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Villő Csiszár (Budapest, Hungary)

Tamás Fegyverneki (Budapest, Hungary)
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Dedicated to Professor András Benczúr on the occasion of his 70th birthday

Communicated by László Lakatos

(Received June 1, 2014; accepted July 1, 2014)

Abstract. In the paper, Chebyshev type upper bounds are presented for
the probability that a random vector X falls outside of an ellipsoid, in
terms of the mean and variance of X. Our inequalities are better than
those found in the literature.

1. Introduction

The classical Bienaymé–Chebyshev inequality says that

P(|X − E(X)| ≥ t) ≤ Var(X)

t2

holds for every positive t. This simple inequality is valid for all univariate
random variables X with finite variance, but in particular cases, when more
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is known about X, it can be improved significantly. For instance, there exist
sharper inequalities for bounded random variables [11], or random variables
having unimodal distribution [13], or finite higher moments, and also in the
case where X is a sum of n i.i.d. random variables [1], etc. Efforts have
also been made to construct similar inequalities for random vectors, see e.g.
[2, 4, 6, 7, 8, 9]. In a recent paper [12] sharp lower bounds are presented on
the probability of a set defined by quadratic inequalities, given the first two
moments of the distribution. Though the bounds are not explicit, they can be
efficiently computed using convex optimization.

If the distribution of the random vector X is known to be a member of
a certain family, sharper bounds can be constructed. This is the case, for
example, when the distribution is a scale mixture of the n-variate standard
normal distribution, that is, X = S1/2Z, where Z is an n-variate standard
normal vector, and S is a symmetric, positive semidefinite random matrix of
size n× n, independent of Z. In [3] a Chebyshev type inequality is proved for
the probability P(X /∈ C), where C is an ellipsoid containing the origin.

In the present paper, we do not suppose any particular property of the
distribution except that EX = 0 and Var(X) = Σ > 0, and we construct a
relatively good upper bound for P(X /∈ C). Our approach is somewhat similar
to what Olkin and Pratt [9] applied to the probability content of higher dimen-
sional rectangles (cuboids). Then we also have a look at diagonally symmetric
distributions.

Our inequalities are presented in Section 2. Section 3 contains the proofs.
In Section 4, we compare our inequalities with earlier results through some
numerical examples.

2. Results

Let A be an n × n symmetric positive definite matrix, a ∈ R
n, and t > 0.

Define

C = {x ∈ R
n : (x− a)�A(x− a) < t2};

an ellipsoid with center a. We will suppose that 0 ∈ C, that is, a�A a < t2.

Let X be an n-variate random vector, EX = 0, and Var(X) = E(XX�) =
Σ. Suppose that Σ is positive definite.

A well known simple estimation can be obtained in the following way. Let
us apply the Markov inequality to the random variable (X − a)�A(X − a).
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Then

(2.1) P(X /∈ C) ≤ E(X − a)�A(X − a)

t2
.

Using the cyclic invariance of the trace function we can write

E(X − a)�A(X − a) = E tr
(
(X − a)�A(X − a)

)
= E tr

(
A(X − a)(X − a)�

)
= tr
(
AE(X − a)(X − a)�

)
= tr
(
A
(
Σ+ aa�

))
= trAΣ+ tr

(
Aaa�

)
= trAΣ+ a�A a.

Plugging this back into (2.1) we have

(2.2) P(X /∈ C) ≤ trAΣ+ a�A a

t2
.

If ellipsoid C does not contain the origin, the right-hand side of (2.2) is
greater than 1. In fact, no upper estimate, apart from the trivial one, exists
for P(X /∈ C). In that case the complementary probability can be estimated in
the following way [7, Corollary 5.1]

P(X ∈ C) ≤ sup
z∈C

1

1 + z�Σ−1z
.

Suppose the center of the ellipsoid coincides with the expectation of the
random vector, i.e, a = 0. In that case, if the upper bound of (2.2) is less than
1, then there exists a distribution with mean 0 and covariance matrix Σ for
which the bound is exact. This remains true in some cases where a �= 0, but
then ellipsoid C should satisfy certain conditions depending on Σ. They are as
follows.

