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Abstract. Since their introduction, uninorms have been studied deeply by
numerous authors from theoretical and also from application points of view.
Recently, a characterization of the class of uninorms with strict underlying
t-norm and t-conorm was presented. It is also known that uninorms with
nilpotent underlying t-norm and t-conorm belong to Up,in 0F Upmaz- In this
paper, some further construction methods of uninorms with fixed values
along the borders are discussed and sufficient and necessary conditions are
presented.

1. Introduction

A triangular norm (¢-norm for short) T is a binary operation on the closed
unit interval [0,1] such that ([0,1],7") is an abelian semigroup with neutral
element 1 which is totally ordered, i.e., for all z1, za, 31, y2 € [0,1] with
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21 < x9 and y; < yo we have T(x1,y1) < T(x9,y2), where < is the natural
order on [0,1] [8, 10].

Standard examples of t-norms are the minimum 7Tyg, the product Tp, the
Lukasiewicz t-norm T1, given by Tr(x,y) = max(x +y — 1,0), and the drastic
product Tp with Tp (1, 2) = Tn(z,1) = z, and Tp(z, y) = 0 otherwise. Clearly,
Twv and Tp are the greatest and smallest t-norm, respectively, i.e., for each t-
norm 1" we have Tp < T < Twm.

A triangular conorm (#-conorm for short) S is a binary operation on the
closed unit interval [0,1] such that ([0, 1],.5) is an abelian semigroup with neu-
tral element 0 which is totally ordered. Standard examples of t-conorms are the
maximum Sy, the probabilistic sum Sp, the Lukasiewicz t-conorm Sy, given by
SL(z,y) = min(z+y, 1), and the drastic sum Sp with Sp(0,x) = Sp(z,0) = z,
and Sp(z,y) = 1 otherwise. Clearly, Sy and Sp are the smallest and greatest
t-conorms, respectively, i.e., for each t-conorm S we have Sy < S < Sp. A
continuous t-norm T is said to be Archimedean if T'(z,z) < x holds for all
x € (0,1). A continuous Archimedean T is called strict if T is strictly mono-
tone; i.e. T(z,y) < T(x,z) whenever z € (0,1] and y < z , and nilpotent if
there exist z,y € (0,1) such that T'(z,y) = 0.

From the duality between t-norms and t-conorms, we can easily derive the
following properties. A continuous t-conorm S is said to be Archimedean if
S(z,x) > z holds for every x,y € (0,1). A continuous Archimedean S is called
strict if S is strictly monotone; i.e. S(x,y) < S(x,z) whenever x € [0,1) and
y < z, and nilpotent if there exist z,y € (0,1) such that S(x,y) = 1.

A t-norm is said to be positive, if z,y > 0 implies T'(z,y) > 0.

The concept of uninorms was introduced in [13] as a generalization of both
t-norms and t-conorms (see also [5]).

Definition 1.1. A mapping U : [0,1] x [0,1] — [0,1] is a uninorm, if it
is commutative, associative, nondecreasing and there exists e € [0,1] such that
Ule,xz) =z for all x € [0, 1].

The structure of uninorms was first examined in [7] (see also [6]). First we
recall two classes of uninorms from [7] that play a key role in this paper.

Proposition 1.1. Suppose that U is a uninorm with neutral element e €
10,1[ and both functions x — U(z,1) and x — U(z,0) (x € [0,1]) are continu-
ous except perhaps at the point x = e. Then U is given by one of the following
forms.
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1. IfU(0,1) =0 then

el (%.4), (z,y) € [0,¢e]?;
(L) Uy = e+ (1 -0)s (£54), @) € le 1
min(z,y), otherwise.
2. IfU(0,1) =1 then
el (%, 4), (z,y) € [0,¢];
(1) Uy =e+(1-0s(5£54), @) e le 1)
max(z,y), otherwise.

The class of uninorms having form (1.1) is denoted by U,n, while the class
with form (1.2) is denoted by Uppaz .

Uninorms turned out to be useful in many fields like expert systems [2],
aggregation [12] and fuzzy integral [9, 3]. Idempotent uninorms were charac-
terized in [1]. Recently, a characterization of the class of uninorms with strict
underlying t-norm and t-conorm was presented in [4]. In [11] the authors show
that uninorms with nilpotent underlying t-norm and t-conorm belong to U,ip
or Upaz-

2. Results

In this section some further construction methods of uninorms from given
t-norms and t-conorms are discussed and sufficient and necessary conditions
are presented.

