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Abstract. The paper suggests a method to speed up distributed primality
testing by compressing the sieve table and so reducing data traffic. Since
smaller primes sieve out most of the candidates, most of the sieving done
by larger primes is redundant. Instead of doing such unnecessary sieving
on a complete and uncompressed table (or an array of indices), one can
eliminate most of the redundant offsets based on a compressed sieve table.
The compression is done by “smearing” the exact locations of the potential
primes, that is compressing the sieve to one N -th of its original size by
encoding each N long interval of the table with a 0 bit if it contains no
potential primes, and with a 1 bit otherwise. If N is chosen to be a power
of two, calculating the offset in the compressed table requires virtually no
extra effort.

1. The problem

Researchers at Eötvös Loránd University in Budapest have more then once
set world records in finding the largest known primes of a certain kind e.g.
twin primes (p and p + 2 are prime) [3, 4, 5, 6, 8] or Sophie-Germain primes
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(p and 2p+1 are prime) [7, 9, 10]. Further possibilities are finding Cunningham
chains of the first kind (p1, p2 = 2p1+1, p3 = 2p2+1, . . . are primes) or second
kind (p1, p2 = 2p1 − 1, p3 = 2p2 − 1, . . . are prime).

The process of finding such (large) primes usually goes as follows [11]:

1. Determining the interval size where to look for the primes and other
parameters: using mathematical methods, the size of the interval is
found, where the primes can be found with large enough certainty. The
Bateman-Horn conjecture [1] is usually used. This interval is represented
by a large bit array, referred to as the sieve table.

One parameter to determine is the size of the sieve table, i. e. the number
of candidates, denoted by H, the other parameter is a boundary for the
primes which will sieve the sieve table, denoted by B0.

2. Sieving: Each bit in the sieve table represents a candidate number which
might or might not be a prime, and by sieving out (or eliminating) the
ones which are certainly not prime, one is left with a reasonably smaller
number of candidates.

3. Probabilistic test: After the number of potential primes has dropped low
enough, and it becomes cheaper (i. e. more efficient) to determine each
candidate’s primality by running a Fermat test [2] (or some other primal-
ity test) instead of sieving, the test continues with the formal approach.

4. Exact test: To prove that the remaining numbers found are indeed primes,
an exact test has to be executed.

This paper suggests a performance improvement when executing the sieving
stage in a distributed fashion.

1.1. Distributed sieving

Let B0 be the upper limit of primes we want to sieve with. Finding primes
p <

√
B0 = 224 is a feasible task on an average computer at the time of writing

this paper and one can distribute the effort of finding the other primes among
separate computers (nodes). After all primes up to B0 have been found, the
composites from the sieving table have to be discarded, again via a sieve similar
to the sieve of Eratosthenes. This introduces some problems, since the entire
sieve table has to be sieved with all the primes (found on different computers).
This would generate a lot of data traffic between nodes, because after obtaining
the sieved table from one node, it has to be “sent back” and merged with the
sieved tables from the other nodes.
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1.2. A case study: Twin primes and Cunningham chains

As an example, to find twin primes and Cunningham chains of the second
kind of length 2, primes with more than 75000 decimal digits as described in
[11], one needs to sieve with primes up to B0 = 248 on a sieve table of H = 235

candidates.

This case is interesting, because of two reasons:

1. Small primes (p < 224) sieve out most of the sieve table, i.e. the sieve
table becomes quickly sparse,

2. Large primes (235 < p < 248) will sieve at most once in the sieve table.

Therefore, a larger amount of vital information is located in the prime tables
than in the sieve table, ergo compressing the sieve table can increase perfor-
mance.

2. A proposed solution for minimizing data traffic

The usual solution is to compress the sieve table by switching from a bit
table representation to a representation where the actual candidates are stored
as an array of unsigned integers. This already yields a considerate compression
of the data needed to be transferred to all the nodes, but at the price of slowing
down and complicating the process of eliminating candidates from the sieve
table, so the following idea can help improve performance.

2.1. The basic idea

Let us assume the sieve table contains a multiple of N bits (candidates),
and the composites are represented by 0’s and the potential primes are repre-
sented by 1’s. The table can be compressed to one N -th of its original size, by
representing each interval of N bits with only one bit according to the following
simple rules:

1. if any of the N bits (candidates) are potential primes (i. e. set to 1), the
N bits are represented by one potential prime (one 1 bit).