Consider B = A1/2
(
Σ + aa�

)
A1/2. This is a symmetric positive definite

matrix, and tr
(
t−2B
)
is just the right-hand side of (2.2). The spectral decom-

position of the matrix t−2B is of the form

t−2B =

n∑
j=1

λjzjz
�
j ,

where {zj : j = 1, . . . , n} is an orthonormal basis consisting of eigenvectors,
and λj , j = 1, . . . , n, are the corresponding eigenvalues (they are positive).
Then the right-hand side of (2.2) is less than 1 if and only if

(2.3) λ1 + · · ·+ λn < 1.

Let us express t−1A1/2a in this orthonormal basis,

t−1A1/2a =

n∑
j=1

αjzj .
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Theorem 2.1. Let Σ, A, a and t be given in such a way that they satisfy
(2.3) and also condition

(2.4) |αj | ≤ λj , j = 1, . . . , n.

Then there exists a random vector X with mean 0 and covariance matrix Σ for
which (2.2) holds true with equality.

Note that α2
j ≤ λj by definition, since

λj = z�j
(
t−2B
)
zj = t−2z�j Σzj + α2

j ≥ α2
j .

Condition (2.4) is clearly satisfied for a = 0.

For a �= 0 inequality (2.2) may be rather crude. The following theorems
provide estimations improving (2.2) in certain cases.

Theorem 2.2.
(2.5)

P(X /∈ C) ≤

⎧⎪⎪⎨⎪⎪⎩
trAΣ

trAΣ+
(
t−

√
a�A a

)2 , if trAΣ ≤ t
√
a�A a− a�A a,

trAΣ+ a�A a

t2
, if trAΣ > t

√
a�A a− a�A a.

This is a directmultivariate generalization of the univariate Selberg inequal-
ity [12, Sec. 3]. Note that

trAΣ+ a�A a

t2
=

trAΣ

trAΣ+
(
t−

√
a�A a

)2 +

(
trAΣ− t

√
a�A a+ a�A a

)2
t2
(
trAΣ+

(
t−

√
a�A a

)2) ,
thus inequality (2.5) is sharper than (2.2) if trAΣ ≤ t

√
a�A a− a�A a.

Theorem 2.3. Let d ∈ R
n be fixed in such a way that d�A d < t2, and

define

(2.6)
u = d�AΣA d+

(
d�A d+ a�A d

)2
, v = t2 − d�A d,

w = trAΣ+ (d+ a)�A (d+ a), z = u+ vw.

Then

(2.7) P(X /∈ C) ≤
(√

z +
√
u

v

)2
=

w

v
·
√
z +

√
u√

z −√u
.
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Particularly, for d = 0 estimation (2.7) gives (2.2). If d = −a, the quantities
in (2.6) have the following simpler form

(2.8) u = a�AΣA a, v = t2 − a�A a, w = trAΣ, z = u+ vw.

We remark that inequality (2.7) with

d =

(
trAΣ

t
√
a�A a− a�A a

− 1

)
a

is even better than (2.5) if trAΣ ≤ t
√
a�A a−a�A a. This will be seen easily

from the proofs in Section 3. For more details see the end of Section 3.

Theorem 2.4. If, in addition, the distribution of X is diagonally symmet-
ric, that is, X and −X have the same distribution, then

(2.9) P(X /∈ C) ≤ w

v
·

√
z√

z −√u
− u

v
· 1

t
√
a�A a+ a�A a

,

where u, v, w, z is given by (2.8).

This is obviously sharper than (2.7) with d = −a.

3. Proofs

Proof of Theorem 2.1. Let

X =

⎧⎪⎨⎪⎩
a+ tA−1/2zj with probability 1

2 (λj − αj), j = 1, . . . , n,

a− tA−1/2zj with probability 1
2 (λj + αj), j = 1, . . . , n,

a with probability 1− (λ1 + · · ·+ λn).

