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Abstract. Some orthogonality relations are proved for the continuous
wavelet transform.

1. Introduction

It is well-known for Fourier transforms that 〈f, g〉 =
〈
f̂ , ĝ

〉
and ‖f‖2 =

=
∥∥∥f̂∥∥∥

2
, where f, g ∈ L2(R) (see e.g. [4] or [8]). The analogous result can also

be found in the literature (e.g. Chui [2], Daubechies [3] or Gröchenig [5]) for
continuous wavelet transforms,∫

R

∫
R

Wg1f1(x, s)Wg2f2(x, s)
dx ds

s2
= Cg1,g2 〈f1, f2〉 ,

where

Cg1,g2 :=

∫
R

ĝ1(s)ĝ2(s)
ds

|s|
and Wgf denotes the continuous wavelet transform of f ∈ L2(R) with respect
to a wavelet g ∈ L2(R). However, the proofs are incomplete and superficial.
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Usually the following fact is used: if � : X → Y is a linear operator between the
two Banach spaces X, Y and � : X0 → Y is bounded, then � is also bounded
from X to Y, where X0 ⊂ X is dense in X. However, this is not necessarily true
(see Meyer, Taibleson and Weiss [6], Bownik [1] and also Weisz [7]). In this
paper we give an exact proof of the orthogonality result for continuous wavelet
transforms.

2. The continuous wavelet transform

Let us fix d ≥ 1, d ∈ N. For a set Y 	= ∅ let Yd be its Cartesian product
Y × . . . × Y taken with itself d-times. For x = (x1, . . . , xd) ∈ Rd and u =
= (u1, . . . , ud) ∈ Rd set

u · x :=
d∑

k=1

ukxk and ‖x‖r :=
(

d∑
k=1

|xk|r
)1/r

with the usual modification for r =∞.

We briefly write Lp(Rd) instead of Lp(Rd, λ) space equipped with the norm
(or quasi-norm)

‖f‖p :=
(∫

Rd

|f |p dλ
)1/p

(0 < p ≤ ∞),

where λ is the Lebesgue measure. A function f is in the space Lp(Rd+1, s−d−1dλ)
if for d = 1

‖f‖Lp(R2,s−2dλ) :=

(∫
R

∫
R

|f(x, s)|p dx ds

s2

)1/p

< ∞

and for d > 1

‖f‖Lp(Rd+1,s−d−1dλ) :=

(∫ ∞

0

∫
Rd

|f(x, s)|p dx ds

sd+1

)1/p

< ∞.

Of course the space Lp(Rd+1, s−d−1dλ) is a Banach space.

The Fourier transform of a tempered distribution is denoted by f̂ . If f ∈
∈ L1(Rd) then

f̂(x) :=

∫
Rd

f(t)e−2πıx·t dt (x ∈ Rd),

where ı =
√−1. Translation and dilation of a function f are defined, respec-

tively, by
Txf(t) := f(t− x), Dsf(t) := |s|−d/2f(s−1t),
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where t, x ∈ Rd, s ∈ R, s 	= 0. In this paper we will investigate the continuous
wavelet transform. The continuous wavelet transform of f with respect to a
wavelet g is defined by

Wgf(x, s) := |s|−d/2

∫
Rd

f(t)g(s−1(t− x)) dt = 〈f, TxDsg〉,

(x ∈ Rd, s ∈ R, s 	= 0) when the integral does exist.

Plancherel’s theorem is well-known for Fourier transforms: if f, g ∈ L2(R),
then

〈f, g〉 =
〈
f̂ , ĝ

〉
and ‖f‖2 =

∥∥∥f̂∥∥∥
2
.

In the next sections we will consider the analogues of these results for continuous
wavelet transforms. Since the proofs of the analogues are superficial in the
literature, we will give their exact proofs.

3. Orthogonality results

In this section we present the one-dimensional results.

Theorem 3.1. Suppose that g ∈ L1(R) ∩ L2(R) and

(3.1) Cg :=

∫
R

|ĝ(s)|2 ds

|s| < ∞.

If f ∈ L2(R), then ∫
R

∫
R

|Wgf(x, s)|2 dx ds

s2
= Cg‖f‖22.

Proof. It is easy to see that

Wgf(x, s) = (f ∗Dsg
∗) (x),

where
g∗(y) := g(−y)

is the involution. By Young’s inequalityWgf(·, s) ∈ L2(R) for each fixed s 	= 0,
because

‖Wgf(·, s)‖2 = ‖(f ∗Dsg
∗) (·)‖2 ≤ ‖f‖2 ‖Dsg

∗‖1 = |s|1/2 ‖f‖2 ‖g‖1 .
So we can take the Fourier transform of Wgf(·, s) in the first variable for each
fixed s 	= 0:

Ŵgf(ω, s) = f̂(ω)D̂sg∗(ω) = |s|1/2 f̂(ω)ĝ∗(sω) = |s|1/2 f̂(ω)ĝ(sω).
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By Plancherel’s theorem∫
R

∫
R

|Wgf(x, s)|2 dx ds

s2
=

∫
R

(∫
R

|Wgf(x, s)|2 dx

)
ds

s2
=

=

∫
R

(∫
R

∣∣∣Ŵgf(ω, s)
∣∣∣2 dω

)
ds

s2
=

=

∫
R

(∫
R

|s|
∣∣∣f̂(ω)ĝ(sω)∣∣∣2 dω

)
ds

s2
=

=

∫
R

∣∣∣f̂(ω)∣∣∣2(∫
R

|ĝ(sω)|2 ds

|s|
)

dω.

