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Abstract. We investigate the uniform distribution modulo 1 of sequence
a(n)
b(n)

(n ∈ N), where a(n) and b(n) are suitable additive or multiplicative

functions. We prove that if κ(n) is any of Anr

ω(n)h , Anr

aω(n) , Anr

τ(nh)
(r, h, A ∈ N)

and f(n) is an arbitrary additive function, then κ(n) + f(n) is uniformly
distributed mod 1.

1. Notation and introductory definitions

Let A be the set of additive, M be the set of multiplicative functions. A
function f : N → R belongs to A if f(nm) = f(n) + f(m) holds for every
coprime pairs of integers n, m. A function g : N → R is multiplicative if
g(1) = 1 and g(nm) = g(n)g(m) holds for every coprime pairs of integers n, m.

Let M1 := {g ∈M : |g(n)| ≤ 1}.
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Let P be the set of primes, ω(n) be the number of distinct prime divisors
of n, τ(n) be the number of divisors of n.

Let {x} = fractional part of x. We shall write e(x) instead of e2πix.
Let x1, · · · , xN be real numbers. The discrepancy of {xj} (j = 1, · · · , N)

is
sup

[a,b]⊂[0,1)

∣∣∣ 1
N

∑
{xj}∈[a,b)

1− (b− a)
∣∣∣ =: DN ({xj}, j = 1, · · · , N).

We say that an infinite sequence xn (n = 1, 2, · · · ) of real numbers is uni-
formly distributed modulo 1, if

DN ({xj}, j = 1, · · · , N) → 0 as N →∞.

Let p runs over P. Let P (n) be the largest prime factor of n.

Let π(x, k, �) = �{p ≤ x | p ≡ � (mod k), p ∈ P}. We shall write UD mod 1
for the abbreviation of uniformly distributed mod 1.

2. Formulation of the theorems

Several papers have been published on the uniform distribution modulo 1
of the sequences α(n) = a(n)

b(n) (n ∈ N), where a(n) and b(n) are either additive
or multiplicative functions. See [5]–[9]. In [8] it is proved that n

ω(n) ,
n

τ(n) ,
n

aω(n)

are UD mod 1. In [7] it is proved that ν(n) = ω(n)
g(n) , ρ(n) = ω(n+1)

g(n) are UD
mod 1 if g ∈ A, and 0 < g(p) < c1

p and 0 < g(pa) < c2 holds for all p ∈ P and
a ∈ N.

In this paper we shall investigate similar questions.

Theorem 1. Let K(n) : N → N (n ∈ N) be such a function for which

(2.1) K(n1) = K(n2) if
n1

P (n1)
=

n2

P (n2)
.

Let

(2.2) κ(n) =
Anr

K(n)
,

where A ∈ N, r ∈ N are fixed integers.

Let

(2.3) Δ(n) := GCD(Anr, K(n)).
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Assume that

(2.4) lim sup
x→∞

1
x

�{n ≤ x | Δ(n) >
√

K(n)} = 0,

(2.5) lim sup
x→∞

1
x

�{n ≤ x | K(n)
Δ(n)

< Y } = 0 for every Y > 0,

(2.6) lim sup
x→∞

1
x

�{n ≤ x | Δ(n) > (log n)ρ} ≤ c(ρ),

and δ(ρ) → 0 as ρ →∞.

Under the conditions (2.1)–(2.6) κ(n) (mod 1) is UD mod 1.

Theorem 2. Let

α(n) =
Anr

ω(n)h
, β(n) =

Anr

aω(n)
, γ(n) =

Anr

τ(nh)
(r, h,A ∈ N).

Let κ(n) be any of α(n), β(n), γ(n). Let f(n) be an arbitrary additive function.
Then κ(n) + f(n) is UD mod 1.

3. Some lemmas

Lemma 1. (H. Weyl [10]) A sequence xn (n ∈ N) is UD mod 1 if and only
if

lim
N→∞

1
N

N∑
n=1

e(kxn) = 0

for every k ∈ N.

Lemma 2. (Siegel-Walfisz theorem [3]) We have

π(x, k, �) =
li(x)
ϕ(k)

(
1 + O
( 1

(log x)5
))

uniformly as x ≥ 2, (k, �) = 1, k ≤ (log x)c, where c is an arbitrary positive
constant. The constant implied by the error term may depend on c.

Lemma 3. (Erdős–Turán inequality [1]) We have

DN (x1 · · · , xN ) ≤ c1

( M∑
k=1

1
k

∣∣∣ 1
N

N∑
n=1

e(kxn)
∣∣∣)+

c1

M
,

where c1 is an absolute constant, M is an arbitrary positive integer.
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Lemma 4. ([4]) Let t : N → R. Assume that for every K > 0 there exists a
finite set PK of primes p1 < p2 < · · · < pk such that

R∑
j=1

1
pj

> K,

and that for the sequences

ηi,j(m) := t(pim)− t(pjm),

the relation

lim
x→∞

1
x

[x]∑
m=1

e(ηi,j(m)) = 0

holds whenever i �= j, i, j ∈ {1, 2, · · · , R}. Then there exists a function ρx which
tends to zero as x→∞ and such that

sup
f∈M1

1
x

∣∣∣∑
n≤x

f(n)e(t(n))
∣∣∣ ≤ ρx.

