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Abstract. We investigate the uniform distribution modulo 1 of sequence
‘;E;L)) (n € N), where a(n) and b(n) are suitable additive or multiplicative

functions. We prove that if x(n) is any of WAT";,L, a‘z’(?:) , TA(T":) (r,h, A € N)
and f(n) is an arbitrary additive function, then x(n) 4+ f(n) is uniformly
distributed mod 1.

1. Notation and introductory definitions

Let A be the set of additive, M be the set of multiplicative functions. A
function f : N — R belongs to A if f(nm) = f(n) + f(m) holds for every
coprime pairs of integers n,m. A function ¢ : N — R is multiplicative if
g(1) =1 and g(nm) = g(n)g(m) holds for every coprime pairs of integers n, m.

Let My :={geM : |g(n)] <1}
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Let P be the set of primes, w(n) be the number of distinct prime divisors
of n, 7(n) be the number of divisors of n.

Let {z} = fractional part of z. We shall write e(z) instead of e?™*.
Let x1,--- ,xn be real numbers. The discrepancy of {z;} (j =1,---,N)
is
1 .
sup ’— Z 1-(b-a)|=Dn({z;},j=1,---,N).
[a,b]C[0,1) {z;}€lab)

We say that an infinite sequence x,, (n = 1,2,---) of real numbers is uni-
formly distributed modulo 1, if

Dy({z;},j=1,---,N) =0 as N — oo.
Let p runs over P. Let P(n) be the largest prime factor of n.

Let w(z, k, ) =t{p < x| p={ (mod k),p € P}. We shall write UD mod 1
for the abbreviation of uniformly distributed mod 1.

2. Formulation of the theorems

Several papers have been published on the uniform distribution modulo 1

of the sequences a(n) = ZSZ)) (n € N), where a(n) and b(n) are either additive

or multiplicative functions. See [5]-[9]. In [8] it is proved that OGO
are UD mod 1. In [7] it is proved that v(n) = %, p(n) = w(g?:)l) are UD
mod 1if g € A, and 0 < g(p) < % and 0 < g(p*) < ¢z holds for all p € P and

a € N.

In this paper we shall investigate similar questions.

Theorem 1. Let K(n):N—N (n € N) be such a function for which

(2.1) K(n) = K(no) if P’(ﬁl) = pZZ)'
Let
(2.2) A(n) = ;(4(‘”)

where A € N, r € N are fized integers.
Let
(2.3) A(n) := GCD(An", K(n)).
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Assume that

(2.4) lim sup — h{n <z | An)>+vK(n)}=0,

(2.5) llgirisgp h{n <z | [A{EZ; <Y}=0 forevery Y >0,
(2. fmsup 150 <o | A(n) > (logn)?} < (o)

and 0(p) — 0 as p — oo.
Under the conditions (2.1)~(2.6) x(n) (mod 1) is UD mod 1.

Theorem 2. Let
An” An” An”
a(”)zw, B(n) = PR y(n) = ) (r,h, A €N).

Let k(n) be any of a(n), B(n), v(n). Let f(n) be an arbitrary additive function.
Then k(n) + f(n) is UD mod 1.

3. Some lemmas

Lemma 1. (H. Weyl [10]) A sequence x,, (n € N) is UD mod 1 if and only
if
1

2
85
-
('0
N‘
=2
§
Il
(an)

for every k € N.
Lemma 2. (Siegel-Walfisz theorem [3]) We have

m(e, k.6 = ZEQ (1 +O((logla:)5>>

uniformly as © > 2,(k,0) = 1,k < (logx)®, where ¢ is an arbitrary positive
constant. The constant implied by the error term may depend on c.

Lemma 3. (Erdds—Turdn inequality [1]) We have

Mo N
Dn(z1-+-,zn) < cl( E Al E e(kxy)
k=1 n=1

where c1 is an absolute constant, M 1is an arbitrary positive integer.

C1
)+
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Lemma 4. ([4]) Lett:N— R. Assume that for every K > 0 there exists a
finite set Py of primes p1 < ps < --- < pi such that

IEE
=P
and that for the sequences
mi,;(m) := t(pim) — t(p;m),

the relation .

1
lim ~ > e(n;(m)) =
Jim — > e(ni;(m)) =0

m=1

holds wheneveri # j,i,5 € {1,2,--- , R}. Then there exists a function p, which
tends to zero as x — oo and such that

sup f‘ f(n ‘ Pa-
2 210
Lemma 5. (Hua [2]) Let
fx)=aa" +- -+ a1z € Zlz], (ar,---,a1,q) =1.
Then

’ i e(f(qz)) ‘ <ei(re)g' e,

where € is an arbitrary positive number.