2. if all of the N bits (candidates) are already known to be composite (i. e.
set to 0), the N bits are represented by one composite (one 0 bit).
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This can rephrased as “smearing” the 1 bits over the N long intervals, so if
all bits in the interval are 0’s, then the smeared interval is a 0 bit, if there are
any 1’s in the interval, then the smeared interval is a 1 bit.

After compressing the sieve table, it can be sent to all the different nodes.
On the nodes, the offsets for primes can be calculated, and if it sieves to a 0
interval (with all composites), then the sieve should mark a composite which
is already marked so no effective sieving is done, therefore the offset (and if it
was a large prime, the prime too) can be thrown away, i. e. it is known for
sure, it does not need to be sent back.

2.2. Benefits and implementation details

If N is chosen to be a power of two (N = 2n), determining the offset in the
compressed table from the offset in the uncompressed table becomes a bitwise
shift. Therefore, the nodes should have a copy of the compressed sieve table
and some of the (larger) primes. The information to calculate the offset, that
is the index of the candidate which will be eliminated, can be obtained from
the primes, and shifting it right by n (which is the equivalent of dividing it by
N = 2n) yields the offset in the compressed table.

The assumption is that even after compressing the sieve table using the
above mentioned method, the compressed sieve table remains fairly sparse, and
most of the elimination would be superfluous, because the offset would usually
eliminate a empty smear which contains only candidates, already eliminated
by smaller primes. Primes (or offsets) which would perform such redundant
eliminations can be eliminated themselves, hence the name inverse sieve, be-
cause it eliminates not the candidates but the primes which would sieve the
sieve table.

On the other hand, some offsets will fall on smears which represent intervals,
containing at least one potential prime. In this case, it is not known if actual
sieving is to be done, so two things have to be considered:

1. The original offset (not the shifted one, calculated for the compressed
sieve table) has to be stored, and sent back or united in some other way
with the information from the uncompressed sieve.

2. The compressed sieve table must not be changed, i. e. the smear must
not be cleared, because the offset might not eliminate any candidates
from that interval at all, or there might be more potential primes in one
smeared interval.



Inverse sieve 359

3. Summary

As mentioned above, small primes sieve out most of the candidates from
the sieve table, thus it becomes very sparse and contains a minimal amount
of information, that is in the later stages of the algorithm the computational
effort is shifted from the sieve table to the primes.

By distributing a smeared (i.e. compressed) version of the sieve table to the
nodes, they can approximately determine which candidate in the original table
will be eliminated, if it is not eliminated already. This can be achieved without
effectively increasing the cost of computation (if the table is compressed by a
factor which is a power of two, the extra work can be done with only an extra
bitwise shift right instruction).

As a result, instead of collecting all the offsets, and merging them with the
uncompressed sieve table, most of the superfluous offsets can immediately be
discarded, thus eliminating a great deal of unnecessary work and data traffic.

4. Future work

Since this is just a theoretical discussion, the first step will be of course to
implement the inverse sieve as part of an actual prime searching project.

This approach, of coarse, is just an improvement, and does not replace any
of the techniques used before, it supplements them. So another important task,
is to figure out, in what stage of the sieve procedure, should the inverse sieve
be introduced. Its benefits are obvious for large primes which would sieve only
once, but maybe it can be applied for primes which sieve more than once, but
that would complicate the process, because if a prime sieves the table more
than once, after calculating the (first) offset, it might result in a unnecessary
elimination, but the offset and the prime can not be thrown away, because the
other offsets will be calculated from them.

Yet another question will be finding the optimal parameter n. Because if
the table is compressed too much i.e. n is too large, the table becomes too
dense, and the inverse sieve becomes useless. If n is too small, the table will
not shrink enough, so sending to the remote nodes and storing it on the hard
drive will become too costly.

Acknowledgement. I would like to thank Antal Járai and Gábor Farkas for
their help on working out the details of this method and making it fit in the
prime search project.
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known Sophie Germain prime of the World, 648621027630345 · 2253824 − 1
(76424 digits), http://primes.utm.edu/top20/page.php?id=2, (2009).
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