Substituting t = sω in the inner integral, we can see that∫
R

|ĝ(sω)|2 ds

|s| =
∫
R

|ĝ(t)|2 dt

|t| = Cg,

which proves the theorem. �

Usually a similar proof can be found in the literature (see e.g. [2, 3, 5]),
however, the theorem is stated for g ∈ L2(R). The preceding proof does not
show the result for all g ∈ L2(R) with Cg < ∞. More generally, suppose that
X and Y are two Banach spaces, X0 ⊂ X is dense in X. If a linear operator �
is defined on X and � : X0 → Y is bounded, then � is not necessarily bounded
from X to Y (see Meyer, Taibleson and Weiss [6], Bownik [1] and also Weisz

[7]). Of course, the unique extension of �
∣∣∣
X0

is bounded from X to Y, however,

it is not sure that the extension is equal to � on the whole X. Now we prove
the preceding result for all g ∈ L2(R) precisely.

Theorem 3.2. If g ∈ L2(R) with Cg < ∞ and f ∈ L2(R), then

(3.2)

∫
R

∫
R

|Wgf(x, s)|2 dx ds

s2
= Cg‖f‖22.

Proof. Supposing that f ∈ L1(R)∩L2(R), we can repeat the preceding proof
to obtain (3.2), where g ∈ L2(R) with Cg < ∞. Let us fix such a function g
and consider the linear operator

T (f) :=Wgf (f ∈ L1(R) ∩ L2(R)).

Then by (3.2) T is bounded from the space (L1(R) ∩ L2(R), ‖·‖2) to the Banach
space L2(R2, s−2dλ). Since L1(R) ∩L2(R) is dense in L2(R), we can extend T
to the whole L2(R) space uniquely. Let us denote this extension again by T .
From this it follows that

(3.3) T (f) = lim
n→∞T (fn) in L2(R2, s−2dλ)-norm,
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where fn ∈ L1(R) ∩ L2(R), f ∈ L2(R) and f = limn→∞ fn in L2(R)-norm.
This implies

‖T (f)‖L2(R2,s−2dλ) = lim
n→∞ ‖T (fn)‖L2(R2,s−2dλ)

= C1/2
g lim

n→∞ ‖fn‖2 = C1/2
g ‖f‖2.

We have to prove only, that T (f) =Wgf for all f ∈ L2(R). Notice that

|Wgf(x, s)−Wgfn(x, s)| = |〈f − fn, TxDsg〉| ≤ ‖f − fn‖2 ‖g‖2 → 0

almost everywhere, i.e.

lim
n→∞T (fn) = lim

n→∞Wgfn =Wgf a.e.

This and (3.3) complete the proof. �
We can easily give conditions such that (3.1) is satisfied. If g ∈ L2(R)

and ĝ = 0 on the interval (−ε, ε), or |ĝ(ω)| ≤ C|ω|α on (−ε, ε) (ε, α > 0),
then Cg is finite. If g ∈ L1(R) ∩ L2(R), then ĝ is continuous, so (3.1) imply
ĝ(0) =

∫
R
g(x) dx = 0. If this condition is satisfied and we impose a slightly

stronger condition than integrability on g, namely∫
R

(1 + |x|) |g(x)| dx < ∞,

then |ĝ(ω)| ≤ C |ω|, hence Cg is finite.

Now we formulate the preceding result for the scalar product of two wavelet
transforms.

Theorem 3.3. Suppose that g1, g2 ∈ L1(R) ∩ L2(R) and

Cg1,g2 :=

∫
R

ĝ1(s)ĝ2(s)
ds

|s| .

is a finite number. If f1, f2 ∈ L2(R), then∫
R

(∫
R

Wg1f1(x, s)Wg2f2(x, s) dx

)
ds

s2
= Cg1,g2 〈f1, f2〉 .