Proposition 2.1. (See also [11].) Let T be a strict t-norm, S be a strict
t-conorm and e €]0,1[. The function

T (%), (z,y) € [0, €]
1-—- S z—e7 y=c ) 9 € 71 2;
@1)  Ui(ey =T (£, @welen
L, r=1lory=1;
min(x,y), otherwise

s a uninorm with neutral element e (see Figure 1a).
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Proof. To prove that U; is a uninorm, we have to show that it is associative,
commutative and that it has a neutral element e € (0,1). Commutativity is
obvious. From the properties of t-norms and t-conorms it follows immediately
that e € (0,1) is a neutral element.

Note that U; differs from U,,;, only at points where either x =1 or y = 1.
Since the associativity of U,y is already known from [7], we only need to
concentrate on the border lines where at least one of the variables of Uj is 1.

To examine the associative equation

(2.2) Ur(z,Ui(y, 2)) = U1(Ui(z,y), 2),

we need to take the following possibilities into consideration:

1. Ifx =1or z =1, then Uy(x,Ui(y,2)) =1 = U1 (U1(z,y), 2).

2. If Ui(y,z) = 1 or Uy(x,y) = 1, then by using the strict monotonicity of
S(z,y),wegetx =1lory =1. Thus Uy (z,Ui(y, 2)) = 1 = Uy (Uy(2,9), 2).

Remark 2.1. Note that the strict property of S cannot be omitted in Propo-
sition 2.1 (i.e. the statement does not hold for arbitrary t-conorms). For a
counterexample let us choose Tp, Sy, e =0.3, t =0.7, y = 0.8, and z = 0. In
this case U1(0.7,U1(0.8,0)) = 0, while U1(U1(0.7,0.8),0) = 1.

Proposition 2.2. (See also Theorem 4 in [11].) Uy in (2.1) is a uninorm
if and only if S is dual to a positive t-norm.

Proof. The condition is sufficient, since in this case the proof is similar to
that of Proposition 2.1.

Now we show that it is also necessary.

Let us assume indirectly that there exist zg,yo # 1, for which Uy (zo,yo) =
1. Obviously, xg,yo > e. Let zg < e, 29 # 1 so that U(yo, 20) # 1. In this case

the right hand side of the associativity equation in (2.2) is trivially 1, while the
left hand side is zg, which is a contradiction.

Proposition 2.3. Let T be a strict t-norm, S be a strict t-conorm and
e €]0,1[. The function

T (%.%), (z,y) € [0, €]
1—e)S(2=£,1=], ,y) € le, 1)%
(2.3) Us(zx,y) = e+ (1—e) (1—e 1—5) (z,y) € [e, 1]
1, r=1y#0o0orx#0,y=1;
min(z,y), otherwise

s a uninorm with neutral element e (see Figure 1b).
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Proof. To prove that Us is a uninorm, we have to show that it is associative,
commutative and that it has a neutral element e € (0,1). Commutativity is
obvious. From the properties of t-norms and t-conorms it follows immediately
that e € (0,1) is a neutral element.

Note that Us differs from U; only at points (1,0) and (0,1). Since the
associativity of Uj is already known (see Proposition 2.1), we only need to
concentrate on the vertices of the unit square.

Since we examine the equation

(2.4) Us(z,Us(y, 2)) = Ua(Uz(z,y), 2),

we need to take the following possibilities into consideration:

1. For z = 0 or z = 0 the two sides of the associativity equation in (2.4) are
trivially 0.

2. For = 1 and Us(y,z) = 0 by using the strict monotonicity of T we
obtain that either y = 0 or z = 0. This obviously means that the two
sides of the associativity equation in (2.4) are equally 0. The proof is
similar for z = 1 and Us(z,y) = 0.

Remark 2.2. Note that the strict property cannot be omitted in the Proposi-
tion 2.8 (i.e. the statement does not hold for arbitrary t-norms and t-conorms).
For a counterexample let us choose Ty,, Sp, e =03,z =1,y =0.1, and z = 0.1.
In this case Uz(1,U2(0.1,0.1)) = 0, while U2(U2(1,0.1),0.1) = 1.

Proposition 2.4. (See also Theorem 5 in [11].) Uz in (2.8) is a uninorm
if and only if T(x,y) is a positive t-norm, and S(x,y) is dual to a positive
t-norm.