Then

EX = a+

n∑
j=1

tA−1/2zj

(
λj − αj

2
− λj + αj

2

)
= a− tA−1/2

n∑
j=1

αjzj = 0.

Moreover,

Var(X) = Var(X − a) = E(X − a)(X − a)� − aa�

=

n∑
j=1

λjt
2A−1/2zjz

�
j A−1/2 − aa� = A−1/2BA−1/2 − aa� = Σ.



114 V. Csiszár, T. Fegyverneki and T.F. Móri

In addition, if X �= 0, then X�AX = t2, thus

P(X /∈ C) = P(X �= 0) = λ1 + · · ·+ λn =
trAΣ+ a�A a

t2
.

�
Let us turn to the proofs of the upper bounds. In what follows we do not

only justify our estimations, but also show why they are relatively good.

First, by introducing ã = A1/2a, d̃ = A1/2d, and X̃ = A1/2X we can
reduce the problem to the special case of A = I. Indeed, X ∈ C if and only if
X̃ ∈ C̃, where C̃ is the open sphere of center ã and radius t. In the conditions
we now have |ã|2 = a�A a < t2, and similarly, |d̃|2 = d�A d < t2. In addition,
Σ̃ = Var X̃ = A1/2ΣA1/2, thus tr Σ̃ = trA1/2ΣA1/2 = trAΣ. Thus, in the
sequel we suppose A = I, and omit the tilde. Definition (2.6) also becomes
simpler

(3.1)
u = d�Σ d+

(|d|2 + a�d
)2
, v = t2 − |d|2,

w = trΣ+ |d+ a|2, z = u+ vw.

Introduce the following notation. For a given symmetric positive definite
matrix B of size n× n, vector b ∈ R

n, and positive number t let

E(B, b, t) = {x ∈ R
n : (x− b)�B (x− b) < t2}.

This is an ellipsoid of center b.

This time C = E(I, a, t) = {x ∈ R
n : |x − a| < t}. Our aim is to estimate

the probability P(X /∈ C). Let d = b − a, that is, b = d + a. Suppose that
E(B, b, s) ⊂ C, that is, |d| < t and

(3.2) s2 ≤ min{(z − d)�B (z − d) : |z| = t}.
Then, by (2.2),

(3.3) P(X /∈ C) ≤ P
(
X /∈ E(B, b, s)

) ≤ trBΣ+ b�B b

s2
.

With B and b fixed, the right-hand side of (3.3) attains its minimum when s
takes on its largest possible value. Thus, in (3.2) equality must hold. Hence

(3.4) P(X /∈ C) ≤ min

{
trBΣ+ b�B b

min{(z − d)�B (z − d) : |z| = t} : B > 0, |d| < t

}
.

It appears quite hard to compute the right-hand side of (3.4). To make
calculations easier, instead of arbitrary inscribed ellipsoids we will only consider
those of a particular form. Let

B = I+ λdd�,
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then E(B, b, s) is a spheroid (cylindrically symmetric ellipsoid) with rotation
axis going through the center of C. Making this choice, let us apply the notation
E(λ, d, s) instead of E(B, b, s), and let U(t;λ, d) stand for the fraction on the
right-hand side of (3.4). Its numerator is of the form

trBΣ+ b�B b = trΣ+ λd�Σ d+ |d+ a|2 + λ
(|d|2 + a�d

)2
,

hence we obtain

(3.5) U(t;λ, d) =
trΣ+ λd�Σ d+ |d+ a|2 + λ

(|d|2 + a�d
)2

min{(z − d)�(I+ λdd�)(z − d) : |z| = t} .

