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Abstract. The paper focuses on the algebraic representation of market
basket model. It is shown in this paper that the methods offered by the new
approach are effective in analyzing the problems concerning the customer’s
market baskets. The results of the previous studies in discovering the fre-
quent market baskets and the association rules between market baskets, as
well as the definition of the constraints of market baskets are summarized.
By using these methods the logical structure of the sets of market baskets
is analysed and the complexity of the market baskets is determined. In
this formalism this paper shows also that the algebraic model of market
baskets is quite suitable for solving the problems concerning the market
basket’s classification. The operations on classifications are discussed. A
new concept of neighborhood between market baskets is introduced and
their properties are studied in this paper. It should be remarked that in
this algebraic model the customers and the transactions can be identified
by their market baskets. This implies that the results that hold for market
baskets hold also for customers and transactions. The logical and alge-
braic methods that have been used to study the frequent market baskets,
the association rules between market baskets and the constraints of mar-
ket baskets here appear to be efficient tools in the study of the customer’s
classification.
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1. Introduction

Discovering the hidden informations in the sets of market baskets and in the
sets of customer’s transactions is always interesting problem that has attracted
the attention of researchers (see, for example, [1, 3, 7, 8]). The studies of
customer market baskets (MBs) and mining the frequent itemsets, as well as
the association rules are important in different applications, for example, in
decision making and strategy determination of retail economy ([1]). As noticed
in previous researches ([4]) most of the studies concerning the market baskets
dealt with only the set of items purchased by customers or involved in the
transactions. The quantity of the items in transactions were not considered
and therefore its important role in the analysis of transactions were ignored.
Here the market baskets and the association rule between market baskets are
studied in more details: instead of discovering the association rule between
wheat flour and egg, or between bread and milk, the association rule between
1 kg wheat flour and 10 pieces of egg, or the association rule between 1 kg
bread and 2 liter of milk are studied. It would be remarked that among those
customers who buy wheat flour and eggs most of them buy 1 kg wheat flour
and 10 pieces of egg, while the least of them buy 10 kg wheat flour and 1 piece
of egg. Evidently, the quantitative analysis is necessary.

In Section 2 we recall the algebraic formalism for analysis of market baskets
which was established firstly in [4]. In Section 3 the results related to frequent
MBs and association rules are resumed. The structure of frequent MBs and
association rules are shown. The concept of the constraint of MBs is introduced
in Section 4. It is shown that every set of MBs can be characterized by some
logical formula that is called by the constraint of MBs. The dependencies
between MBs as special form of constraints are induced in a natural way by
the implications between logical formulas. Based on the results concerning
the constraints of MBs in Section 5 we introduce the concept of complexity
of the sets of MBs. The concepts and problems in the classification of MBs
are proposed and studied in Section 6. Some aspects and open problems are
discussed in the conclusion in Section 7.

2. Market basket model

In this section the concepts and results previously established in the formalism
in [4] are recalled. Let P = {p1, p2, ..., pn} be a finite set of items. A market
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basket (MB) is a tuple α = (α[1], α[2], ..., α[n]), where α[i] ∈ N is the quantity
of the item pi in the basket. The set of all MBs is denoted by Ω. We can
remark:

1. By the condition α[i] ∈ N in the definition of market baskets we can see
that in the previous studies, as well as in this study only the market baskets
with integer components are considered. A more generalized model where
the market baskets with components being real numbers, α[i] ∈ R, may be
interesting topics of other study.

2. In the case of market baskets with components being integers the market
baskets can be considered as vectors with integer components. This enables us
to study different structures on these market baskets.

3. A customer or a transaction in fact can be identified as a market basket.
Thus in the followings the concepts and results concerning market baskets in
this sense hold also for the customers, transactions. The problems concern-
ing the customers, for examples, the determination of frequent customers, the
association rules between customers, etc., are interesting problems in practice.

By the previous remarks let us consider a structure on the set of MBs Ω.
For α, β ∈ Ω where α = (α[1], α[2], ..., α[n]), β = (β[1], β[2], ..., β[n]) we write
α ≤ β if for all i = 1, 2, ..., n we have α[i] ≤ β[i]. 〈Ω,≤〉 is a lattice with the
natural partial order ≤. For a set A ⊆ Ω we denote by U(A), L(A) the set of
all upper, or lower bounds of A, respectively: U(A) = {α ∈ Ω|∀β ∈ A : β ≤ α}
and L(A) = {α ∈ Ω|∀β ∈ A : α ≤ β}.

We denote also by sup(A) and inf(A), respectively, the smallest, and the
largest MB in U(A) and L(A).

The support of an MB α ∈ Ω in a set of MBs A ⊆ Ω is defined as the proportion

suppA(α) =
|{β ∈ A|α ≤ β}|

|A| ,

that is in fact the rate of all MBs in A exceeding the given sample MB α to the
whole A. In other words, suppA(α) denotes the proportion of those customers
who ”support” α to the whole group of customers A. Here one can see the
double meaning of MBs: MBs on the one hand are viewed as itemsets, on the
other hand they are considered as customers. Naturally, discovering of the
highly supported MBs is an important problem in various areas of economy.
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3. Frequent itemsets and association rules

For a set of MBs A ⊆ Ω, an MB α ∈ Ω and for a threshold 0 ≤ ε ≤ 1 the
ε-frequent MBs are those MBs whose support exceeds ε, i.e. if suppA(α) ≥ ε.
The set of all ε-frequent MBs is denoted by Φε

A.

