax there exists a b ∈ Ax′ , such that ‖a − b‖1 ≤
‖x − x′‖1, and vice versa. Let ε > 0 be arbitrary, and a ∈ Ax be such that
Ex(W,J) + ε > Ea(W,J) holds. Then by applying Lemma 2.2 we have that

Ex′(W,J)− Ex(W,J) < Ex′(W,J)− Ea(W,J) + ε

≤ Eb(W,J)− Ea(W,J) + ε

≤ 2‖a− b‖1‖W‖∞‖J‖∞ + ε

≤ 2‖x− x′‖1‖W‖∞‖J‖∞ + ε.

The lower bound of the difference can be handled similarly, and therefore by
the arbitrary choice of ε it holds that∣∣∣Ex′(W,J)− Ex(W,J)

∣∣∣ ≤ 2‖x− x′‖1‖W‖∞‖J‖∞ ≤ 4h
q

q′
‖I‖∞‖J‖∞.

With completely analogous line of thought to the proof of Lemma 2.1, one
can show that there exists a J ′ ∈ Symq′ such that Ex′(W,J) = Ec(q′)(W,J ′).
Finally, choose q′ small enough in order to satisfy 4h q

q′ ‖I‖∞‖J‖∞ < ε
3 , and

n0 > 0 large enough, so that for all m,n ≥ n0 the relation∣∣∣Ec(q′)(Wn, J
′)− Ec(q′)(Wm, J ′)

∣∣∣ < ε

3

holds.

Then for all m,n ≥ n0:

|Ex(Wn, J)− Ex(Wm, J)| <
∣∣∣Ex(Wn, J)− Ex′(Wn, J)

∣∣∣
+
∣∣∣Ec(q′)(Wn, J

′)− Ec(q′)(Wm, J ′)
∣∣∣+ ∣∣∣Ex′(Wm, J)− Ex(Wm, J)

∣∣∣
<

ε

3
+

ε

3
+

ε

3
= ε.

We did not only prove the statement of the lemma, but we also showed that
the convergence is uniform in the sense that n0 does not depend on x for fixed
q and J . �
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With the aid of the former lemma we can now prove that if all homogeneous
LTGSEs with large thresholds converge, then all homogeneous LTGSEs with
smaller ones also converge.

Theorem 3.2. Let I be a bounded interval, (Wn)n≥1 a sequence of graphons
in WI . Let c1, c2 be two lower threshold functions, so that c1(q)q = h1 < h2 =
c2(q)q for all q ≥ 1 for some 0 ≤ h1, h2 ≤ 1. If for every q ≥ 1 and J ∈ Symq

the sequences (Ec2(q)(Wn, J))n≥1 converge, then for every q ≥ 1 and J ∈ Symq

the sequences (Ec1(q)(Wn, J))n≥1 also converge.

Proof. From Lemma 3.1 it follows that if the conditions of the theorem are
satisfied then for every q ≥ 1, every

(3.3) x = (x1, . . . , xq) x1, . . . xq ≥ 0

q∑
i=1

xi = h2,

and J ∈ Symq the sequences (Ex(Wn, J))n≥1 converge, for fixed q and J uni-
formly in x.

Fix q. Our aim is to find for all a ∈ Ac1(q) an x, so that the condition
(3.3) is satisfied, a ∈ Ax, and Ax ⊆ Ac1(q), where the last two properties are
equivalent to saying that c1(q) ≤ xi ≤ ai for i = 1, . . . , q. As h1 < h2 ≤ 1,
there exists such an x for all a ∈ Ac1(q), let us denote it by xa, for convenience

set (xa)i = h1

q + ai−h1

1−h1
(h2 − h1). According to this correspondence we have

Ac1(q) =
⋃

a∈Ac1(q)

Axa . So for an arbitrary graphon W and J ∈ Symq we have

Ec1(q)(W,J) = inf
a∈Ac1(q)

Exa(W,J).

We fix ε > 0, J ∈ Symq, and apply Lemma 3.1 for the case that the conditions of
the theorem are satisfied. Then there exists a n0 ∈ N, so that for all n,m > n0,
and for all x which satisfies (3.3), and we have that

|Ex(Wn, J)− Ex(Wm, J)| < ε.

Let ε′ > 0 be arbitrary and b ∈ Ac1(q) such that Ec1(q)(Wm, J) + ε′ >
Exb(Wm, J). Then

Ec1(q)(Wn, J)− Ec1(q)(Wm, J) < Ec1(q)(Wn, J)− Exb(Wm, J) + ε′

≤ Exb(Wn, J)− Exb(Wm, J) + ε′ < ε+ ε′.