Firstly, let us find the minimum in (3.5). Suppose λ �= 0, and let y = d�z.
Then

(z − d)�(I+ λdd�)(z − d) = |z|2 − 2y + |d|2 + λy2 − 2λ|d|2y + λ|d|4

= λ
(
y − 1

λ

(
1 + λ|d|2))2 + t2 − 1

λ

(
1 + λ|d|2).(3.6)

Suppose λ > 0. It is easy to see that the minimum is attained at y =
1

λ

(
1 +

λ|d|2), if this value is admissible, that is,

(3.7)
1

λ

(
1 + λ|d|2) ≤ |d|t.

In that case s2 = t2 − 1

λ

(
1 + λ|d|2), thus

(3.8) U(t;λ, d) =
trΣ+ λd�Σ d+ |d+ a|2 + λ

(|d|2 + a�d
)2

t2 − (1/λ+ |d|2) .

If (3.7) does not hold, the minimum is attained at the admissible point
being the closest to the minimum point of the quadratic polynomial, namely,
at y = |d|t, and the minimum is (t− |d|)2(1 + λ|d|2). Hence,
(3.9) U(t;λ, d) =

trΣ+ λd�Σ d+ |d+ a|2 + λ
(|d|2 + a�d

)2
(t− |d|)2(1 + λ|d|2) .

If λ < 0, then the positive definiteness of B requires d�B d = |d|2+λ|d|4 =
|d|2(1+λ|d|2) > 0. In that case (3.6) implies that the minimum is at the upper
end of the domain of admissibility, y = |d|t. Thus, formula (3.9) remains true.

Finally, if λ = 0, the denominator of U(t;λ, d) becomes simpler: it equals
min{|z − d|2 : |z| = t}. Clearly, |z − d|2 ≥ (|z| − |d|)2 = (t − |d|)2, and this
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lower bound can be attained. Hence the minimum is (t − |d|)2, thus (3.9) is
still valid:

(3.10) U(t; 0, d) =
trΣ+ |d+ a|2

(t− |d|)2 .

In what follows we first determine min{U(t; 0, d) : |d| < t}, that will imply
Theorem 2.2, then also min{U(t;λ, d) : 1 + λ|d|2 > 0} with d fixed, justifying
Theorem 2.3. Unfortunately, we cannot derive an explicit form ofmin

λ, d
U(t;λ, d).

Lemma 3.1.

min{U(t; 0, d) : |d| < t} =

⎧⎪⎪⎨⎪⎪⎩
trΣ

trΣ+ (t− |a|)2 , if trΣ ≤ |a|(t− |a|),
trΣ+ |a|2

t2
, if trΣ > |a|(t− |a|).

Proof. Having |d| fixed we find |d+a|2 minimal for d = −|d||a| a, thus |d+a|2 =

(|d| − |a|)2. Let y = |d|, then (3.10) implies that

U(t; 0, d) =
trΣ+ (y − |a|)2

(t− y)2
.

From that we obtain

d

dy
logU(t; 0, d) =

2(y − |a|)
trΣ+ (y − |a|)2 +

2

t− y

=
2
(
trΣ+ (t− |a|)(y − |a|))(
trΣ+ (y − |a|)2)(t− y)

.

Consequently, if trΣ ≤ |a|(t− |a|), then the minimum is attained at

(3.11) y = |a| − trΣ

t− |a| ,

and its value is

(3.12)
trΣ

trΣ+ (t− |a|)2 .

If, on the other hand, trΣ > |a|(t−|a|), then d
dy logU(t; 0, d) > 0, thus U(t; 0, d)

is an increasing function of y. Hence the minimum is attained at y = 0, and it

equals the bound of (2.2), namely,
trΣ+ |a|2

t2
. �
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Lemma 3.2. With the notations of (3.1) we have

(3.13) min{U(t;λ, d) : 1 + λ|d|2 > 0 } =
(√

z +
√
u

v

)2
=

w

v
·
√
z +

√
u√

z −√u
.

Proof. Firstly, let us focus on values of λ for which (3.7) holds with the
opposite inequality, that is,

1

λ

(
1 + λ|d|2) ≥ |d|t.