For α, β ∈ Ω where α = (α[1], α[2], ..., α[n]) and β = (β[1], β[2], ..., β[n]) we
write γ = α ∪ β if γ[i] = max{α[i], β[i]} for all i = 1, 2, ..., n. We call α −→ β
an association rule. By the confidence of α −→ β in a set of MBs A we mean
the proportion

confA(α −→ β) =
suppA(α ∪ β)

suppA(α)
.

The following example was considered in [4]:

Example 3.1. Consider a set of items P = {a, b, c} and a set of trans-
actions A = {α, β, γ, δ}, where α = (2, 1, 0), β = (1, 1, 1), γ = (1, 0, 1), δ =

(2, 2, 0). One can see that for σ = (1, 1, 0), η = (1, 2, 0) we have suppA(σ) =
3

4

and suppA(η) =
1

4
. For the threshold ε =

1

2
the ε-frequent MBs of A are:

Φ
1
2

A = {(2, 1, 0), (1, 0, 1), (1, 1, 0), (2, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 0, 0)}.

Let us denote

ΦA,k = {α ∈ Ω|∃α1, α2, ..., αk ∈ A,αi �= αj (i �= j) : α ≤ {α1, α2, ..., αk}}.
One can remark that if k ≤ l, then ΦA,k ⊇ ΦA,l and Φε

A = ΦA,k where
k = �ε|A|� denotes the smallest integer that is greater or equal to ε|A|. The
following Theorem 3.2, 3.3 were proved in [4]:

Theorem 3.2. For a set of items P = {p1, p2, ..., pn}, a set of MBs
A ⊆ Ω and a threshold 0 ≤ ε ≤ 1 an MB α ∈ Ω is ε-frequent iff there ex-
ist α1, α2, ..., αk ∈ A such that α ∈ L({α1, α2, ..., αk}) where k = �ε|A|�.

By Theorem 3.2 in [4] an algorithm was proposed that creates all ε-frequent

MBs for a given set of MBs A in O
((|A|

k

)
. (m+ 1)

n
)
running time.

Algorithm 3.1: (Creating all ε-frequent MBs of a given set MBs A)

Input: Set of items P , Set of MBs A ⊆ Ω and a threshold 0 ≤ ε ≤ 1.

Output: Φε
A.
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Theorem 3.3. (Explicit representation of large MBs) For a set of items
P = {p1, p2, ..., pn}, a set of MBs A ⊆ Ω and a threshold 0 ≤ ε ≤ 1 there exist

α1, α2, ..., αs ∈ Ω where s =
(|A|
�ε|A|�
)
such that

Φε
A =

s⋃
i=1

L(αi).

We should remark that αi ≤ αj iff L(αi) ⊆ L(αj). For a set of MBs A and
a given threshold ε the basic ε- frequent set of MBs of A is the set of MBs
α1, α2, ..., αs for which

(i) Φε
A =

s⋃
i=1

L(αi),

(ii) ∀i, j : 0 ≤ i, j ≤ s we have αi � αj and αj � αi.

For a given A, ε the basic ε- frequent set of MBs of A is unique, which we
denote by Sε

A. We have

Theorem 3.4. For a set of items P , a threshold 0 ≤ ε ≤ 1 every set of
MBs A ⊆ Ω has a unique basic ε- frequent set of MBs Sε

A.

An algorithm that creates the basic ε- frequent set of MBs in O
((|A|

k

)
.m.n
)

running time for a given set of MBs A ⊆ Ω and a given threshold ε is proposed
in [4]:

Algorithm 3.2: (Creating the basic ε- frequent set of MBs Sε
A)

Input: Set of items P , Set of MBs A ⊆ Ω and a threshold 0 ≤ ε ≤ 1.

Output:Sε
A.

One can remark that in the case of large amount of MBs A the basic ε -
frequent set of MBs Sε

A can be generated much more quickly than the set of
all ε-frequent set of MBs Φε

A.

Example 3.5. We continue the Example 3.1. For the set of transactions

A the Algorithm 3.2 generates the basic 1
2 - frequent set of MBs S

1
2

A = {ρ, θ}
where ρ = (2, 1, 0), θ = (1, 0, 1). It means that the family of 1

2 - frequent set of

MBs of A is Φ
1
2

A = L(ρ) ∪ L(θ).

As shown in [4] we can find all associations with given confidence. For a set of
items P , a set of MBs A ⊆ Ω and a threshold 0 ≤ ε ≤ 1 an association α −→ β
is ε-confident if confA(α −→ β) ≥ ε. The set of all ε-confident associations of
A is denoted by Cε

A. We have
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Theorem 3.6. For a set of items P , a set of MBs A ⊆ Ω and 0 ≤ ε ≤ 1

an association α −→ β is ε-confident iff
|U(α ∪ β) ∩A|
|U(α) ∩A| ≥ ε.

A natural question for cross marketing, store layout, ...(see, for example, [1]) is
to find all association rules with a given confidence. In our generalized model
the following theorem shows in a sense an explicit representation of all associ-
ation rules. More exactly, we show for a given MB α which set of MBs β may
be associated to α with a given threshold of confidence.

