CONSTRUCTING NORMAL NUMBERS USING RESIDUES OF SELECTIVE PRIME FACTORS OF INTEGERS

Jean-Marie De Koninck¹ (Québec, Canada) Imre Kátai² (Budapest, Hungary)

Dedicated to Professor András Benczúr on the occasion of his seventieth anniversary

Communicated by Bui Minh Phong

(Received January 26, 2014; accepted May 10, 2014)

Abstract. Given an integer $N \geq 1$, for each integer $n \in J_N := [e^N, e^{N+1})$, let $q_N(n)$ be the smallest prime factor of n which is larger than N; if no such prime factor exists, set $q_N(n) = 1$. Fix an integer $Q \geq 3$ and consider the function $f(n) = f_Q(n)$ defined by $f(n) = \ell$ if $n \equiv \ell \pmod{Q}$ with $(\ell, Q) = 1$ and by $f(n) = \Lambda$ otherwise, where Λ stands for the empty word. Then consider the sequence $(\kappa(n))_{n\geq 1} = (\kappa_Q(n))_{n\geq 1}$ defined by $\kappa(n) = f(q_N(n))$ if $n \in J_N$ with $q_N(n) > 1$ and by $\kappa(n) = \Lambda$ if $n \in J_N$ with $q_N(n) = 1$. Then, for each integer $N \geq 1$, consider the concanetation of the numbers $\kappa(1), \kappa(2), \ldots$, that is define $\theta_N := \operatorname{Concat}(\kappa(n) : n \in J_N)$. Then, set $\alpha_Q := \operatorname{Concat}(\theta_N : N = 1, 2, 3, \ldots)$. Finally, let $B_Q = \{\ell_1, \ell_2, \ldots, \ell_{\varphi(Q)}\}$ be the set of reduced residues modulo Q, where φ stands for the Euler function. We show that α_Q is a normal sequence over B_Q .

Key words and phrases: Normal numbers, smallest prime factor. 2010 Mathematics Subject Classification: 11K16, 11N37, 11N41.

¹ Research supported in part by a grant from NSERC.

² Research supported by the Hungarian and Vietnamese TET 10-1-2011-0645. https://doi.org/10.71352/ac.42.127

1. Introduction

In previous papers ([1], [2], [3]), we showed how one could construct normal numbers by concatenating the digits of the numbers P(2), P(3), P(4),..., where P(n) stands for the largest prime factor of n, then similarly by using the k-th largest prime factor instead of the largest prime factor and finally by doing the same replacing P(n) by p(n), the smallest prime factor of n.

Here, we consider a different approach which uses the residue modulo an integer $Q \geq 3$ of the smallest element of a particular set of prime factors of an integer n. But first, we need to set the table.

For a given integer $Q \geq 3$, let $A_Q := \{0, 1, \ldots, Q-1\}$. Given an integer $t \geq 1$, an expression of the form $i_1 i_2 \ldots i_t$, where each $i_j \in A_Q$, is called a *finite word* of length t. The symbol Λ will denote the *empty word*. We let A_Q^t stand for the set of all words of length t. An infinite sequence of digits $a_1 a_2 \ldots$, where each $a_i \in A_Q$, is called an *infinite word*.

An infinite sequence $a_1 a_2 \dots$ of base Q digits is called a *normal sequence* over A_Q if any preassigned sequence of k digits occurs at the expected frequency of $1/Q^k$.

Given a fixed integer $Q \geq 3$, let

(1.1)
$$f_Q(n) := \begin{cases} \Lambda & \text{if } (n,Q) \neq 1, \\ \ell & \text{if } n \equiv \ell \pmod{Q}, \quad (\ell,Q) = 1. \end{cases}$$

Write $p_1 < p_2 < \cdots$ for the sequence of consecutive primes, and consider the infinite word

$$\xi_Q = f_Q(p_1) f_Q(p_2) f_Q(p_3) \dots$$

Let

$$B_Q = \{\ell_1, \ell_2, \dots, \ell_{\varphi(Q)}\}\$$

be the set of reduced residues modulo Q, where φ stands for the Euler totient function.