Then, by (3.9),

U(t;λ, d) =
trΣ+ λd�Σ d+ |d+ a|2 + λ

(|d|2 + a�d
)2

(t− |d|)2(1 + λ|d|2)

=

trΣ+ λd�Σ d+ |d+ a|2 + 1 + λ|d|2
|d|2

(|d|2 + a�d
)2 − (|d|2 + a�d

)2
|d|2

(t− |d|)2(1 + λ|d|2)
=

trΣ+ λd�Σ d+ |d+ a|2 − |d|2 − 2a�d− (a�d)2

|d|2
(t− |d|)2(1 + λ|d|2) +

(|d|2 + a�d
)2

|d|2(t− |d|)2

=
1

(t− |d|)2 ·
trΣ+ λd�Σ d+ |a|2 − (a�d)2|d|−2

1 + λ|d|2 +

(|d|2 + a�d
)2

|d|2(t− |d|)2 .

It suffices to deal only with the term containing λ.

d

dλ
log

trΣ+ λd�Σ d+ |a|2 − (a�d)2|d|−2

1 + λ|d|2

=
d�Σ d

trΣ+ λd�Σ d+ |a|2 − (a�d)2|d|−2
− |d|2

1 + λ|d|2

=
d�Σ d− |d|2 trΣ− (|a|2|d|2 − (a�d)2

)(
trΣ+ λd�Σ d+ |a|2 − (a�d)2|d|−2

)(
1 + λ|d|2) ≤ 0,

hence U(t;λ, d) is minimal if and only if equality holds in (3.7).

Let us turn to the case where (3.7) is valid. Using the notations of (3.1) we
obtain (3.8) in the following form

U(t;λ, d) =
w + uλ

v − 1/λ
.

Note that condition (3.7) requires

(3.14) 0 <
1

λ
≤ |d|(t− |d|) = |d|

t+ |d| v.
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Let us differentiate it with respect to λ.

(3.15)
d

dλ
logU(t;λ, d) =

u

w + uλ
− 1

λ(v λ− 1)
=

uvλ2 − 2uλ− w

(w + uλ)λ(vλ− 1)
.

The positive root of the numerator is

(3.16) λ =
u+

√
u2 + uvw

uv
=

√
z +

√
u

v
√
u

.

If this λ satisfies (3.14), then it provides the minimum of U(t;λ, d). It is easy
to see that (3.14) equivalent to |d|2z− t2u ≥ 0. The latter obviously holds now,
because |d|2z − t2u = v

(|d|2 trΣ− d�Σ d+ |a|2|d|2 − (a�d)2
) ≥ 0.

From (3.15) we have w = uvλ2 − 2uλ, hence the minimum is equal to

λ(w + uλ)

vλ− 1
= uλ2 =

(√
z +

√
u

v

)2
,

as stated. �

Proof of Theorem 2.4. Consider an arbitrary ellipsoid with the origin as
its center, and bisect it with a hyperplane going through the origin. Then, by
the diagonal symmetry, both halves have the same probability of containing
X. Basing on this observation we cut C by the hyperplane orthogonal to the
radius through the origin, and inscribe a half of a spheroid into both parts in
such a way that each of those halves maximizes the right-hand side of (2.2).

The smaller part of C is the one that does not contain the center. By
inversion with respect to the origin it is transformed into a subset of the bigger
part. Thus the image of the inscribed half ellipsoid lies entirely in C. Among
all inscribed ellipsoids of the form E(λ,−a, s) the right-hand side of (2.2) is
maximized by (3.16), giving the following estimation.

(3.17) P(X /∈ C, a�X < 0) ≤ w

2v
·
√
z +

√
u√

z −√u
.

Let us turn to the bigger part. We want to minimize trBΣ/s2 among all
ellipsoids E(λ,−a, s) for which

(3.18) E(λ,−a, s) ∩ {z ∈ R
n : a�z ≥ 0} ⊂ C.

Note that for every point z of such an ellipsoid either z or −z falls in C, hence

(3.19) |z| ≤ t+ |a|.
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We will show that the minimum is attained for

(3.20) λ1 = − 2

|a|(t+ |a|) , s21 = t2 − |a|2.