For MBs ρ, σ where ρ ≤ σ, let us denote

M(ρ, σ) = {η ∈ Ω|ρ ∪ η ≤ σ}.
It should be remarked that M (ρ, σ) can be represented explicitly. If ρ =
(ρ1, ρ2, . . . , ρs), σ = (σ1, σ2, . . . , σs), then η = (η1, η2, . . . , ηs) ∈ M(ρ, σ) if and
only if max (ρi, ηi) = σi for all i = 1, 2, . . . , s, i.e. ηi = σi in the case ρi � σi

and ηi ≤ σi in the case ρi = σi.

Theorem 3.7. (Explicit representation of association rules) For a set of
items P = {p1, p2, ..., pn}, a set of MBs A ⊆ Ω, an MB α ∈ Ω and a threshold
0 ≤ ε ≤ 1 there exist α1, α2, ..., αk ∈ Ω such that ∀β ∈ Ω : α −→ β is an

ε-confident association rule if and only if β ∈
k⋃

i=1

M(α, αi).

As we have shown in [4] Theorem 3.7 in a sense gives an explicit presentation
for association rules and by the following algorithm one can find all ε-confident
association rules for given left side.

Algorithm 3.3: (Creating all ε- confident association rules α −→ β for given
α)

Input: A set of items P , a set of MBs A ⊆ Ω, a threshold 0 ≤ ε ≤ 1 and
an MB α.

Output:
k⋃

i=1

M(α, αi).

Example 3.8. We continue the Example 3.1. For the set of MBs A the MB
σ = (1, 1, 0) and threshold ε = 1

2 we should find all MB η such that σ −→ η is ε-
confident association rule. We can see U(σ) ∩ A = {(2, 1, 0), (1, 1, 1), (2, 2, 0)}
and s := �ε|U(α) ∩ A|� = 2. By step 2 in Algorithm 3.3 we have k = 4 and
α1 = (1, 1, 0), α2 = (2, 1, 0). The set of all MBs η such that σ −→ η is 1

2 -
confident association rule is

M(σ, α1) ∪M(σ, α2) = {(1, 1, 0), (1, 0, 0), (0, 1, 0), (0, 0, 0), (2, 1, 0), (2, 0, 0)}.
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As result we see that besides the trivial association rules of the form σ −→ σ
′
,

where σ
′ ≤ σ we got non-trivial association rules σ −→ (2, 1, 0) and σ −→

(2, 0, 0). In words, among those customers A the ratio of customers who buy
a and b also buy 2 a and 1 b items, as well the ratio of those who buy a and b
also buy 2 a items, are more than 50 percent.

4. Constraints of market baskets

In this section we consider the constraints of MBs. As introduced previously
in [4] by constraints of MBs we understand the logical formula that represent
these MBs. For example, the constraint (¬α) where α means the meat certainly
holds with high support for the vegetarian customer’s groups. In the same way,
the constraint (α∧β) −→ γ seemingly gains high support from the householder
customers, if α, β and γ means milk, egg and wheat flour respectively. By the
dependency between MBs we can understand the logical implication of the form
α −→ β that in fact are special constraints.

Let us construct the logical constraints of MBs. For a set of items P =
{p1, p2, ..., pn} let Ω be the set of all MBs over P . We define the logical con-
straints of MBs (for short, constraint) as follows:

(1) All α ∈ Ω are constraints. In this case π(α) = U(α) = {β ∈ Ω|α ≤ β} ⊆
Ω.

(2) If α is a constraint, then (¬α) is a constraint and π(¬α) = (π(α))c where
by Ac we denote Ω \A for A ⊆ Ω .

(3) If α, β are constraints, then

(α ∨ β) is a constraint and π(α ∨ β) = π(α) ∪ π(β),

(α ∧ β) is a constraint and π(α ∧ β) = π(α) ∩ π(β).

(4) All constraints are constructed as in 1., 2. and 3.

As usual, the parentheses are omitted where it causes no confusion. We call
π(α) the set of supporting market baskets of α. Two constraints α, β are
equivalent, noted by α ≡ β, if π(α) = π(β). A constraint is tautology if π(α) =
Ω. The set of all constraints is denoted by C(Ω).

The following properties of propositions in propositional calculus hold also
for the constraints:
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(1) If α, β, γ ∈ C(Ω) are constraints, then

α ∨ β ≡ β ∨ α, α ∧ β ≡ β ∧ α,
α ∨ (β ∨ γ) ≡ (α ∨ β) ∨ γ, α ∧ (β ∧ γ) ≡ (α ∧ β) ∧ γ.

(2) If α ∈ C(Ω) is a constraint, then ¬(¬α) ≡ α.

(3) If α, β ∈ C(Ω) are constraints, then

¬(α ∧ β) ≡ ¬α ∨ ¬β and

¬(α ∨ β) ≡ ¬α ∧ ¬β.
(4) For α, β ∈ C(Ω) the notation α→ β is used also for ¬α ∨ β.

The above identities are always true. We call these identities the logical iden-
tities. It is easy to see that for a given A in the same way we can define
πA(α) = π(α) ∩A, which we call the relative set of supporting MBs of α. Sim-
ilarily we say that two constraints α, β are relatively equivalent (in A), noted
by α ≡A β, if πA(α) = πA(β). It is easy to verify the following

Theorem 4.1. (1) For any finite set of MBs A ⊆ Ω there is a constraint
α∗A ∈ C(Ω) such that π(α∗A) = A.

(2) For all β, γ ∈ C(Ω), β ≡A γ if and only if β ∧ α∗A ≡ γ ∧ α∗A.

Proof.