In an earlier paper [4], we conjectured that the word ξ_Q is a normal sequence over B_Q in the sense that given any integer $k \geq 1$ and any word $\beta = r_1 \dots r_k \in \mathcal{B}_Q^k$, and further setting

$$\xi_Q^{(N)} = f_Q(p_1) f_Q(p_2) \dots f_Q(p_N)$$
 for each $N \in \mathbb{N}$

and

$$M_N(\xi_Q|\beta) := \#\{(\gamma_1, \gamma_2)|\xi_Q^{(N)} = \gamma_1\beta\gamma_2\},$$

we have

$$\lim_{N\to\infty}\frac{M_N(\xi_Q|\beta)}{N}=\frac{1}{\varphi(Q)^k}.$$

In this paper, we consider a somewhat similar but more simple problem, namely by using the residue of the smallest prime factor of n (modulo Q) which is larger than a certain quantity, and this time we obtain an effective result.

2. Main result

Given an integer $N \geq 1$, for each integer $n \in J_N := [x_N, x_{N+1}) := [e^N, e^{N+1})$, let $q_N(n)$ be the smallest prime factor of n which is larger than N; if no such prime factor exists, set $q_N(n) = 1$. Fix an integer $Q \geq 3$ and consider the function $f(n) = f_Q(n)$ defined by (1.1). Then consider the sequence $(\kappa(n))_{n\geq 1} = (\kappa_Q(n))_{n\geq 1}$ defined by $\kappa(n) = f(q_N(n))$ if $n \in J_N$ with $q_N(n) > 1$ and by $\kappa(n) = \Lambda$ if $n \in J_N$ with $q_N(n) = 1$. Then, for each integer $N \geq 1$, consider the concatenation of $\kappa(1), \kappa(2), \kappa(3), \ldots$, that is define

$$\theta_N := \operatorname{Concat}(\kappa(n) : n \in J_N).$$

Then, settting

$$\alpha_Q := \operatorname{Concat}(\theta_N : N = 1, 2, 3, \ldots),$$

we will prove the following result.

Theorem 1. The sequence α_Q is a normal sequence over B_Q .

3. Proof of the main result

We first introduce the notation $\lambda_N = \log \log N$. Moreover, from here one, the letters p and π , with or without subscript, always stand for primes. Finally, let \wp stand for the set of all primes.

Fix an arbitrary large integer N and consider the interval $J := [x, x + y] \subseteq J_N$. Let p_1, p_2, \ldots, p_k be k distinct primes belonging to the interval $(N, N^{\lambda_N}]$. Then, set

$$S_J(p_1, p_2, \dots, p_k) := \#\{n \in J : q_N(n+j) = p_j \text{ for } j = 1, 2, \dots, k\}.$$

We know by the Chinese Remainder Theorem that the system of congruences (*) $n+j \equiv 0 \pmod{p_j}$, $j=1,2,\ldots,k$, has a unique solution $n_0 < p_1 p_2 \cdots p_k$ and that any solution $n \in J$ of (*) is of the form

 $n = n_0 + mp_1p_2 \cdots p_k$ for some non negative integer m.

Let us now reorder the primes p_1, p_2, \ldots, p_k as

$$p_{i_1} < p_{i_2} < \cdots < p_{i_k}$$

If $\pi \in \wp$ and $N < \pi < p_{i_1}$, it is clear that we will have $(n+j,\pi) = 1$ for each $j \in \{1, 2, ..., k\}$. Similarly, if $\pi \in \wp$ and $p_{i_1} < \pi < p_{i_2}$, then $(n+j,\pi) = 1$ for each $j \in \{1, 2, ..., k\} \setminus \{i_1\}$, and so on. Let us now introduce the function $\rho : \wp \cap (N, p_{i_k}] \to \{0, 1, 2, ..., k\}$ defined by

$$\rho(\pi) = \begin{cases} k & \text{if} \quad N < \pi < p_{i_1}, \\ k - 1 & \text{if} \quad p_{i_1} < \pi < p_{i_2}, \\ \vdots & & \vdots \\ 1 & \text{if} \quad p_{i_{k-1}} < \pi < p_{i_k}, \\ 0 & \text{if} \quad \pi \in \{p_1, p_2, \dots, p_k\}. \end{cases}$$