First we check that B = I + λ1aa
� is positive definite. Let z ∈ R

n be
different from 0, then

(3.21) z�B z = |z|2 − 2(a�z)2

|a|(t+ |a|) ≥ |z|
2 − 2|a|2|z|2

|a|(t+ |a|) = |z|2 t− |a|
t+ |a| > 0.

Next we show that (3.18) holds for λ1 and s1. Indeed, let z
�B z < t2− |a|2

and a�z ≥ 0. Then from (3.21) we get that |z| < t+ |a|, thus a�z ≤ |a|(t+ |a|),
whence

|z − a|2 = |z|2 + |a|2 − 2a�z = z�B z + |a|2 − 2a�z − λ1(a
�z)2

< t2 − 2a�z
(
1− a�z

|a|(t+ |a|)
)
≤ t2.

Finally, suppose that (3.18) is satisfied for some λ2 and s2. We are going
to prove that E(λ2,−a, s2) ⊂ E(λ1,−a, s1), that is,

E(I+ λ2aa
�, 0, s2) ⊂ E(I+ λ1aa

�, 0, s1).

This will be sufficient, because it is not hard to see in general that E(B2, 0, s2) ⊂
E(B1, 0, s1) implies trB2Σ/s22 ≥ trB1Σ/s21. Indeed, in that case

P

(
X�B1 X

s21
≥ y

)
≤ P

(
X�B2 X

s22
≥ y

)
holds for every positive y. Integrating on both sides with respect to y from
zero to infinity we obtain

trB1Σ

s21
= E

(
X�B1 X

s21

)
≤ E

(
X�B2 X

s22

)
=

trB2Σ

s22
.

Firstly, suppose λ2 ≤ λ1. Let z1 = (t + |a|)a/|a|. It is a boundary point
of C, thus s22 ≤ z�1 (I + λ2aa

�)z1 = (t + |a|)2(1 + λ2|a|2). Therefore, if z ∈
E(λ2,−a, s2), then by (3.19) we have

z�(I+ λ1aa
�)z = z�(I+ λ2aa

�)z + (λ1 − λ2)(a
�z)2 < s22 + (λ1 − λ2)|a|2|z|2

≤ (t+ |a|)2(1 + λ2|a|2) + (λ1 − λ2)|a|(t+ |a|)
= (t+ |a|)2(1 + λ1|a|2) = t2 − |a|2.
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Secondly, suppose that λ2 > λ1. Pick a boundary point z1 of C such that
a�z1 = 0. Then s22 ≤ z�1 (I + λ2aa

�)z1 = |z1|2 = |z1 − a|2 − |a|2 = t2 − |a|2.
Hence, if z ∈ E(λ2,−a, s2), then

z�(I+ λ1aa
�)z ≤ z�(I+ λ2aa

�)z < s22 ≤ t2 − |a|2.

From all these we conclude that
(3.22)

P(X /∈ C, a�X ≥ 0) ≤ 1

2
· trΣ+ λ1a

�Σ a

t2 − |a|2 =
w + λ1u

2v
=

w

2v
− u

v
· 1

|a|(t+ |a|) .

Now the proof can be completed by combining (3.17) with (3.22). �
Finally, from Lemma 3.1 and its proof we know that the upper bound of

Theorem 2.2 is obtained as min|d|<t U(t; 0, d). Moreover, if trΣ ≤ |a|(t− |a|),
this minimum is attained at

d =

(
trΣ

|a|(t− |a|) − 1

)
a.

On the other hand, the upper bound of Theorem 2.3 is equal to minλ U(t;λ, d),
by Lemma 3.2. Hence inequality (2.7) with d as above is better than (2.5) if
trΣ ≤ |a|(t− |a|). This proves our remark preceding Theorem 2.4.