1) For any finite set of MBs A ⊆ Ω we find the constraint α∗A ∈ C(Ω) such that
π(α∗A) = A. If P = {p1, p2, ..., pn}, ρ = (ρ[1], ρ[2], ..., ρ[n]) ∈ Ω then let

ρ+i = (ρ[1], ρ[2], ..., ρ[i] + 1, ..., ρ[n]).

One can see that

{ρ} = π(ρ) \
n⋃

i=1

π(ρ+i ) = π(ρ ∧
n∧

i=1

¬(ρ+i )).

Let

α∗A =
∨
ρ∈A

[ρ ∧
n∧

i=1

¬(ρ+i )].

We have A = π(α∗A).

2) The assertion is proved easily by using the definitions. We have β ≡A γ
⇐⇒ πA(β) = πA(γ) ⇐⇒ π(β) ∩A = π(γ) ∩A ⇐⇒ β ∧ α∗A ≡ γ ∧ α∗A. �.
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One can remark that there are two trivial cases: The first one is the case,
when α∗A is tautology. In this case ≡A coincides with ≡, which does not hold in
general. We call a set of customers (transactions) complete if αA is tautology.
The second case is when α∗A is tautologically false. For β ∈ C(Ω) we denote
βA = β ∧ α∗A.

Example 4.2. We continue the Example 3.1. Let P = {a, b, c} and a set
of transactions A = {α, β, γ, δ}, where α = (2, 1, 0), β = (1, 1, 1), γ = (1, 0, 1),
δ = (2, 2, 0). If a = ”Flour”, b = ”Egg”, c = ”Milk”, which can be identified
by a = (1, 0, 0), b = (0, 1, 0), and c = (0, 0, 1), respectively, then

π(a)= U((1, 0, 0)) = {(x, y, z)|x ≥ 1}, πA(a) = {α, β, γ, δ},
π(b)=U((0, 1, 0)) = {(x, y, z)|y ≥ 1}, πA(b) = {α, β, δ},
π(c)=U((0, 0, 1)) = {(x, y, z)|z ≥ 1}, πA(c) = {β, γ}.

In this case the constraint a∧b→ c that may be interpreted as Flour∧Egg →
Milk, characterises those customers, who if buy Flour and Egg then must buy
Milk. It is easy to see that the set of supporting MBs of this constraint is
π(a ∧ b → c) = {(x, y, z)|x = 0 or y = 0 or z ≥ 1}. One also can see that in
this case πA(a ∧ b→ c) = π(a ∧ b→ c) ∩A = {β, γ}, i.e. (a ∧ b→ c) ≡A c.

It is easy to see that the properties of propositions in propositional calculus
hold also for the constraints in the given set of customers, but the converse is
not always true. Although one can verify the followings for α, β ∈ C(Ω) and
an arbitrary set of customers A:

(1) (α ∨ β)A ≡A βA ∨ αA,

(2) (α ∧ β)A ≡A βA ∧ αA,

(3) (¬α)A ≡A ¬(αA).

One should distinguish ≡A and ≡.

5. The complexity of market baskets

In this section we propose a criteria for the complexity of customer sets. The
practical aspect of this attempt is clear: every shop manager wants to know
how complex his customer set is or how his customer set should be classified
into groups. One can remark that the set of customers that contains only one
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customer is simple. An other simple customer set is the case when the trans-
actions of the customers in the set (that may be a large mass) are ”similar”.
The concept of complexity of customer sets may be understood as followings.

Let P = {p1, p2, ..., pn} be a finite set of items and Ω be the set of MBs over
P . We recall that U(α) = {β ∈ Ω|α ≤ β} for α ∈ Ω. We call a set B ⊆ Ω a
block of customers if there are α1, α2, . . . , αm ∈ Ω; β1, β2, . . . , βn ∈ Ω such that

B =

m⋂
k=1

U(αk) \
n⋃

k=1

U(βk).

The block is denoted by [α1, α2, . . . , αm|β1, β2, . . . , βn]. We have the following
simple theorem.

Theorem 5.1. Let P = {p1, p2, ..., pn} be a a finite set of items and Ω be
the set of all MBs over P .

(1) Every γ ∈ Ω is a block, i.e. there are α1, α2, . . . , αm ∈ Ω; β1, β2, . . . , βn ∈
Ω such that {γ} = [α1, α2, . . . , αm|β1, β2, . . . , βn].

(2) Every A ⊆ Ω is union of some blocks, i.e. there are 0 ≤ k, αk
1 , α

k
2 , . . . , α

k
mk
∈

Ω, βk
1 , β

k
2 , . . . , β

k
nk
∈ Ω such that

A =
k⋃

i=1

[αi
1, α

i
2, . . . , α

i
mi
|βi

1, β
i
2, . . . , β

i
ni
].

Let us denote

c(A) = min

{
k | ∃Bk blocks, such that A =

k⋃
i=1

Bi

}
.

c(A) can be considered as a kind of the complexity of A. If A =
k⋃

i=1

Bi where k =

c(A) then we say that A =
k⋃

i=1

Bi is a minimal representation of A by blocks.

We should notice that a set A ⊆ Ω may have different minimal representations,
even if we does not take in account of the permutation of blocks. Let us consider
an example.

Example 5.2. Following the Example 4.2 let α = (2, 1, 0), β = (1, 1, 1),
γ = (1, 0, 1) and let θ = (1, 1, 2), λ = (1, 0, 2). One can verify

{γ} = U(γ) \ {U((2, 0, 1)) ∪ U(β) ∪ U(λ)}
and

{β, γ} = U(γ) \ {U((2, 0, 1)) ∪ U((2, 1, 1)) ∪ U(θ) ∪ U(λ)}.
Thus we have c({β, γ}) = c({γ}) = 1. One can verify also that c({α, γ}) = 2.