The lower bound of Ec1(q)(Wn, J)−Ec1(q)(Wm, J) can be established similarly
and as ε′ was arbitrary, it follows that∣∣∣Ec1(q)(Wn, J)− Ec1(q)(Wm, J)

∣∣∣ < ε,
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which verifies the statement of the theorem. �
A direct consequence is the version of Theorem 3.2 for weighted graphs.

Corollary 3.4. Let Gn be a sequence of weighted graphs with uniformly

bounded edge weights, and αmax(Gn)
αGn

→ 0 (n → ∞). Let c1 and c2 be two

lower threshold functions, so that c1(q)q = h1 < h2 = c2(q)q for all q ≥ 1
for some 0 ≤ h1, h2 ≤ 1. If for every q ≥ 1 and J ∈ Symq the sequences

(Êc2(q)(Gn, J))n≥1 converge, then for every q ≥ 1 and J ∈ Symq the sequences

(Êc1(q)(Gn, J))n≥1 also converge.

The proof of Corollary 3.4 can be easily given through the combination of
the results of Theorem 3.1 and Theorem 3.2.

Concluding this section we would like to mention a natural variant of the
LTGSEs, the upper threshold ground state energies (UTGSE). Here we will
only give an informal description of the definition and the results and leave
the details to the reader, everything carries through analogously to the above.
The homogeneous UTGSE, denoted by Êc↑(G, J), is determined by a formula
similar to (1.7) with the set Ac replaced by Ac, that is the set of proba-
bility distributions whose components are at most c, the general variant of
the UTGSE is defined in the same manner. The equivalence corresponding
to the one stated in Lemma 3.1 between the convergence of the general and
the homogeneous version follows by the same blow-up trick as there, here for
c(q)q = h ≥ 1. The counterpart of Theorem 3.2 also holds true in the follow-
ing form for 1 ≤ c2(q)q ≤ c1(q)q ≤ q: If for every q ≥ 1 and J ∈ Symq the

sequences (Ec2(q)↑(Wn, J))n≥1 converge, then for every q ≥ 1 and J ∈ Symq

the sequences (Ec1(q)↑(Wn, J))n≥1 also converge. This conclusion comes not
unexpected, it says, as in the LTGSE case, that less restriction on the set Ac

weakens the convergence property of a graph sequence.

4. Counterexamples

In this section we provide an example of a graphon family whose elements
can be distinguished for a larger c2(q) lower threshold function for some pair
of q0 ≥ 1 and J0 ∈ Symq by looking at Ec2(q0)(W,J0), but whose LTGSEs
are identical for some smaller c1(q) lower threshold function for all q ≥ 1 and
J ∈ Symq. Based on this it is possible to construct a sequence of graphs,
whose c1(q)-LTGESs converge for every q ≥ 1 and J ∈ Symq, but not the
c2(q)-LTGSEs through the same randomized method presented in [4] to show
a non-convergent graph sequence with convergent ground state energies.
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In the second part of the section we demonstrate that there exist a family
of graphons, where elements can be distinguished from each other by looking
only at their LTGSEs for an arbitrary small, but positive c(q) lower threshold
function, but whose corresponding GSEs without any threshold are identical.

Example 4.1. An example which can be treated relatively easily are block-
diagonal graphons which are defined for the parameters 0 ≤ α ≤ 1, 0 ≤ β1, β2

as

W (x, y) =

⎧⎨⎩
β1, if 0 ≤ x, y ≤ α,
β2, if α < x, y ≤ 1,
0, else.

In the case of c(q)q = h, 1−α ≥ h, β2 = 0, for arbitrary q ≥ 1 and J ∈ Symq

we have E(W,J) = Ec(q)(W,J). Choosing β1 = 1
α2 , we get a one parameter

family of graphons which have identical c(q)-LTGSEs parametrized by α with
0 < α ≤ 1−h for every W ∈ W[0,1]. This means that Ec(q)(W (α), J) = E(I, J),
where I stands for the constant 1 graphon.

For every α0 > 1 − h there are q ≥ 1 and J ∈ Symq, so that the for-
mer equality does not hold anymore. Let Jq ∈ Symq be the q × q matrix,
whose diagonal entries are 0, all other entries being −1 (this is the q-partition
mincut problem). Then E(I, Jq) = 0 for all q ≥ 1, but for q0 large enough
Ec(q0)(W (α0), Jq0) > 0, we leave the details to the reader.

