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Abstract. Given an integer N ≥ 1, for each integer n ∈ JN := [eN , eN+1),
let qN (n) be the smallest prime factor of n which is larger than N ; if no such
prime factor exists, set qN (n) = 1. Fix an integer Q ≥ 3 and consider the
function f(n) = fQ(n) defined by f(n) = � if n ≡ � (mod Q) with (�, Q) =
= 1 and by f(n) = Λ otherwise, where Λ stands for the empty word. Then
consider the sequence (κ(n))n≥1 = (κQ(n))n≥1 defined by κ(n) = f(qN (n))
if n ∈ JN with qN (n) > 1 and by κ(n) = Λ if n ∈ JN with qN (n) = 1.
Then, for each integer N ≥ 1, consider the concanetation of the numbers
κ(1), κ(2), . . ., that is define θN := Concat(κ(n) : n ∈ JN ). Then, set
αQ := Concat(θN : N = 1, 2, 3, . . .). Finally, let BQ = {�1, �2, . . . , �ϕ(Q)}
be the set of reduced residues modulo Q, where ϕ stands for the Euler
function. We show that αQ is a normal sequence over BQ.
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1. Introduction

In previous papers ([1], [2], [3]), we showed how one could construct normal
numbers by concatenating the digits of the numbers P (2), P (3), P (4), . . .,
where P (n) stands for the largest prime factor of n, then similarly by using
the k-th largest prime factor instead of the largest prime factor and finally by
doing the same replacing P (n) by p(n), the smallest prime factor of n.

Here, we consider a different approach which uses the residue modulo an
integer Q ≥ 3 of the smallest element of a particular set of prime factors of an
integer n. But first, we need to set the table.

For a given integer Q ≥ 3, let AQ := {0, 1, . . . , Q − 1}. Given an integer
t ≥ 1, an expression of the form i1i2 . . . it, where each ij ∈ AQ, is called a finite
word of length t. The symbol Λ will denote the empty word. We let At

Q stand
for the set of all words of length t. An infinite sequence of digits a1a2 . . ., where
each ai ∈ AQ, is called an infinite word.

An infinite sequence a1a2 . . . of base Q digits is called a normal sequence
over AQ if any preassigned sequence of k digits occurs at the expected frequency
of 1/Qk.

Given a fixed integer Q ≥ 3, let

(1.1) fQ(n) :=
{

Λ if (n, Q) �= 1,
� if n ≡ � (mod Q), (�, Q) = 1.

Write p1 < p2 < · · · for the sequence of consecutive primes, and consider
the infinite word

ξQ = fQ(p1)fQ(p2)fQ(p3) . . .

Let
BQ = {�1, �2, . . . , �ϕ(Q)}

be the set of reduced residues modulo Q, where ϕ stands for the Euler totient
function.

In an earlier paper [4], we conjectured that the word ξQ is a normal sequence
over BQ in the sense that given any integer k ≥ 1 and any word β = r1 . . . rk ∈
∈ Bk

Q, and further setting

ξ
(N)
Q = fQ(p1)fQ(p2) . . . fQ(pN ) for each N ∈ N

and
MN (ξQ|β) := #{(γ1, γ2)|ξ(N)

Q = γ1βγ2},
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we have

lim
N→∞

MN (ξQ|β)
N

=
1

ϕ(Q)k
.

In this paper, we consider a somewhat similar but more simple problem,
namely by using the residue of the smallest prime factor of n (modulo Q) which
is larger than a certain quantity, and this time we obtain an effective result.

2. Main result

Given an integer N ≥ 1, for each integer n ∈ JN := [xN , xN+1) :=
:= [eN , eN+1), let qN (n) be the smallest prime factor of n which is larger
than N ; if no such prime factor exists, set qN (n) = 1. Fix an integer Q ≥ 3
and consider the function f(n) = fQ(n) defined by (1.1). Then consider the
sequence (κ(n))n≥1 = (κQ(n))n≥1 defined by κ(n) = f(qN (n)) if n ∈ JN with
qN (n) > 1 and by κ(n) = Λ if n ∈ JN with qN (n) = 1. Then, for each integer
N ≥ 1, consider the concatenation of κ(1), κ(2), κ(3), . . ., that is define

θN := Concat(κ(n) : n ∈ JN ).

Then, settting
αQ := Concat(θN : N = 1, 2, 3, . . .),

we will prove the following result.

Theorem 1. The sequence αQ is a normal sequence over BQ.

3. Proof of the main result

We first introduce the notation λN = log log N . Moreover, from here one,
the letters p and π, with or without subscript, always stand for primes. Finally,
let ℘ stand for the set of all primes.

Fix an arbitrary large integer N and consider the interval J := [x, x + y] ⊆
⊆ JN . Let p1, p2, . . . , pk be k distinct primes belonging to the interval (N, NλN ].
Then, set

SJ(p1, p2, . . . , pk) := #{n ∈ J : qN (n + j) = pj for j = 1, 2, . . . , k}.
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We know by the Chinese Remainder Theorem that the system of congru-
ences (*) n + j ≡ 0 (mod pj), j = 1, 2, . . . , k, has a unique solution
n0 < p1p2 · · · pk and that any solution n ∈ J of (*) is of the form

n = n0 + mp1p2 · · · pk for some non negative integer m.

Let us now reorder the primes p1, p2, . . . , pk as

pi1 < pi2 < · · · < pik
.