An algebraic approach to the study of market baskets 145

We have also c({γ, θ, λ}) = 2 and one can verify that

{γ, θ, λ} = [γ;β, λ] ∪ [λ; (1, 2, 2), (1, 0, 3)]
= [γ;β, (1, 0, 3)] ∪ [θ; (1, 2, 2), (1, 1, 3)].

We use propositional logics in finding the blocks of a given set of MBs. It
is well known in propositional logics that all logical formulas can be converted
into full disjunctive normal form (DNF). More exactly, if α is a constraint of
items (which is namely a logical formula), then by using simple transformations
we can find the full DNF of α

α =

n∨
i=1

[
mi∧
k=1

βi
k ∧

ni∧
k=1

(¬γi
k)

]
,

where βi
k, γ

i
k ∈ Ω, βi

k, γ
i
k appear in α. One can verify that

U

([
mi∧
k=1

βi
k ∧

ni∧
k=1

(¬γi
k)

])
= [βi

1, . . . , β
i
mi
|γi

1, . . . , γ
i
ni
]

is a block. By this in fact we have proved the following

Theorem 5.3. (Finding full customer blocks of MBs.)

(1) There is an algorithm by that for any constraint of MBs α we can find
the system of full customer blocks of U(α), i.e. we can find

{[αi
1, α

i
2, . . . , α

i
mi
|βi

1, β
i
2, . . . , β

i
ni
]|i = 1, 2, . . . , n}

where αi
1, α

i
2, . . . , α

i
mi

, βi
1, β

i
2, . . . , β

i
ni

are all MBs that appear in α, such
that

U(α) =

k⋃
i=1

[αi
1, α

i
2, . . . , α

i
mi
|βi

1, β
i
2, . . . , β

i
ni
].

(2) The decomposition of U(α) into full customer blocks is unique.

(3) The minimal representations of U(α) can be obtained from decomposition
of U(α) into full customer blocks by combining some full customer blocks
into one to reduce the number of blocks.

(4) The complexity of U(α) does not exceed the number of full clauses in the
full DNF of α.
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Proof.

1. The well known algorithm in propositional logics converts a constraint of
MBs α into full DNF. By this algorithm we can find the system of full customer
blocks of U(α).

2. This is a result in propositional logics.

3. If

U(α) =
k⋃

i=1

[αi
1, α

i
2, . . . , α

i
mi
|βi

1, β
i
2, . . . , β

i
ni
]

is a minimal representations of U(α) where, for example, some block [αi
1, α

i
2, . . . ,

αi
mi
|βi

1, β
i
2, . . . , β

i
ni
] is not full. Then using the equivalence X ≡ (X ∧a)∨ (X ∧

¬a) we can insert into the block the missing item a. In result we have the
decomposition of U(α) into full customer blocks, which, accordingly to 2., is
unique. The reverse transformation converts the full DNF of α into the given
minimal representation of U(α).

4. The proof is evident. �

Let us consider an example.

Example 5.4. Following the Example 4.2 let a = ”Flour”, b = ”Egg”, c =
”Milk”, which can be identified by a = (1, 0, 0), b = (0, 1, 0), and c = (0, 0, 1),
respectively. The constrain α = (a∧ b→ c)(¬b→ (a∨ c)) characterises the set
of all those customers, who if buy flour and egg then buy also milk, and if do
not buy egg, then would buy flour or milk. Let us denote this set of customers
by A, i.e. A = U(α). By using simple transformations we have the full DNF
of α:

α = (a∧b∧c)∨(¬a∧b∧c)∨(¬a∧b∧¬c)∨(¬a∧¬b∧c)∨(a∧¬b∧c)∨(a∧¬b∧¬c).
The full customer block of A = U(α) is

A = U(α) = [a, b, c] ∪ [b, c|a] ∪ [a, b|c] ∪ [c|a, b] ∪ [a, c|b] ∪ [a|b, c].
One can remark that

α = c ∨ (¬a ∧ b) ∨ (a ∧ ¬b).
Thus one of the minimal representations of A = U(α) is

A = U(α) = [c|] ∪ [a|b] ∪ [b|a].
This means that A can be characterized as the union of three blocks of cus-
tomers: the first block contains those customers who buy milk, the second
block contains all customers who buy flour but do not buy eggs, and the third
one is the block of all customers who buy eggs but do not buy flour. One can
see that the complexity of A is 3 and the structure of A is clear.
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6. Classification

The classification is an important topics in economy and other areas. It has
been discussed in a wide range of studies and the sufficient summaries can be
found in extensive overviews of the theme ([3]). A multi-factor customer clas-
sification evaluation model was proposed in [9]. Some other problems arising
in the classification on multiple database relations were considered in [10]. In
general the following problems should be solved in the classification processes:

1. Determination of the characteristics of the objects to be classified. The
objects may be items, transactions or customers. Finding the suitable repre-
sentation for the objects is one of the most important tasks: an appropriate
representation of the object’s characteristics makes the model more simple and
clearer that facilitates the more efficient classification algorithms and therefore
yields more exact results.

