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Abstract. Given an integer N > 1, for each integer n € Jn := [eV, eV 1),

let g (n) be the smallest prime factor of n which is larger than N; if no such
prime factor exists, set gn(n) = 1. Fix an integer Q > 3 and consider the
function f(n) = fo(n) defined by f(n) =£if n = ¢ (mod Q) with (£,Q) =
=1 and by f(n) = A otherwise, where A stands for the empty word. Then
consider the sequence (k(n))n>1 = (k@(n))n>1 defined by k(n) = f(gn(n))
if n € Jy with gn(n) > 1 and by k(n) = A if n € Jy with gy(n) = 1.
Then, for each integer N > 1, consider the concanetation of the numbers
k(1),k(2),..., that is define 5 := Concat(k(n) : n € Jy). Then, set
aq = Concat(fy : N = 1,2,3,...). Finally, let Bg = {{1,4l2,..., 4, }
be the set of reduced residues modulo @), where ¢ stands for the Euler
function. We show that aq is a normal sequence over Bg.
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1. Introduction

In previous papers ([1], [2], [3]), we showed how one could construct normal
numbers by concatenating the digits of the numbers P(2), P(3), P(4),...,
where P(n) stands for the largest prime factor of n, then similarly by using
the k-th largest prime factor instead of the largest prime factor and finally by
doing the same replacing P(n) by p(n), the smallest prime factor of n.

Here, we consider a different approach which uses the residue modulo an
integer (@ > 3 of the smallest element of a particular set of prime factors of an
integer n. But first, we need to set the table.

For a given integer @ > 3, let Ag := {0,1,...,Q — 1}. Given an integer
t > 1, an expression of the form 44y ... 4, where each i; € Ag, is called a finite
word of length t. The symbol A will denote the empty word. We let AtQ stand
for the set of all words of length ¢. An infinite sequence of digits aias ..., where
each a; € Ag, is called an infinite word.

An infinite sequence ajas ... of base @ digits is called a normal sequence
over Ag if any preassigned sequence of k digits occurs at the expected frequency
of 1/QF.

Given a fixed integer @ > 3, let

A if (n,Q)#1,

. (
(1.1) fq(n) = { ¢ if n={ (modQ), (£Q) =1

Write p; < po < --- for the sequence of consecutive primes, and consider
the infinite word

§q = fo(p1)fa(p2)fo(ps) .-
Let
Bg ={li, b2, L)}
be the set of reduced residues modulo @, where ¢ stands for the Euler totient
function.

In an earlier paper [4], we conjectured that the word &g is a normal sequence
over Bg in the sense that given any integer £ > 1 and any word 8 =171...7; €
€ Bg, and further setting

¢5" = fo()fo(p2) .- fo(pn) foreach N eN

and
My (£qlB) == #{(11, 12)I€5" = 11672},
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we have

f Mv(al®) 1

N—s N e(Q)F

In this paper, we consider a somewhat similar but more simple problem,
namely by using the residue of the smallest prime factor of n (modulo @) which
is larger than a certain quantity, and this time we obtain an effective result.

2. Main result

Given an integer N > 1, for each integer n € Jy := [zn,Zn41) =
= [eN,eNTh)) let gn(n) be the smallest prime factor of n which is larger
than N; if no such prime factor exists, set ¢y (n) = 1. Fix an integer @ > 3
and consider the function f(n) = fg(n) defined by (1.1). Then consider the
sequence (k(n))p>1 = (kg(n))n>1 defined by k(n) = f(gn(n)) if n € Jy with
gn(n) > 1 and by k(n) = A if n € Jy with gn(n) = 1. Then, for each integer
N > 1, consider the concatenation of x(1), £(2), x(3),. .., that is define

On = Concat(k(n) : n € Jy).

Then, settting
ag = Concat(dn : N =1,2,3,...),

we will prove the following result.

Theorem 1. The sequence ag is a normal sequence over Bg.

3. Proof of the main result

We first introduce the notation Ay = loglog N. Moreover, from here one,
the letters p and 7, with or without subscript, always stand for primes. Finally,
let p stand for the set of all primes.

Fix an arbitrary large integer N and consider the interval J := [z, 2 +y] C
C Jn. Let p1,pa, - . ., px be k distinct primes belonging to the interval (N, NA~].
Then, set

Si(p1;p2,---spk) =F#{ne€ Jiqn(n+j)=p; for j =1,2,... k}.