Proof. This condition is sufficient, since in this case the proof is similar to
that of Proposition 2.3.
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1 1

min S min S

T min T min

Figure 1

Now we show that it is also necessary. From the proof of Proposition 2.2
the necessity of the second condition is trivial. We only need to show that if
Us(x,y) = 0 does not imply 2 = 0 or y = 0, then the associativity does not hold.
Let us assume indirectly that there exist yo, 29 # 0, for which Us(yo, z0) = 0.
Obviously, yg, zo < e. For = 1 the left hand side of the associativity equation
in (2.4) is trivially 0, while the left hand side is 1, which is a contradiction.

Proposition 2.5. (See also [11].) Let T be a strict t-norm, S be a strict
t-conorm and e €]0,1[. The function

el (£,%), (z,y) € [0,¢]?;
+(1—e)S (2= u=2), y) € 712;
(25) U3(x’y) — € ( 6) (1—6 1—e> (33 y) [6 ]
0, rz=0o0ry=0;
maz(,y), otherwise

is a uninorm with neutral element e (see Figure 2a).

Proof. To prove that Us is a uninorm, we have to show that it is associative,
commutative and that it has a neutral element e € (0,1). Commutativity is
obvious. From the properties of t-norms and t-conorms it follows immediately
that e € (0,1) is a neutral element.

Note that Us differs from U,,,, only at points where either z = 0 or y = 0.
Since the associativity of U,,q.(2,y) is already known from [7], we only need
to concentrate on the border lines where at least one of the variables of Us is
0.



On uninorms with fixed values along their border 99

To examine the associative equation
(2.6) Us(z,Us(y, 2)) = Us(Us(x,y), 2),
we need to take the following possibilities into consideration:

1. If x =0 or z =0, then Us(x,Us(y, 2)) = 0 = Us(Us(z,y), 2).

2. If Us(y,z) = 0 or Us(x,y) = 1, then by using the strict monotonicity of
S(z,y), weget . = 0ory = 0. Thus Us(x,Us(y, 2)) = 0 = Us(Us(z,y), 2).

Remark 2.3. Note that the strict property of T cannot be omitted in Propo-
sition 2.5 (i.e. the statement does not hold for arbitrary t-norms). For a coun-
terexample let us choose 1y, Sp, e = 0.3, x = 0.1, y = 0.1, and z = 0.8. In this
case U3(0.1,U3(0.1,0.8)) = 0.8, while Us(U3(0.1,0.1),0.8) = 0.

Proposition 2.6. (See also Theorem 4 in [11].) Us in (2.5) is a uninorm
if and only if T is a positive t-norm.

Proof. The condition is sufficient, since in this case the proof is similar to
that of Proposition 2.5.

Now we show that it is also necessary.

Let us assume indirectly that there exist zg, yo # 0, for which Us(zo,yo) =
0. Obviously, zg,yo < e. Let 29 # 0 so that Us(yo, 20) # 0. (It is easy to see
that such z; always exists, since we can always choose zg > e.) In this case the
right hand side of the associativity equation in (2.6) is trivially 0, while the left
hand side is zg, which is a contradiction.

Remark 2.4. Note that Proposition 2.6 is dual to Proposition 2.2.

Proposition 2.7. (See also [11].) Let T be a strict t-norm, S be a strict
t-conorm and e €]0,1[. The function

eT (3, 8) (2,9) € 0, €]
1—e)S (2=, =2} (z,y) € [e, 1]%
27) Uy = d¢TE79 (1_e 1_5) (z,y) € [e,1]
0, r=0y£lorx#1,y=0;
max(z,y), otherwise

s a uninorm with neutral element e (see figure 2b).

Proof. To prove that U, is a uninorm, we have to show that it is associative,
commutative and that it has a neutral element e € (0,1). Commutativity is
obvious. From the properties of t-norms and t-conorms it follows immediately
that e € (0,1) is a neutral element.
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Note that Uy differs from Us only at points (1,0) and (0,1). Since the
associativity of Us is already known (see Proposition 2.5), we only need to
concentrate on the vertices of the unit square.