With the aid of the previous example it is possible to construct a sequence
of graphs which verify that in Theorem 3.2 the implication of the convergence
property of the sequence is strictly one-way. This example is degenerate in the
sense that the graphs consist of a quasi-random part and a sub-dense part with
the bipartite graph spanned between the two parts also being sub-dense.

Example 4.2. Let us consider block-diagonal graphons with 0 < α < 1,
β1, β2 > 0. It was shown in [4] that if we restrict our attention to a subfamily
of block-diagonal graphons, where α2β1 + (1−α)2β2 is constant, then in these
subfamilies the corresponding GSEs are identical. Let c(q) be an arbitrarily
small positive threshold function. Next we will show that the c(q)-LTGSEs
determine the parameters of the block-diagonal graphon at least for a one-
parameter family (up to graphon equivalence, since (α, β1, β2) belongs to the
same equivalence class as (1 − α, β2, β1)). The constant δij is 1, when i = j,
and 0 otherwise.

The value of the expression α2β1+(1−α)2β2 is determined by the MAXCUT
problem by E(W,J) with q = 2 and Jij = 1− δij .

In the second step let q0 be as large so that c(q0) < min{α, 1−α} holds, and
let J be the q0×q0 matrix with entries Jij = −δi1δj1. In this case E(W,J) = 0,

but simple calculus gives −Ec(q0)(W,J) = − β1β2

β1+β2
c(q0)

2. Hence 1
β1

+ 1
β2

is
determined by the LTGSEs.
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The extraction of a third dependency of the parameters from c(q)-LTGSEs
requires little more effort, we will only sketch details here. First consider α’s
with min{α, 1− α} ≥ c(2). Let for q = 2 and k ≥ 1 be

Jk =

(
1 −k
−k 2

)
.

For every α with min{α, 1− α} ≥ c(2) we have

lim
k→∞

−Ec(2)(W,Jk) = α2β1 + (1− α)2β2 +max{α2β1, (1− α)2β2}.

Now apply the notion of the general lower threshold. For q = 2 let c1(n) =
2c(2)/n and c2(n) = 2c(2)(n − 1)/n two threshold functions, let us first con-
sider the threshold xn = (c1(n), c2(n)). If α ≥ c1(n) or 1 − α ≥ c1(n), then
analogously to the case of the homogeneous lower thresholds

lim
k→∞

−Exn(W,Jk) = 2α2β1 + (1− α)2β2 or α2β1 + 2(1− α)2β2.

If for example α < c1(n), then it is easy to see that the LTGSE tends to
infinity, because for some k0, for all k > k0 we have

−Exn(W,Jk) < −k(c1(n)− α)c2(n)min{β1, β2}+ 2(α2β1 + (1− α)2β2).

So for fixed n then
lim
k→∞

−Exn(W,Jk) = −∞.

In order to extract the expression α2β1 + (1−α)2β2 +max{α2β1, (1−α)2β2},
we only have to consider the lower threshold obtained by swapping the bounds,
x′n = (c2(n), c1(n)).

Then, if α ≥ c1(n) or 1− α ≥ c1(n), we have

max

{
lim
k→∞

−Ex′n(W,Jk), lim
k→∞

−Ex′n(W,Jk)

}
= α2β1 + (1− α)2β2 +max{α2β1, (1− α)2β2},

otherwise

max

{
lim
k→∞

−Exn(W,Jk), lim
k→∞

−Ex′n(W,Jk)

}
= −∞.

For every α there is a minimal n0 so that one of the conditions α ≥ c1(n)
and 1 − α ≥ c1(n) is satisfied, and for n < n0 the LTGSEs corresponding to
xn and xn′ tend to infinity when k goes to infinity. Therefore the expression
α2β1 + (1− α)2β2 +max(α2β1, (1− α)2β2) is determined by c(q)-LTGSEs.
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Consider the one-parameter block-diagonal graphon family analyzed in [4],
that is W (α) = W (α, 1

α ,
1

1−α ), where 0 < α < 1. In this case the values of our
first two expressions are constant, for every 0 < α < 1 we have

1

β1
+

1

β2
= 1,

α2β1 + (1− α)2β2 = 1.

But by applying the third expression for c(q)-LTGSEs, we extract max{α2β1, (1−
α)2β2} = max{α, 1−α}, which determines the graphon uniquely in this family
up to equivalence.
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