2. Creating the classification algorithms that solve the problems in different
areas and analysing the efficiency of these algorithms. The natures of the
problems arising in different application areas are quite different, therefore
most of the solutions of them are based particularly on the specificities of the
areas.

3. Accordingly to the representation and classification processes the evalu-
ation methods vary in the wide range of applications.

In the same formalism defined in the previous sections an approach to the
study of customer’s (or market basket’s) classification is proposed here, based
on the quantities of the items purchased by the customers, or on the quantities
of the items involved in the transactions, respectively.

Classifications: The concept of customer classification can be generalized.
Let Ω be an arbitrary set of customers (or transactions) and A ⊆ Ω. Then a
classification of A is a family of subsets of A, S = 〈U1, U2, . . . , Uk〉, where
Ui ⊆ A for all i = 1, 2, . . . , k. The set of all classifications of a given set A is
denoted by CLASS(A). A classification is total classification if it covers A, i.e.
k⋃

i=1

Ui = A. In the following we deal mainly with total classifications. A total

classification is called a partition of A if the blocks are pairwise disjoint, i.e.
Ui ∩ Uj = ∅ for all i �= j.

By definitions one can see that two natural orders are usually considered
on the set of classifications. The first one is the inclusion that holds for two
classifications S, Q, if S ⊆ Q. The second order is defined as the fineness
of the classifications: for two classifications S,Q, S = 〈U1, U2, . . . , Uk〉, Q =
〈V1, U2, . . . , Vl〉 we write S ≤ Q if for all i = 1, . . . , k there exists 1 ≤ j ≤ l such
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that Ui ⊆ Vj .

Operations on the classifications: The following operations on the clas-
sifications should be considered:

1. 0-level operations (Valuations): These are the operations that associate
each classification to a number: F : CLASS(A)→ R. For S ∈ CLASS(A) then
F (S) is considered as a kind of valuation or indicator of S. For a classification
S = 〈U1, U2, . . . , Uk〉 the following valuations are often typically considered:

(1) F (S) = |S|: F (S) denotes the number of classes in the classification.
For this valuation there are two trivial classifications S = 〈A〉 and S =
〈{a}|a ∈ A〉. In these cases F (S) = 1 and F (S) = |A|, respectively.

(2) F (S) = max{|Ui|}: F (S) denotes the maximal number of customers in
the classes of the classification.

(3) F (S) = 1
k

k∑
i=1

|Ui|: F (S) denotes the average number of customers in the

classes of the classification.

(4) F (S) =
k∑

i=1

λ(Ui)|Ui| where λ : 2Ω → R is an evaluation that assigns to

each U ⊆ Ω a value λ(U) ∈ R. If λ(U) denotes the tariff posed on each
customer in the U class, then F (S) is the total tariff obtained from the
customers.

A typical problem related to the valuations of classifications is as follows:
Let A be a given set of customers, F1, F2 be two valuations of the classifications
on A and let M be a given limit. Then the problem is to find S ∈ CLASS(A)
such that

(i) F1(S) ≤M, and

(ii) F2(S)→ max.

The other optimal problems may be formulated in similar way.

2. 1-level operations (Selections): These are the operations that based on the
given classification select out a class (or classes) of customers: F : CLASS(A)→
2A, or F : CLASS(A)→ 22

A

, where 2A denotes the family of all subsets of A.
A typical selection is the representative selection, where F : CLASS(A)→ 2A

such that for each S = 〈U1, U2, . . . , Uk〉 ∈ CLASS(A) we have

(i) |F (S) ∩ Ui| = 1 for all 1 ≤ i ≤ k, and

(ii) F (S) ⊆
k⋃

i=1

Ui.
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Another familiar example of selection is tariff-based selection: If λ : 2A → R

is an evaluation and M is a threshold, then Fλ,M : CLASS(A) → 2A where
Fλ,M (S) = {Ui ∈ S|λ(Ui) ≤M}.

3. 2-level operations (Transformations): These are the operations that trans-
form a given classification into another one, F : CLASS(A) → CLASS(A).
For a classification S = 〈U1, U2, . . . , Uk〉 and for a given C ⊆ A :

(1) Restriction: Let FC(S) = 〈U1∩C,U2∩C, . . . , Uk∩C〉. FC(S) is a restric-
tion of S.

(2) Extension: Let FC(S) = 〈U1∪C,U2∪C, . . . , Uk∪C〉. FC(S) is an extension
of S.

(3) Multiplication: If S = 〈U1, U2, . . . , Uk〉, Q = 〈V1, V2, . . . , Vl〉, then
S ×Q = 〈Ui ∩ Vj |i = 1, . . . , k, j = 1, . . . , l〉.

(4) Exponentiation: Let S1 = S and Sm+1 = Sm × S, or Sm = 〈Ui1 ∩ . . . ∩
Uim |1 ≤ i1 < . . . < im ≤ k〉.

It should be noted that, in fact, the selections can be considered as special
transformations. The problems of classifications are often set up with the val-
uations, the selections and the transformations.

Compactness and efficiency of a classification. As a customer (or a
transaction) is a tuple α = (α[1], α[2], . . . , α[n]), where α[i] ∈ N is the quantity
of item pi in α, different metric can be defined between customers. One of
these is the Euclidean metric: the metric between the two customers α =
(α[1], α[2], . . . , α[n]), β(β[1], β[2], . . . , β[n]) is

d(α, β) =

[
n∑

i=1

(α[i]− β[i])2

] 1
2

.