Since we examine the equation

(2.8) Uy(z,Us(y, 2)) = Us(Ug(2,y), 2),

we need to take the following possibilities into consideration:

1. For z = 1 or z = 1 the two sides of the associativity equation in (2.4) are
trivially 1.

2. For x = 0 and Uy(y,z) = 1 by using the strict monotonicity of S(z,y)
we obtain that either y = 1 or z = 1. This obviously means that the
two sides of the associativity equation in (2.4) are equally 1. The proof
is similar for z = 0 and Uy(x,y) = 1.

Remark 2.5. Note that the strict property cannot be omitted in the Proposi-
tion 2.7 (i.e. the statement does not hold for arbitrary t-norms and t-conorms).
For a counterexample let us choose Tp, Sy, e =0.3, 2 =0,y = 0.8, and z = 0.9
In this case Uy(0,U4(0.8,0.9)) = 0, while Uy(U4(0,0.8),0.9) = 1.

Proposition 2.8. (See also Theorem 5 in [11].) Uy in (2.7) is a uninorm
if and only if T is a positive t-norm, and S is dual to a positive t-norm.

Proof. The condition is sufficient, since in this case the proof is similar to
that of Proposition 2.7.

Now we show that it is also necessary. From the proof of Proposition 2.6
the necessity of the first condition is trivial. We only need to show that if
Us(x,y) = 1 does not imply = 1 or y = 1, then the associativity does not hold.
Let us assume indirectly that there exists yo, z9 # 1, for which Uy(yo, z9) = 1.
Obviously, yo, zg > e. For = 0 the left hand side of the associativity equation
in (2.8) is trivially 1, while the left hand side is 0, which is a contradiction.

Remark 2.6. Note that Proposition 2.8 is dual to Proposition 2./.
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Let us now consider a function Uy such that

(2.9)

max

max

US(Iay) =

(a) Us

el (£,2),

e’e

e+(1—e)S (“E*
1,

min(z, y),

(z,y)
(z,y) € [e, 1]%;
r=1landy>aory=1andx > a;

1@

max S
0
e

T max

e 0 1
(b) Uy
€ [0,¢e)%

otherwise,

where T is a t-norm, S is a t-conorm, e €0, 1], a €]0, e[ (see Figure 3a).

1

min

min

1

min S
,,,,, o
T i min
a e
(b) Us

We consider the conditions under which Us can be a uninorm. Suppose
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that Us is a uninorm with neutral element e.

Proposition 2.9. IfUs is a uninorm with neutral element e, then Us(a,a) =

Proof. From the conjunctive property of t-norms it follows immediately
that Us(a,a) < a. Suppose Us(a,a) < a. Then by the definition of Us,
Us(1,Us(a,a)) < 1. On the other hand, by assiociativity, Us(Us(1,a),a) =
Us(1,a) = 1, a contradiction.

Corollary 2.1. If Us is a uninorm with neutral value e, then T is an
ordinal sum (see Figure 3b) of two t-norms, Ty and Ty, i.e.

a-T1 (3 %), if (x,y) € [0,a]*;
(210)  T@y)={a+le—a) T (=2,22), if (0.y) € el
min(z,y), otherwise.

Corollary 2.2. U and Ul defined below are also uninorms:

ely (% %) ) (x,y) €]0,€]?;
(2.11) Uby) =4 (1=e)s (91:::’ 11/:2) - (@) € e 1%

1, z=1lory=1;

mtn(az7 y)a otherwise.

el (3,) (,9) € [0,¢];

e—|—(1—e)S("”::,y:z), (z,y) € [e, 1)%
(2.12) Us (z,y) = tert

L rz=1o0ry=1;

min(z,y), otherwise.
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min S min S

T2 min Tl min

(a) Us (b) Ug’
Figure 4

Corollary 2.3. From Proposition 2.1 and Corollary 2.2 it follows imme-
diately, that if Us is a uninorm, then S must be dual to a positive t-norm.

Proposition 2.10. Us is a uninorm if and only if S is dual to a positive
t-norm.

Proof. The necessity of this condition is the statement of Corollary 2.3.
Now we prove that is is also sufficient. Note that Us differs from U,,;, only at
points (z,y), where a <z <eand y =1, 0or a <y < e and = = 1. Since the
associativity of U, is already known, we only need to concentrate on these
regions.

Since we examine the associativity equation

(213) U5(LE, U5(y7z)) = U5(U5(x7y)az)7
we need to take the following possibilities into consideration:

1. a<z<eand U(y,z) = 1. From U(y, z) = 1 by the dual-positivity of S
we get,

(a) y=1and z > a, or

(b) y>aand z = 1.