4. Comparison with earlier results

In [9], Olkin and Pratt constructed an upper bound for the probability

P (|Yi| ≥ ki for some i, 1 ≤ i ≤ n)

by considering an ellipsoid {x ∈ R
n : x�Ax ≤ 1} contained by the hypercube

[−1,+1]n, then minimizing trAΣ, where Xi = Yi/ki and Σ = Var(X).

They showed that the minimum is attained at A = B−1, where B is the
unique positive definite matrix with diagonal elements 1, such that AΣA = Λ
is diagonal. They stated thatB can not be obtained fromΣ by standardmatrix
operations except in special cases. Later Meaux et al. [8] suggested a method of
solving such a matrix equation numerically by giving lower and upper bounds
for the elements of B and Λ, and then using a generalized bisection method.

The approach of Birnbaum and Marshall [2] was similar, but they considered
the case when the expectation of the random vector did not coincide with the
center of the ellipsoid.
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These methods resulted in the upper bound that arises when the Markov
inequality is applied to (X − a)�A(X − a); that is, in (2.2).

Jensen [4] generalized that to multiple ellipsoids.

Thus, in comparable cases, our upper bounds are strictly better than theirs,
provided trAΣ ≤ t

√
a�Aa− a�Aa.

In the following numerical examples upper bounds are labelled with the
theorems they come from, and the result of the former approach is referred to
as ‘earlier’. In Theorem 2.3 we choose d =

(
trAΣ/(t

√
a�Aa+a�Aa)−1)a, and

in Theorem 2.4, d = −a. The exact probabilities are computed by simulations
implemented in R, with sample size 107 at least.

Example 4.1. Set

A0 =

⎡⎣ 0.6 −0.3 0
−0.3 0.7 −0.1
0 −0.1 0.8

⎤⎦ , a =

⎡⎣ 1
1/2
2

⎤⎦ , Σ =

⎡⎣ 1 1/4 1/4
1/4 2 1/2
1/4 1/2 3

⎤⎦ .
Let the random vectors X and Y be Gaussian N(0, Σ), and tν(0,

ν−2
ν Σ), resp.

(For the definition of the multivariate t-distribution see [5]). Thus the variances
of the random vectors X and Y are the same. As before, we consider the
ellipsoid C = {x ∈ R

3 : (x− a)�A(x− a) < t2}.
In Table 1 we compare earlier bounds with the ones provided by Theorems

2.2–2.4 under three different choices of parameters t, A, and ν. Although our

Table 1. Comparison of bounds in the case of multivariate Gaussian and mul-
tivariate t-distribution.

t 6 4.5 1.5
A A0 A0 0.1A0

ν 3 3 4

P(X �∈ C) 0.0045 0.0565 0.0398
P(Y �∈ C) 0.0174 0.0485 0.0452
Earlier 0.2118 0.3765 0.3389
Theorem 2.2 0.1952 0.3739 0.3336
Theorem 2.3 0.1815 0.3701 0.3241
Theorem 2.4 0.1499 0.3220 0.2773∗

new estimations are better than the widely known bound of (2.2), they are still
far from the exact probabilities. This is no surprise, since a general estimation,
valid without strict conditions on the distribution, is necessarily rather crude,
especially for distributions with very light tails.
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Example 4.2. This is a variant of Example 4.1 in 5 dimensions. Again, X
is zero mean Gaussian, Y is multivariate t, and they have the same covariance
matrix Σ. This time let

A0 =

⎡⎢⎢⎢⎢⎣
0.80 0.12 −0.08 0.08 −0.1
0.12 0.73 −0.1 0 0.13

−0.08 −0.1 0.56 0.06 0.01
0.08 0 0.06 0.31 −0.05

−0.1 0.13 0.01 −0.05 0.86

⎤⎥⎥⎥⎥⎦ , a =

⎡⎢⎢⎢⎢⎣
−0.8
0.5
0
0.5
0.5

⎤⎥⎥⎥⎥⎦ ,

Σ =

⎡⎢⎢⎢⎢⎣
0.71 0.01 0.02 −0.01 −0.01
0.01 0.72 0 −0.06 −0.03
0.02 0 0.66 0.14 0.08

−0.01 −0.06 0.14 0.34 −0.23
−0.01 −0.03 0.08 −0.23 0.61

⎤⎥⎥⎥⎥⎦ .