If π ∈ ℘ and N < π < pi1 , it is clear that we will have (n + j, π) = 1 for
each j ∈ {1, 2, . . . , k}. Similarly, if π ∈ ℘ and pi1 < π < pi2 , then (n+ j, π) = 1
for each j ∈ {1, 2, . . . , k} \ {i1}, and so on. Let us now introduce the function
ρ : ℘ ∩ (N, pik

] → {0, 1, 2, . . . , k} defined by

ρ(π) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k if N < π < pi1 ,
k − 1 if pi1 < π < pi2 ,
...

...
1 if pik−1 < π < pik

,
0 if π ∈ {p1, p2, . . . , pk}.

By using the Eratosthenian sieve (see for instance the book of Halberstam
and Richert [5]), we easily obtain that, as y →∞,

(3.1) SJ(p1, . . . , pk) = (1 + o(1))
y

p1 · · · pk

∏
N<π<pik

(
1− ρ(π)

π

)
.

Setting U :=
∏

N<π<pik

(
1− ρ(π)

π

)
, one can see that, as N →∞,

log U = k log log N − k log log pi1 − (k − 1) log log pi2 + (k − 1) log log pi1 −
− · · · − log log pik

+ log log pik−1 + o(1) =
= k log log N − log log pi1 − · · · − log log pik

+ o(1),

implying that

(3.2) U = (1 + o(1))
k∏

j=1

log N

log pj
(N →∞).

Hence, in light of (3.2), relation (3.1) can be replaced by

(3.3) SJ(p1, . . . , pk) = (1 + o(1))
y

p1 · · · pk

k∏
j=1

log N

log pj
(y →∞).
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Now let r1, . . . , rk be an arbitrary collection of reduced residues modulo Q
and let us define

By(r1, . . . , rk) :=
∑

pj≡rj (mod Q)

N<pj≤NλN

j=1,...,k

SJ(p1, . . . , pk).

From the Prime Number Theorem in arithmetic progressions, we have that
(3.4) ∑

u≤p≤u+u/(log u)10
p≡� (mod Q)

1
p log p

= (1 + o(1))
1

ϕ(Q)

∑
u≤p≤u+u/(log u)10

1
p log p

(u →∞).

On the other hand, it is clear that, from the Prime Number Theorem,

(3.5)
∑

N<p≤NλN

1
p log p

= (1 + o(1))
∫ NλN

N

du

u log2 u
=

1 + o(1)
log N

(N →∞).

Combining (3.3), (3.5), and (3.4), it follows that, as y →∞,

By(p1, . . . , pk) = (1 + o(1))y
∑

pj≡rj (mod Q)

N<pj<NλN

j=1,...,k

k∏
j=1

log N

pj log pj
=

= (1 + o(1))
y

ϕ(Q)k
.(3.6)

Observe also that

(3.7)
1

xN
#{n ∈ JN : qN (n) > NλN } → 0 as xN →∞.

Indeed, it is clear that if qN (n) > NλN , then

⎛⎝n,
∏

N<π<NλN

π

⎞⎠ = 1. Therefore,

for some positive absolute constant C, we have

#{n ∈ JN : qN (n) > NλN } ≤ CxN

∏
N<π≤NλN

(
1− 1

π

)
≤ C

xN

λN
,

which proves (3.7).

We now examine the first M digits of αQ, say α
(M)
Q . Let N be such that

xN ≤M < xN+1 and set x := xN , y := M − xN and J0 = [x, x + y].
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It follows from (3.6) that, as y →∞,

#
{

n ∈ J0 : qN (n + j) ≡ rj (mod Q)

for j = 1, . . . , k
}

= (1 + o(1))
y

ϕ(Q)k
+ O

(
xN

λN

)
,

(3.8)

where the error term comes from (3.7) and accounts for those integers n ∈ JN

for which qN (n) > NλN . Running the same procedure for each positive integer
H < N , each time choosing JH = [xH , xH+1), we then obtain a formula similar
to the one in (3.8).

Gathering the resulting relations allows us to obtain that, for X = x + y,

lim
X→∞

1
X

# {n ≤ X : qN (n + j) ≡ rj (mod Q) for j = 1, 2, . . . , k} =

= lim
X→∞

1
X

(N−1∑
H=1

# {n ∈ JH : qN (n + j) ≡ rj (mod Q) for j = 1, 2, . . . , k}+

+ #{n ∈ J0 : qN (n + j) ≡ rj (mod Q) for j = 1, . . . , k}
)

=

=
1

ϕ(Q)k
,

thus completing the proof of Theorem 1. �

4. Final remarks

Let Ω(n) :=
∑

pα‖n α stand for the number of prime factors of n counting
their multiplicity. Fix an integer Q ≥ 3 and consider the function uQ(m) = �,
where � is the unique non negative number ≤ Q− 1 such that m ≡ � (mod Q).
Now consider the infinite sequence

ξQ = Concat (uQ(Ω(n)) : n ∈ N) .

We conjecture that ξQ is a normal sequence over {0, 1, . . . , Q− 1}.
Moreover, let ℘̃ ⊂ ℘ be a subset of primes such that

∑
p∈℘̃ 1/p = +∞ and

consider the function Ω℘̃(n) :=
∑
pα‖n
p∈℘̃

α. We conjecture that

ξQ(℘̃) := Concat (uQ(Ω℘̃(n)) : n ∈ N)

is also a normal sequence over {0, 1, . . . , Q− 1}.
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Finally, observe that we can also construct normal numbers by first choosing
a monotonically growing sequence (wN )N≥1 such that wN > N for each positive
integer N and such that (log wN )/N → 0 as N →∞, and then defining qN (n)
as the smallest prime factor of n larger than wN if n ∈ JN , setting qN (n) = 1
otherwise. The proof follows along the same lines as the one of our main result.
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