Lemma 5. (Hua [2]) Let

f(x) = arx
r + · · ·+ a1x ∈ Z[x], (ar, · · · , a1, q) = 1.

Then ∣∣∣ q∑
x=1

e
(f(x)

q

)∣∣∣ ≤ c1(r, ε)q1− 1
r +ε,

where ε is an arbitrary positive number.

Lemma 6. Let r, A ∈ N be fixed. Let �1, . . . , �ϕ(q) be the set of reduced
residues modulo q,

yν =
A�r

ν

q
(ν = 1, . . . , ϕ(q)).

Then, for every k ∈ N,

∣∣∣ 1
ϕ(q)

ϕ(q)∑
ν=1

e
(
kyν

)∣∣∣ → 0 as q →∞, k ∈ N,

and so
Dϕ(q)(y1 . . . , yϕ(q)) → 0 as q →∞.
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Proof. We have

ϕ(q)∑
ν=1

e
(
kyν

)
=

q∑
�=1

e
(kA�r

q

) ∑
δ|(�,q)

μ(δ) =
∑
δ|q

μ(δ)
q/δ∑

m=1

e
(kAδrmr

q

)
=

=
∑
δ|q

μ(δ)
∑

δ
,

where ∑
δ

:=
q/δ∑

m=1

e
(kAδrmr

q

)
.

We shall estimate the sums for δ ≤ z.

Let
kAδr

q
=

U

V
, (U, V ) = 1.

Since (Akδr, q) ≤ Akzr, therefore V ≥ q
Akzr .

Let us apply Lemma 5. We have

∑
δ

=
q/δ∑

m=1

e
(kAδrmr

q

)
=

q

δV

V∑
m=1

e
(Umr

V

)
.

Thus

∣∣∑
δ

∣∣ ≤ (Akδr, q)
δ

c1(r, ε)V 1− 1
r +ε ≤ c1(r, ε)q1− 1

r +ε (Akδr, q)
1
r −ε

δ
≤

≤ c2c1(r, ε)
1

δεr
,

where c2 = Ak. Since ∣∣∑
δ

∣∣ ≤ q/δ,

therefore

∣∣∣ ϕ(q)∑
ν=1

e
(
kyν

)∣∣∣ ≤ c2c1(r, ε)q1− 1
r +ε
∑
δ≤z
δ|q

|μ(δ)|
δεr

+ q
∑
δ>z
δ|q

|μ(δ)|
δ

.

Let z =
√

q. Observe that

∑
δ≤z
δ|q

|μ(δ)|
δεr

≤ 2ω(q) ≤ c3q
c/ log log q,
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and that

q
∑

δ>
√

q

δ|q

|μ(δ)|
δ

≤ q
1
2 2ω(q) ≤ Cq

1
2+ε.

Hence we obtain that∣∣∣ 1
ϕ(q)

ϕ(q)∑
ν=1

e
(
kyν

)∣∣∣ ≤ cc2c1(r, ε)q1− 1
r +εqc3/ log log q

ϕ(q)
+ c

q1/2+ε

ϕ(q)
.

The right hand side tends to zero as q →∞, for every k ∈ N. Lemma 6 follows
from Lemma 4.

4. Proof of Theorem 1

Assume that the function K(n) and positive integers A, r satisfy (2.1)–(2.6),
where κ(n) = Anr

K(n) . From Lemma 1 it is enough to prove that

1
x

∑
n≤x

e(kκ(n)) → 0 (x→∞)

for every k ∈ N.
Let Jx = {n|x ≤ n < 2x}. Let ε, Y, ρ be positive integers. Let Rx(ε, Y, ρ)

be the set of those n ∈ Jx for which at least one of the next conditions hold:

(4.1)
K(n)
Δ(n)

< Y,

(4.2) Δ(n) >
√

K(n),

(4.3) Δ(n) > (log n)ρ,

(4.4) P (n) < xε,

(4.5) n has two prime divisors p, q such that Y < p < q < 2p.

Taking into account the relations (2.4), (2.5), (2.6) the number of n ∈ Jx for
which one of (2.4), (2.5), (2.6) holds is less than OY (1)x + cεx + cδ(ρ)x. The
number of n ∈ Jx satisfying (4.4) is less than

cxΠxε<p<x(1− 1
p
) ≤ cεx.
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The number of n ∈ Jx for which (4.5) holds is less than

2x
∑
p>Y

1
p

∑
p<q<2p

1
q
≤ cx
∑
p>Y

1
p log p

≤ c1x

log Y
.