The metric between customers may be understood as a kind of similarity be-
tween customers and the choice of suitable metric on the set of customers is
one of the significant factors that determines the efficiency of the classification
process.

Let d(α, β) denote the distance between two customers α, β and B be a set
of customers. We say that a number r ∈ N is the radius of B if

(i) There exists α ∈ B such that for all β ∈ B we have d(α, β) ≤ r, and

(ii) r is the smallest number that satisfies i.
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Then we say also that α is a center of B. A finite set of customers has unique
radius, but may have more than one center. The radius of a set of customers
B is denoted by r(B).

For a classification S = 〈U1, U2, . . . , Uk〉 the compactness of S is determined
by two factors: the number of classes in S, namely |S|, and the radius of the
classes in S. For n,m ∈ N we say that a classification S = 〈U1, U2, . . . , Uk〉 is
(n,m)−compact, if

(i) |S| ≤ n, and

(ii) r(Ui) ≤ m for all i = 1, . . . , k and

(iii) there is no m1 < m that satisfies ii.

The criterions for compactness of classifications should be defined by the ex-
perts of the application areas. In practice many optimal problems are posed
on the set of classifications with given compactness. A company may require a
classification of customers that, with some bound on the number of customer
classes as well as on the sizes of the classes, provides maximal revenue.

Neighborhood of the customers. Based on the concept of distance
between two customers, the neighborhood may be formulated consequently.
Let d(α, β) denote the distance between two customers α, β and m ∈ N then
we say that β is a m−neighbor of α if d(α, β) ≤ m. The nearest neighbor
hence may be determined in similar way: β is a nearest neighbor of α if β is a
m−neighbor of α, and α has no other p−neighbor, where p < m.

Another method to define the neighborhood of the customers may be as
follows: Let A be a set of customers and S = 〈U1, U2, . . . , Uk〉 be a classifi-
cation on A, then we say that β is a m−neighbor of α (in S) if there exist

{Ui1 , Ui2 , . . . , Uim} ⊆ S such that α, β ∈
m⋂
j=1

Uij . The rank of the neighborhood

between α, β is the greatest m such that β is m−neighbor of α. The nearest
neighbor of α in this sense is those β that is m−neighbor of α and α has no
other neighbor with really higher rank of neighborhood. By using the above
notion of exponents we can see that α, β are m−neighbors if and only if there
exists V ∈ S(m) such that α, β ∈ V.

For S = 〈U1, U2, . . . , Uk〉 let RS be a relation on A such that

(α, β) ∈ RS ⇐⇒ ∃i : α, β ∈ Ui.

One can verify that if S is total classification, then RS is a reflexive and sym-
metric relation on A.

We should note that β is an m−neighbor of α if and only if α, β ∈ V, for some
V ∈ S(m), i.e. if and only if (α, β) ∈ RS(m) . We have
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Lemma 6.1. RS(m) is the relation of m−neighborhood induced by S, i.e. β
is an m−neighbor of α if and only if (α, β) ∈ RS(m) .

We should recall also that S ≤ Q denotes the fineness order between S and
Q: we write S ≤ Q if for all Ui ∈ S there exists Vj ∈ Q such that Ui ⊆ Vj . It
is easy also to see that the following lemma holds.

Lemma 6.2. If S,Q are two classifications such that

(i) Q ≤ S, and

(ii) S ≤ Q,

then RS = RQ.

For a classification S = 〈U1, U2, . . . , Uk〉 let

Smax = {Ui ∈ S|�Uj ∈ S, i �= j : Ui � Uj}.
By Lemma 6.2. we have RS = RSmax .

As a consequence of Lemma 6.1, 6.2 we can construct an algorithm that for a
given classification S efficiently yields (S(m))max by which we can easily deter-
mine the m−neighborhood relation, and therefore, the nearest neighborhood
relation between customers or transactions.

Algorithm 6.1.

Input: A classification S = 〈U1, U2, . . . , Uk〉, m ∈ N.

Output: The classification Q = (S(m))max.

Step 1: Compute

S(m) = 〈Ui1 ∩ Ui2 ∩ . . . ∩ Uim |1 ≤ i1 < i2 < . . . < im ≤ k〉.

Step 2: Compute Q := (S(m))max.

Let us consider the inverse problem: Based on a relation between the customers
how can we construct a customer classification such that the customers in the
same class are in relation each with other? Let A be a set of customers, U ⊆ A
and R ⊆ A×A be a reflexive relation on A. We say that U is a complete block
of R if for all α, β ∈ U we have (α, β) ∈ R.

Lemma 6.3. Let A be a set of customers. Then for all reflexive relations
R ⊆ A×A there exists a classification S = 〈U1, U2, . . . , Uk〉 on A such that

(i) Ui is a complete block of R for all 1 ≤ i ≤ k, and

(ii) there is no other classification S′ of A that satisfies 1. and S ≤ S′, where
S ≤ S′ is the order between classifications.
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The decomposition of a reflexive relation into complete blocks is not unique.
The following simple procedure produces for the given α ∈ A a complete block
C(α) that contains α : Suppose that A = {α1, α2, . . . , αm}, then

(1) i := 0, n := 0, Ci(α) := {α},
(2) If i+ 1 ≤ m then

i := i+ 1

If there exists k, n+ 1 ≤ k ≤ m such that

∀γ ∈ Ci−1(α) : (αk, γ), (γ, αk) ∈ R

then

n := the smallest such k,

Ci(α) := Ci−1(α) ∪ {αn}.
Go back to (2).