Lemma 6. Let r,A € N be fized. Let {y,...,l,q) be the set of reduced
residues modulo ¢,

Yo = Ajz (v=1,...,¢(q)
Then, for every k € N,
1 »(q)
‘M;e(k%) —0 as g — 00,k eN,

and so
Do) (1 - Yp(q)) = 0 as g — oo.
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Proof. We have

»(q) q q/d
Alr Ad"m"
Soelkn) =S e(20) T u0) = X u0) Y e(F) =
v=1 =1 4 5[(4,q) Slq m=1 q
=> u®)
dlq
where )
Lo kAT
= ()
We shall estimate the sums for § < z.
et kA" U
q = v’ (U’ V) =
Since (Akd",q) < Akz", therefore V > L~
Let us apply Lemma 5. We have
qa/d \
EAS™m™  q Um”
S ST I SR(CE)

Thus
Ako” 1 1 Ako" %75
30,1 < ARG 1=t < gy (gt e AR

1
< cpen (r, e)F,

where co = Ak. Since

> I <a/s,

therefore
‘P(Q) 1 |,LL |‘LL
|3 elkw)| < eaxerlr g —Fe YT S gy R
v=1 §5<z 5>z
Slaq Slq

Let z = /q. Observe that

Z |p, w(q) <ec c/loglogq
er  — ’

5<z
3lq
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and that 1(6)]
e $9w(a) ie
< gz2X D <O
¢) 5o < q’
5>./q
3lq
Hence we obtain that
(a) _1
1 ® ceacr (r, € 1—++4e,c3/logloggq 1/2+€
’ize(’%) < cerarlne)g 1 TP
o(q) = v(q) e(q)

The right hand side tends to zero as ¢ — oo, for every k € N. Lemma 6 follows
from Lemma 4.

4. Proof of Theorem 1

Assume that the function K (n) and positive integers A, r satisfy (2.1)—(2.6),

where k(n) = %. From Lemma 1 it is enough to prove that

1
- Z e(kr(n)) = 0 (z — o)
x n<z
for every k € N.
Let J, = {n|lz < n < 2z}. Let ¢, Y, p be positive integers. Let R, (e, Y, p)
be the set of those n € J, for which at least one of the next conditions hold:

K(n)
Am) <V

(4.1)

(4.2) A(n) > \/K(n),
(4.3) A(n) > (logn)?,
(4.4) P(n) < z°,

(4.5) n has two prime divisors p,q such that Y <p < g < 2p.

Taking into account the relations (2.4), (2.5), (2.6) the number of n € J, for
which one of (2.4), (2.5), (2.6) holds is less than Oy (1)z + cex + ¢d(p)z. The
number of n € J, satisfying (4.4) is less than

1
cxllye cpes(l — =) < cex.
p
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The number of n € J,, for which (4.5) holds is less than

1 1 1 c1x
203 p > ngz plogp = logY

p>Y T op<q<2p p>Y

Thus 1
EhRa:(ev Y7 p) < OY(l) +ce+ Cé(p)

Let Jp = Jz \ Rz(€,Y, p).
Let us classify the elements of 7.

Let n € J;,p = P(n). Then n = pm. Let us consider the primes ¢ in

[, %ﬂ We have P(m) < - since in the opposite case mP(m) > z, mp < 2z,

and so P(m) < p < 2P(m), thus n is in R, (¢,Y, p).
Let 5
x 2z
T={meZlre 700}
Let
Ti(m)= > e(kr(n)).

n€T,(m)

If n = pm € Tp(m),p = P(m), then k(n) = % and K (mp) depends only

on m. Let

= —, kB,, (mod D,,) =H,, (modm),

=— (mod1l), (Un,Vim)=1,1<Up < V.

Since V,,, < K(mp) < (logn)?, therefore we can apply the Siegel-Walfisz theo-

rem. We have U g
nm = Y ()X,

peli 53

- @(Il/m) (W(ini) B W(%)) + O((p(Vm)mflog :C)5e5)'
We have T}, (m) = (ﬂ'(%) - 71'(%) So
i~ , 2, () Olaays)

£ (mod Vip)
(£, Vi) =1
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Since V,;, > Y, from Lemma 6 we obtain that the right hand side is less than
Oy (1) + O gty )-

Since this is true uniformly for every m, we obtain that

| elkrm)| < [oy(1) + ce + c(p)]a
neJy
Since )
[1,22] = J, Uy o U+ U Jy o, 3 < /2 <1,

we obtain immediately that

1
lim sup E‘ Z e(lm(n))‘ <oy (1) + ce + ¢(p).
oo n<lx

Since the right hand side holds for every €,Y and p, therefore the right hand
side is zero.

Theorem 1 is true. ]
5. Proof of Theorem 2

We shall prove it only for vy(n). The proof for a(n), 3(n) is similar, therefore
they are omitted.

Let T be a large constant. We modify the function 7. Let 77(n") be a
multiplicative function, such that

oh ah+1 if p<T
r(p™") = a
(h+1D)> if p>T
Let
An”
TT(nh).

Let tr(n) = kyr(n). Let K be a large number, Pk be a set of primes

yr(n) =

(T <)p1 <---<pr

such that
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Let
ni.j(m) = tr(pim) — tr(p;m).
Then
A(p; —pj)k m"
h +1 TT (mh) ’

77%]( )=
Repeating the argument used in the proof of Theorem 1 with small changing

we obtain that 1
lim — i =0.
Jim =D elmig(m))

m<zx

From Lemma 4, we obtain that

1
(5.1) sup |— Z g(n)e(k’yT(n))‘ < Pz, pz— 0 as x — oo.
geEM, x n<x

Let f € A. Choose g(n) = e(kf(n). Observe that

| > elksm)etkym) = elkf (m)elkyr(n)| <

n<z n<z
<2 1<2
<2 ) vy % < e
n<x p>T
¥y Erg ()
Hence, and from (5.1), we have that
55" etk rm)etir ()] < po+
— e(kf(n))e(ky(n - .
x e K =P TlogT
Thus
c
(5.2) hgrgn_)gp E‘ Z +y(n)])| < TlogT"
n<x
Since this holds for every T, therefore the right hand side of (5.2) is zero. The
proof is complete. n
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