130 J.-M. De Koninck and I. K4tai

We know by the Chinese Remainder Theorem that the system of congru-
ences (*) n+j = 0 (modp;), 5 = 1,2,...,k, has a unique solution
ng < p1p2 - - px and that any solution n € J of (*) is of the form

n =ng+ mpips---pr for some non negative integer m.
Let us now reorder the primes py,po,...,px as
p11<p12<<p7,k

Ifmepand N <7 < py, it is clear that we will have (n + j,7) = 1 for
each j € {1,2,...,k}. Similarly, if 7 € p and p;; < 7 < p;,, then (n+j,7) =1
for each j € {1,2,...,k} \ {i1}, and so on. Let us now introduce the function
p:pN(N,p;] —{0,1,2,...,k} defined by

k if N<7m<py,

k—1 if p;, <7 <pi,,
p(m) =9 :

1 if pi,_, <7 <D,

0 if me {plap27"'7pk}'

By using the Eratosthenian sieve (see for instance the book of Halberstam
and Richert [5]), we easily obtain that, as y — oo,

(3.1) Sy(p1s---ope) = (1+ 0(1))L H (1 _ p(ﬁ)> )

pl"‘pkN<7r<p_ ™
i
Setting U := H (1 — p(ﬁ)), one can see that, as N — oo,
N<7r<pik g
logU = kloglog N — kloglogp;, — (k —1)loglog p;, + (k — 1) loglogp;, —
— .- —loglogp;, +loglogp;, , +o(l) =
= kloglog N —loglogp;, —---—loglogp;, + o(1),

implying that

k

(3.2) U=@1+o1)]]

j=1

log N
log p;

(N — 0).
Hence, in light of (3.2), relation (3.1) can be replaced by

y log N
3.3 S e =(1+4+0(1 — 00).
(33) 7 (1 pr) = ( o( ))p1 - 31;[1 log p; (y — o0)
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Now let 71, ...,r, be an arbitrary collection of reduced residues modulo @
and let us define

By(rl,...,rk) = Z Sy(p1,-- s Pr)-

Pj=T; (mod Q)
N<p; < <N N
j=1,....k

From the Prime Number Theorem in arithmetic progressions, we have that

(3.4)
Z - =(1+ 0(1))% Z L (u — 00).

lo lo
u<p<utu/(logu)lo plosp u<p<utu/(logu)'® plogp
p=£ (mod Q)

On the other hand, it is clear that, from the Prime Number Theorem,

NAN
35 > 1 :(1+0(1))/ du :11:);0](\[1) (N — o).

Ny PIOBP v ulogiu

Combining (3.3), (3.5), and (3.4), it follows that, as y — oo,

k
log N
By(p1,---,pk) = (1+0(1))y Z H 1 -
pj=r; (mod Q) j= 1pJ ngj
J J

N<pj<N*N
J=1,....k

Y
3.6 = (1+o0(1 .
(3.6) ( ( ))sﬁ(Q)k
Observe also that
(3.7) %#{RGJN:qN(n)>NAN}HO as ry — 00.
N

Indeed, it is clear that if gx(n) > N*¥, then | n, H m | = 1. Therefore,

N<m<N*N
for some positive absolute constant C', we have

#{TL€JN2(]N(TL)>N/\N}§C£L’N H (1—1><CmN
N<r<NAN T AN

which proves (3.7).

We now examine the first M digits of ag, say a(QM) Let N be such that
ey <M <xzyyr and set 2 :=ay, y:=M —zy and Jy = [z, 2 + y].
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It follows from (3.6) that, as y — oo,
#{n eJo:gn(n+j)=r; (mod Q)

forj:l,...,k}:(1+o(1))s0(é)k+O(ij\\i>7

where the error term comes from (3.7) and accounts for those integers n € Jy
for which gy (n) > N*¥. Running the same procedure for each positive integer
H < N, each time choosing Jyg = [z, zH+1), we then obtain a formula similar
to the one in (3.8).

Gathering the resulting relations allows us to obtain that, for X = x + y,

1
Xlim }#{ngX:qN(n—Fj)Erj (mod Q) for j =1,2,...,k} =

(3.8)

N-1

:)}i_r)noo)l((HZ_l#{neJH:qN(n—&—j)Erj (mod Q) for j =1,2,...,k}+
+ #{nedy:gv(n+j) =7, (mon)forjzl,...,k})z
1

 e(QF

thus completing the proof of Theorem 1. ]

4. Final remarks

Let Q(n) := 3y,
their multiplicity. Fix an integer () > 3 and consider the function ug(m) = ¢,
where £ is the unique non negative number < @ — 1 such that m = ¢ (mod Q).
Now consider the infinite sequence

« stand for the number of prime factors of n counting

&g = Concat (ug(2(n)) : n € N).

We conjecture that &g is a normal sequence over {0,1,...,Q —1}.
Moreover, let ¢ C p be a subset of primes such that Zpe@ 1/p = +o00 and
consider the function Qg(n) := Z a. We conjecture that

pn
PED

£o () := Concat (ug(Qz(n)) : n € N)

is also a normal sequence over {0,1,...,Q — 1}.
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Finally, observe that we can also construct normal numbers by first choosing
a monotonically growing sequence (wy)n>1 such that wy > N for each positive
integer N and such that (logwy)/N — 0 as N — oo, and then defining gy (n)
as the smallest prime factor of n larger than wy if n € Jy, setting gn(n) =1
otherwise. The proof follows along the same lines as the one of our main result.
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