Table 2 contains the exact probabilities and the earlier bounds together with
those provided by our Theorems 2.2–2.4. The overall picture is quite similar to
what we have seen in Table 1, but this time Theorem 2.2 does not significantly
improve the “Earlier” estimate (trAΣ+ a�Aa)/t2.

Table 2. Comparison of bounds in the case of multivariate Gaussian and mul-
tivariate t-distribution.

t 4 3.5 3.2 5
A A0 A0 A0 2.5A0

ν 3 3 3 3

P(X �∈ C) 0.0003 0.0025 0.0082 0.0095
P(Y �∈ C) 0.0164 0.0250 0.0332 0.0343
Earlier 0.1921 0.2509 0.30014 0.307340
Theorem 2.2 0.1884 0.2498 0.30011 0.307339
Theorem 2.3 0.1712 0.2304 0.2813 0.2888
Theorem 2.4 0.1543 0.2092 0.2580 0.2654

Example 4.3. When C is not centered at the origin, the upper bound can
be far from the exact probability, but it is sharper when applied to fat tailed
distributions. In this example, we also consider a fat tailed distribution with
generalized Pareto marginals.

The generalized Pareto distribution GPD(μ, σ, ξ) [10] with location param-
eter μ ∈ R, scale parameter σ > 0 and shape parameter ξ ∈ R is defined by its
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distribution function

F (x) =

{
1−
(
1 +
(

ξ(x−μ)
σ

))−1/ξ

for ξ �= 0,

1− exp
(−x−μ

σ

)
for ξ = 0.

where x is to satisfy 1 + ξ(x− μ)/σ ≥ 0 and x ≥ μ.

Let U1 and U2 be independent random variables of GPD(3, 1,−10) and
GPD(1, 0.2, 0.05) distribution, resp. Define V � = [U1,

1
2U1 +

1
2U2], and W =

V − EV .

Then the covariance matrix of the random vector W is

Σ =

[
0.0003935458 0.0001967729
0.0001967729 0.0124098669

]
.

In addition, let X be zero mean bivariate Gaussian and Y bivariate t as above,
Y with ν = 3, such that they have covariance matrix Σ.

Consider the ellipsoid C given by

A =

[
0.6 −0.3

−0.3 0.7

]
, a =

[ −1
−1
]
, t = 1.

Table 3. Comparison of bounds in the case of bivariate Gaussian, t and Pareto
distributions.

P(X �∈ C) P(Y �∈ C) P(W �∈ C) Earlier Theorem 2.2 Theorem 2.3

0.0040 0.0099 0.0255 0.7088 0.2481 0.1382

Under this parametrization, Theorem 2.4 would give the upper bound 0.0825,
but it can not be applied to the Pareto distribution. It can be seen that for W
the relative errors of the upper bounds given by Theorems 2.2–2.3 are much
less than that of the “Earlier” estimate.

5. Summary

We have presented Chebyshev type upper bounds for the probability that
a random vector falls outside an ellipsoid. We have supposed nothing about
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the distribution apart from the mean and variance, and, in only one of the
theorems, diagonal symmetry. Therefore our results may be applied in non-
parametric statistics in models where no particular properties, such as nor-
mality, unimodality or light tails can be assumed. Since mean and variance
can be efficiently estimated from the sample, our inequalities can be applied to
constructing (asymptotically) conservative critical regions in certain hypothesis
testing problems.

We do not require the ellipsoid to be centered at the mean of the random
vector. In that excentric case our bounds are better than those presented
earlier. We have also compared our bounds to earlier ones through numerical
examples. We found that significant improvement on earlier bounds can be
achieved especially when the the random vector has a heavy tailed distribution.
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