Else go to (3).

Else go to (3).

(3) C(α) := Ci(α)

Stop.

For a given α ∈ A the complete block C(α) given by the procedure is not unique.
The following algorithm produces for a given set of customers a classification
that consists of complete blocks. Let A = {a1, a2, . . . , ap} and R be a reflexive
relation on A.

Algorithm 6.2.

Input: A relation R ⊆ A×A.

Output: A classification S = 〈U1, U2, . . . , Uk〉, where Ui’s are complete
blocks of R.

Step 1: i := 1; j := 1; bi := a1;

Step 2: By the above procedure with few modifications let us compute C(bi) :

(1) C1(bi) := {bi}, and
(2) For s = 1, 2, . . . let

Cs+1(bi) := Cs(bi)∪{β ∈ A|β �∈ ⋃i−1
r=1 C(br) ∧∀γ ∈ Cs(bi) : (β, γ), (γ, β) ∈

R}.



An algebraic approach to the study of market baskets 153

(3) C(bi) := Cs(bi) if C
s+1(bi) = Cs(bi).

If j < p, then i := i+1. Let m be the smallest index such that j < m < p

and am �∈
i−1⋃
l=1

C(bl). Put j := m and bi := am. Return to Step 2.

Otherwise, if j = p, then stop.

The algorithm may give different classifications. The following example illus-
trates the above discussions of classification and algorithm.

Example 6.1. Let {p1, p2, p3, p4, p5} be the set of items and A = {α1, α2, α3,
α4, α5, α6, α7} be the set of customers whose purchases are shown in the table
below.

Table 1. Customer’s purchases
Customers p1 p2 p3 p4 p5

α1 3 0 1 0 0
α2 5 1 0 1 1
α3 1 5 6 0 1
α4 0 6 7 1 1
α5 1 4 8 2 6
α6 2 0 6 6 7
α7 0 0 0 5 7

Let S = 〈U1, U2, . . . , U5〉 be the classification where Ui denotes the set of those
customers who buy (some of) pi item, i = 1, 2, . . . , 5 :

U1 = {α1, α2, α3, α5, α6}, U2 = {α2, α3, α4, α5},
U3 = {α1, α3, α4, α5, α6}, U4 = {α2, α4, α5, α6, α7},
U5 = {α2, α3, α4, α5, α6, α7}.

By Algorithm 6.1 we can compute
Table 2. The classification with m−neighborhood classes

m (S(m))max

1 {α1, α2, α3, α5, α6}, {α1, α3, α4, α5, α6},
{α2, α3, α4, α5, α6, α7}

2 {α1, α3, α5, α6}, {α2, α3, α5, α6}, {α2, α3, α4, α5},
{α3, α4, α5, α6}, {α2, α4, α5, α6, α7}

3 {α2, α3, α5}, {α3, α5, α6}, {α3, α4, α5},
{α2, α5, α6}, {α2, α4, α5}, {α4, α5α6}

4 {α3, α5}, {α2, α5}, {α5, α6}, {α4, α5}
The rank of the neighborhood between the customers is shown in the following
table:
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Table 3. The rank of the neighborhood between customers.

α1 α2 α3 α4 α5 α6 α7

α1 5 1 2 1 2 2 0
α2 1 5 3 3 4 3 2
α3 2 3 5 3 4 3 1
α4 1 3 3 5 4 3 2
α5 2 4 4 4 5 4 2
α6 2 3 3 3 4 5 2
α7 0 2 1 2 2 2 5

Thus for a given k, 0 ≤ k ≤ 5, two customers αi, αj are k−neighbors if αi, αj

buy at least k similar items. By removing from the above table all the neigh-
borhoods of the rank less than k we obtain a relation on A. The application
of the Agorithm 2 will yield a complete classification. The classifications for
k = 2, 4, 5 are presented in the following table.

Table 4. The classification induced by k−neighborhood between customers.

Rank Classification
k = 2 〈{α1, α3, α5, α6}, {α2, α4, α7}〉
k = 4 〈{α1}, {α2, α5}, {α3}, {α4}, {α6}, {α7}〉
k = 5 〈{α1}, {α2}, {α3}, {α4}, {α5}, {α6}, {α7}〉

7. Conclusion

The paper overviews the results of some previous researches concerning
the customer’s market baskets and proposes a generalization of the concept
of customer classification. In the formalism presented here and in previous
researches the market baskets, the customers, or the transactions are studied in
more details by their quantity involved in the transactions. The first advantage
of the approach is that the market baskets, the customers, or the transactions
are characterized as sets of quantities of items. This implies that the market
baskets, the customers, or the transactions though having different roles and
meaning in different application areas can be studied in a unique form as sets of
quantities of items. Secondly, the formalism reveals the natural structure of the
market baskets (therefore, of the customers, or of the transactions). Based on
this structure the frequent market baskets, the association rules between them,
the constraints and the complexity of customers, as well as the classification of
customers are studied. The results of the previous researches and of this study
show that the formalism offers efficient methods for analysing the problems of
market baskets and customers.
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The formalism discussed in this paper reveals also a new aspect for further
studies. One can remark that in this paper only the natural structure of mar-
ket baskets is dealt with. However in different application areas beside this
natural structure the market baskets possess also other particular structures
that are imposed intentionally or unintentionally. Thus the market baskets and
customers should be studied in the more complex structures that cover both
the natural structure and the particular structures. This may be interesting
topics for further studies.
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