Proof. As in Theorem 3.1,∫
R

(∫
R

Wg1f1(x, s)Wg2f2(x, s) dx

)
ds

s2
=

=

∫
R

(∫
R

(f1 ∗Dsg
∗
1) (x)(f2 ∗Dsg∗2) (x) dx

)
ds

s2
=

=

∫
R

(∫
R

(
̂f1 ∗Dsg∗1

)
(ω)

(
̂f2 ∗Dsg∗2

)
(ω) dω

)
ds

s2
=

=

∫
R

(∫
R

|s| f̂1(ω)ĝ1(sω)f̂2(ω)ĝ2(sω) dω
)

ds

s2
.
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By Fubini’s theorem∫
R

(∫
R

Wg1f1(x, s)Wg2f2(x, s) dx

)
ds

s2
=

=

∫
R

f̂1(ω)f̂2(ω)

(∫
R

ĝ1(sω)ĝ2(sω)
ds

|s|
)
dω =

=

∫
R

f̂1(ω)f̂2(ω)

(∫
R

ĝ1(t)ĝ2(t)
dt

|t|
)
dω =

= Cg1,g2

∫
R

f̂1(ω)f̂2(ω) dω,

which proves the theorem. �

The preceding result is stated often for all g1, g2 ∈ L2(R). However, in this
case we have to suppose that Cg1 < ∞ and Cg2 < ∞.

Theorem 3.4. Suppose that g1, g2 ∈ L2(R), Cg1 < ∞ and Cg2 < ∞. If
f1, f2 ∈ L2(R), then

(3.4)

∫
R

∫
R

Wg1f1(x, s)Wg2f2(x, s)
dx ds

s2
= Cg1,g2 〈f1, f2〉 .

Proof. By Hölder’s inequality Cg1,g2 is a finite number. We can see as in
the previous proof that (3.4) holds for all f1, f2 ∈ L1(R) ∩ L2(R) and g1, g2 ∈
∈ L2(R), Cg1 < ∞ and Cg2 < ∞. Here we can apply Fubini’s theorem, because
Wgjfj ∈ L2(R2, s−2dλ) (j = 1, 2) by Theorem 3.2.

Let us fix the functions f2 ∈ L1(R)∩L2(R) and g1, g2 ∈ L2(R) and consider
the linear operators

T1(f1) :=

∫
R

∫
R

Wg1f1(x, s)Wg2f2(x, s)
dx ds

s2
(f1 ∈ L2(R))

and
U1(f1) := Cg1,g2 〈f1, f2〉 (f1 ∈ L2(R)).

We have seen before that

T1(f1) = U1(f1) (f1 ∈ L1(R) ∩ L2(R)).

By Hölder’s inequality U1 is a bounded functional from the whole L2(R) space
to C, and because of Theorem 3.2, the same holds for T1. By the unique
extension theorem U1 = T1, i.e., (3.4) holds for all functions f1, g1, g2 ∈ L2(R)
and f2 ∈ L1(R) ∩ L2(R).

Similarly, for fixed f1, g1, g2 ∈ L2(R) consider the linear operators

T2(f2) :=

∫
R

∫
R

Wg1f1(x, s)Wg2f2(x, s)
dx ds

s2
(f2 ∈ L2(R))
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and
U2(f2) := Cg1,g2〈f1, f2〉 (f2 ∈ L2(R)).

We can show as before that U2 = T2, hence (3.4) is satisfied for all functions
f1, f2, g1, g2 ∈ L2(R). �

4. Higher dimensional results

In this section we formulate the analogous theorems of the preceding section
for higher dimensions. A function f is radial with respect to the norm ‖ · ‖r
(briefly r-radial) if there exists a one-variable function η such that f(t) =
= η(‖t‖r). If r = 2 we call the function simply radial. If ĝj is r-radial, then let
μj(‖x‖r) := ĝj(x), j = 1, 2 and

Cgj =

∫ ∞

0

|μj(s)|2 ds

s
, Cg1,g2 =

∫ ∞

0

μ1(s)μ2(s)
ds

s
.

This yields that∫ ∞

0

ĝ1(sω)ĝ2(sω)
ds

s
=

∫ ∞

0

ĝ1

(
s

ω

‖ω‖r

)
ĝ2

(
s

ω

‖ω‖r

)
ds

s

=

∫ ∞

0

μ1(s)μ2(s)
ds

s

for almost all ω ∈ Rd. The following results can be proved as in the one-
dimensional case.

Theorem 4.1. Suppose that g ∈ L2(Rd) and ĝ is an r-radial function such
that Cg < ∞. If f ∈ L2(Rd), then∫ ∞

0

∫
Rd

|Wgf(x, s)|2 dx ds

sd+1
= Cg‖f‖22.

Theorem 4.2. Suppose that g1, g2 ∈ L1(Rd) ∩ L2(Rd) and ĝ1 and ĝ2 are
r-radial functions such that Cg1,g2 is a finite number. If f1, f2 ∈ L2(Rd), then∫ ∞

0

(∫
Rd

Wg1f1(x, s)Wg2f2(x, s) dx

)
ds

sd+1
= Cg1,g2 〈f1, f2〉 .

Theorem 4.3. Suppose that g1, g2 ∈ L2(Rd), ĝ and γ̂ are r-radial functions
such that Cg1 < ∞ and Cg2 < ∞. If f1, f2 ∈ L2(Rd), then∫ ∞

0

∫
Rd

Wg1f1(x, s)Wg2f2(x, s)
dx ds

sd+1
= Cg1,g2 〈f1, f2〉 .
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