By using the Eratosthenian sieve (see for instance the book of Halberstam and Richert [5]), we easily obtain that, as $y \to \infty$,

(3.1)
$$S_J(p_1, \dots, p_k) = (1 + o(1)) \frac{y}{p_1 \cdots p_k} \prod_{N < \pi < p_k} \left(1 - \frac{\rho(\pi)}{\pi} \right).$$

Setting
$$U:=\prod_{N<\pi< n_{*}} \left(1-rac{
ho(\pi)}{\pi}
ight)$$
, one can see that, as $N\to\infty$,

$$\log U = k \log \log N - k \log \log p_{i_1} - (k-1) \log \log p_{i_2} + (k-1) \log \log p_{i_1} - \cdots - \log \log p_{i_k} + \log \log p_{i_{k-1}} + o(1) = k \log \log N - \log \log p_{i_1} - \cdots - \log \log p_{i_k} + o(1),$$

implying that

(3.2)
$$U = (1 + o(1)) \prod_{j=1}^{k} \frac{\log N}{\log p_j} \qquad (N \to \infty).$$

Hence, in light of (3.2), relation (3.1) can be replaced by

(3.3)
$$S_J(p_1, \dots, p_k) = (1 + o(1)) \frac{y}{p_1 \cdots p_k} \prod_{i=1}^k \frac{\log N}{\log p_i} \qquad (y \to \infty).$$

Now let r_1, \ldots, r_k be an arbitrary collection of reduced residues modulo Q and let us define

$$B_{y}(r_{1},\ldots,r_{k}) := \sum_{\substack{p_{j} \equiv r_{j} \pmod{Q} \\ N < p_{j} \leq N^{\lambda}N \\ j=1,\ldots,k}} S_{J}(p_{1},\ldots,p_{k}).$$

From the Prime Number Theorem in arithmetic progressions, we have that (3.4)

$$\sum_{\substack{u \le p \le u + u/(\log u)^{10} \\ p \equiv \ell \pmod{Q}}} \frac{1}{p \log p} = (1 + o(1)) \frac{1}{\varphi(Q)} \sum_{u \le p \le u + u/(\log u)^{10}} \frac{1}{p \log p} \quad (u \to \infty).$$

On the other hand, it is clear that, from the Prime Number Theorem,

$$(3.5) \sum_{N$$

Combining (3.3), (3.5), and (3.4), it follows that, as $y \to \infty$,

$$(3.6) B_{y}(p_{1},...,p_{k}) = (1+o(1))y \sum_{\substack{p_{j} \equiv r_{j} \pmod{Q} \\ N < p_{j} < N^{\lambda}N \\ j=1,...,k}} \prod_{j=1}^{k} \frac{\log N}{p_{j} \log p_{j}} = (1+o(1))\frac{y}{\varphi(Q)^{k}}.$$

Observe also that

(3.7)
$$\frac{1}{x_N} \# \{ n \in J_N : q_N(n) > N^{\lambda_N} \} \to 0 \quad \text{as } x_N \to \infty.$$

Indeed, it is clear that if $q_N(n) > N^{\lambda_N}$, then $\left(n, \prod_{N < \pi < N^{\lambda_N}} \pi\right) = 1$. Therefore, for some positive absolute constant C, we have

$$\#\{n \in J_N : q_N(n) > N^{\lambda_N}\} \le Cx_N \prod_{N \le \pi \le N^{\lambda_N}} \left(1 - \frac{1}{\pi}\right) \le C\frac{x_N}{\lambda_N},$$

which proves (3.7).

We now examine the first M digits of α_Q , say $\alpha_Q^{(M)}$. Let N be such that $x_N \leq M < x_{N+1}$ and set $x := x_N$, $y := M - x_N$ and $J_0 = [x, x + y]$.