Thus
1
x

�Rx(ε, Y, ρ) ≤ oY (1) + cε + cδ(ρ).

Let Jx = Jx \ Rx(ε, Y, ρ).
Let us classify the elements of Jx.
Let n ∈ Jx, p = P (n). Then n = pm. Let us consider the primes q in

[ x
m , 2x

m ]. We have P (m) ≤ x
m , since in the opposite case mP (m) ≥ x, mp < 2x,

and so P (m) < p ≤ 2P (m), thus n is in Rx(ε, Y, ρ).
Let

Tx =
{

mp ∈ Jx | p ∈
[ x

m
,
2x

m

]}
.

Let
Tk(m) =

∑
n∈Tk(m)

e(kκ(n)).

If n = pm ∈ Tk(m), p = P (m), then κ(n) = Amrpr

K(mp) and K(mp) depends only
on m. Let

Amr

Δ(n)
:

K(mp)
Δ(n)

=
Bm

Dm
, kBm (mod Dm) ≡ Hm (mod m),

Hm

Dm
≡ Um

Vm
(mod 1), (Um, Vm) = 1, 1 ≤ Um < Vm.

Since Vm ≤ K(mp) ≤ (log n)ρ, therefore we can apply the Siegel–Walfisz theo-
rem. We have

Tk(m) =
∑

� (mod Vm)
(�,Vm)=1

e
(Um�n

Vm

)
·
∑

�
,

∑
�
=

∑
p≡� (mod Vm)

p∈[ x
m

, 2x
m

]

1 = π
(2x

m
, Vm, �

)
− π
( x

m
, Vm, �

)
=

=
1

ϕ(Vm)

(
π
(2x

m

)
− π
( x

m

))
+ O
( x

ϕ(Vm)m(log x)5ε5
)
.

We have �Tk(m) =
(
π
(

2x
m

)
− π
(

x
m

)
. So

Tk(m)
�Tk(m)

=
1

ϕ(Vm)

∑
� (mod Vm)

(�,Vm)=1

e
(Um�n

Vm

)
+ O
( 1

(log x)5ε5
)
.
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Since Vm > Y , from Lemma 6 we obtain that the right hand side is less than
OY (1) + O

(
1

(log x)4ε5

)
.

Since this is true uniformly for every m, we obtain that∣∣∣ ∑
n∈Jx

e(kκ(n))
∣∣∣ ≤ [oy(1) + cε + c(ρ)]x.

Since
[1, 2x] = Jx ∪ Jx/2 ∪ · · · ∪ Jx/2L ,

1
2

< x/2L ≤ 1,

we obtain immediately that

lim sup
x→∞

1
x

∣∣∣∑
n≤x

e(kκ(n))
∣∣∣ ≤ oY (1) + cε + c(ρ).

Since the right hand side holds for every ε, Y and ρ, therefore the right hand
side is zero.

Theorem 1 is true. �

5. Proof of Theorem 2

We shall prove it only for γ(n). The proof for α(n), β(n) is similar, therefore
they are omitted.

Let T be a large constant. We modify the function τ . Let τT (nh) be a
multiplicative function, such that

τT (pαh) =

{
αh + 1 if p ≤ T

(h + 1)α if p > T
.

Let
γT (n) =

Anr

τT (nh)
.

Let tT (n) = kγT (n). Let K be a large number, PK be a set of primes

(T <)p1 < · · · < pR

such that
R∑

j=1

1
pj

> K.
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Let
ηi,j(m) = tT (pim)− tT (pjm).

Then

ηi,j(m) =
A(pr

i − pr
j)k

h + 1
mr

τT (mh)
.

Repeating the argument used in the proof of Theorem 1 with small changing
we obtain that

lim
x→∞

1
x

∑
m≤x

e(ηi,j(m)) = 0.

From Lemma 4, we obtain that

(5.1) sup
g∈M1

∣∣∣ 1
x

∑
n≤x

g(n)e(kγT (n))
∣∣∣ ≤ ρx, ρx → 0 as x→∞.

Let f ∈ A. Choose g(n) = e(kf(n). Observe that∣∣∣∑
n≤x

e(kf(n))e(kγ(n))−
∑
n≤x

e(kf(n))e(kγT (n))
∣∣∣ ≤

≤ 2
∑
n≤x

γ(n)�=γT (n)

1 ≤ 2x
∑
p>T

1
p2
≤ cx

T log T
.

Hence, and from (5.1), we have that∣∣∣ 1
x

∑
n≤x

e(kf(n))e(kγ(n))
∣∣∣ ≤ ρx +

c

T log T
.

Thus

(5.2) lim sup
x→∞

1
x

∣∣∣∑
n≤x

e
(
k[f(n) + γ(n)]

)∣∣∣ ≤ c

T log T
.

Since this holds for every T , therefore the right hand side of (5.2) is zero. The
proof is complete. �
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