In case 1a both sides of the associative equation in (2.13) are trivially 1.
In case 1b the left hand side of (2.13) is 1. In this region

min(z,y), y>ey#L;
Us(z,y) = a+(€—a)'T2(”““ y’“) a<y<e;

e—a’e—a

1, y=1,
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which means that Us(z,y) > a, and therefore the right hand side of (2.13)
is also 1.

2. z =1and a < Us(y, z) < e. From the second condition it follows imme-
diately that a < y < e and a < z < e hold and therefore both sides of
the associativity equation in (2.13) is 1.

3. z=1and a < Us(z,y) < e. The proof is similar to case 2.

4. Us(z,y) =1 and a < z < e. The proof is similar to case 1.

Now let us define a function Uy the following way.

(2.14)
el (£,Y4), (z,y) € [0,¢]%
e+ 1—65(9”:@,?’:8)7 z,y) € [e, 1%
Uiy = J e 1=08 () e e
0, z=0andy<aory=0andz < a;
max(x,y), otherwise,

where T is a t-norm, S is a t-conorm, e €0, 1], a €]e, 1] (see Figure 3a).

1 1
A}

a 7 e e

max S max
0 0 S1
e e

T max T max

e 0 a 1 ¢ 0 a 1
(a) Uz (b)
Figure 5: Uz

We consider the conditions under which U; can be a uninorm. Suppose
that Uy is a uninorm with neutral element e.

Proposition 2.11. If Uy is a uninorm with neutral element e, then Uz (a,a) =



On uninorms with fixed values along their border 105

Proof. From the disjunctive property of t-conorms it follows immediately that
Us(a,a) > a. Suppose Ur(a,a) > a. Then by definition, U;(0,Ur(a,a)) = a,
on the other hand by associativity U7(0,Uz(a,a)) = Uz(U7(0,a),a)) = 0, a

contradiction.

Corollary 2.4. If U7 is a uninorm with neutral value e, then S is an ordinal
sum of two t-conorms, S1 and So (see Figure 5b).

Corollary 2.5. U, and U} are also uninorms.

el (%.4), (z,y) € [0, €]
(2.15) Ul(z,y) =4 ¢ T =O5 (TZZ’ i’:i) , (2,y) € [e,1]%
0, z=1lory=1;
max(z,y), otherwise,
T (% %), () € [0,¢];
e+ (1—e)Ss (“’:Z,y:Z), (2,9) € [e, 1]%
(2.16) U (2, y) = =l
0, r=lory=1;
max(z,y), otherwise.
1 1

max Sl max S2

T max T max

(a) Uf (b) U7

Figure 6

Corollary 2.6. From Proposition 2.1 and Corollary 2.5 it follows imme-
diately, that if U7 is a uninorm, then T must be a positive t-norm.
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Proposition 2.12. U; is a uninorm if and only if T is a positive t-norm.

Proof.  The necessity of this condition is the statement of Corollary 2.6.
Now we prove that is is also sufficient. Note that U; differs from U,,,, only at
points (x,y), where e < x < aand y =0, or e < y < a and z = 0. Since the
associativity of U,,q, is already known, we only need to concentrate on these
regions.

Since we examine the associativity equation

(2.17) Ur(z,Uz(y, 2)) = Ur(Uz(z,y), 2),
we need to take the following possibilities into consideration:

1. e< 2z <aand U(y,z) = 0. From U(y,z) = 0 by the positivity of T we
get,

(a) y=0and z <a, or

(b) y <aand z=0.

In case 1a both sides of the associative equation in (2.17) are trivially 0.
In case 1b the left hand side of (2.17) is 0. In this region

c+(l—e)-5(=2,5), e<y<a

U7(:c,y) = max(amy), 0< y<ey 7& 17
0, y=0,

which means that Uz (z,y) < a, and therefore the right hand side of (2.17)
is also 0.

2. z =0and e < Uz(y, z) < a. From the second condition it follows imme-
diately that e < y < a and e < z < a hold and therefore both sides of
the associativity equation in (2.13) is 0.

3. z=0and e < Uy(z,y) < a. The proof is similar to case 2.

4. Uz(z,y) =0 and e < z < a. The proof is similar to case 1.
3. Conclusion

In this paper, some new construction methods of uninorms with fixed values
along the borders were discussed and sufficient and necessary conditions were
presented.
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