It follows from (3.6) that, as $y \to \infty$,

(3.8)
$$\#\left\{n \in J_0 : q_N(n+j) \equiv r_j \pmod{Q}\right\}$$
 for $j = 1, \dots, k$ $= (1 + o(1)) \frac{y}{\varphi(Q)^k} + O\left(\frac{x_N}{\lambda_N}\right)$,

where the error term comes from (3.7) and accounts for those integers $n \in J_N$ for which $q_N(n) > N^{\lambda_N}$. Running the same procedure for each positive integer H < N, each time choosing $J_H = [x_H, x_{H+1})$, we then obtain a formula similar to the one in (3.8).

Gathering the resulting relations allows us to obtain that, for X = x + y,

$$\lim_{X \to \infty} \frac{1}{X} \# \{ n \le X : q_N(n+j) \equiv r_j \pmod{Q} \text{ for } j = 1, 2, \dots, k \} =$$

$$= \lim_{X \to \infty} \frac{1}{X} \Big(\sum_{H=1}^{N-1} \# \{ n \in J_H : q_N(n+j) \equiv r_j \pmod{Q} \text{ for } j = 1, 2, \dots, k \} +$$

$$+ \# \{ n \in J_0 : q_N(n+j) \equiv r_j \pmod{Q} \text{ for } j = 1, \dots, k \} \Big) =$$

$$= \frac{1}{\varphi(Q)^k},$$

thus completing the proof of Theorem 1.

4. Final remarks

Let $\Omega(n) := \sum_{p^{\alpha} || n} \alpha$ stand for the number of prime factors of n counting their multiplicity. Fix an integer $Q \geq 3$ and consider the function $u_Q(m) = \ell$, where ℓ is the unique non negative number $\leq Q-1$ such that $m \equiv \ell \pmod{Q}$. Now consider the infinite sequence

$$\xi_Q = \operatorname{Concat}\left(u_Q(\Omega(n)) : n \in \mathbb{N}\right).$$

We conjecture that ξ_Q is a normal sequence over $\{0, 1, \dots, Q-1\}$.

Moreover, let $\widetilde{\wp} \subset \wp$ be a subset of primes such that $\sum_{p \in \widetilde{\wp}} 1/p = +\infty$ and consider the function $\Omega_{\widetilde{\wp}}(n) := \sum_{p \in \mathbb{F}^n \atop p \in \mathbb{F}^n} \alpha$. We conjecture that

$$\xi_{\mathcal{O}}(\widetilde{\wp}) := \operatorname{Concat}\left(u_{\mathcal{O}}(\Omega_{\widetilde{\wp}}(n)) : n \in \mathbb{N}\right)$$

is also a normal sequence over $\{0, 1, \dots, Q-1\}$.

Finally, observe that we can also construct normal numbers by first choosing a monotonically growing sequence $(w_N)_{N\geq 1}$ such that $w_N>N$ for each positive integer N and such that $(\log w_N)/N\to 0$ as $N\to\infty$, and then defining $q_N(n)$ as the smallest prime factor of n larger than w_N if $n\in J_N$, setting $q_N(n)=1$ otherwise. The proof follows along the same lines as the one of our main result.

References

- [1] **De Koninck, J.-M. and I. Kátai,** On a problem on normal numbers raised by Igor Shparlinski, *Bulletin of the Australian Mathematical Society*, **84** (2011), 337–349.
- [2] **De Koninck, J.-M. and I. Kátai,** Construction of normal numbers using the distribution of the k-th largest prime factor, Journal of the Australian Mathematical Society, 88 (2013), 158–168.
- [3] **De Koninck, J.-M. and I. Kátai,** Normal numbers generated using the smallest prime factor function, preprint.
- [4] **De Koninck, J.-M. and I. Kátai,** Prime-like sequences leading to the construction of normal numbers, *Functiones et Approximatio* (to appear).
- [5] Halberstam, H.H. and H.E. Richert, Sieve Methods, Academic Press, London, 1974.

J.-M. De Koninck

Départment de mathématiques et de statistique Université Laval Québec Québec G1V 0A6 Canada jmdk@mat.ulaval.ca

I. Kátai

Department of Computer Algebra Faculty of Informatics Eötvös Loránd University Pázmány Péter sétány 1/C H-1117 Budapest, Hungary katai@compalg.inf.elte.hu