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Abstract. For positive integers r computable formulas for the sums of
the doubly infinite series

∑
k∈Z 1/(z − kπ)r and

∑
k∈Z(−1)k/(z − kπ)r

will be presented. As applications exact lower and upper bounds for the
derivatives of the functions cot and 1/ sin will be also shown.

1. The sums of the series
∑
k∈Z

1
(z−kπ)r

and
∑
k∈Z

(−1)k

(z−kπ)r

Let us denote the set of integers, positive integers and complex numbers by
Z, N and C, respectively.

1.1. It is clear that the doubly infinite series
∑

k∈Z
1

(z−kπ)r is absolutely con-

vergent on the domain
D := C \ {kπ | k ∈ Z}

and uniformly convergent in every compact subset of D, if r = 2, 3, . . .. Its sum
function

Ar(z) :=

+∞∑
k=−∞

1

(z − kπ)r
(z ∈ D)
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is a π-periodic meromorphic function on C with rth order poles at the points
kπ (k ∈ Z).

If r = 1, then the above doubly infinite series does not converge (see for
example z = −1/2), but the sequence of its symmetric partial sums is absolutely
convergent and

lim
n→+∞

n∑
k=−n

(
1

z − kπ
+

1

kπ

)
= cot z (z ∈ D),

moreover the convergence is uniform in every compact subset of D, see [3, p.
310]. Therefore let us define the function A1(z) by the following way

(1) A1(z) := lim
n→+∞

n∑
k=−n

1

z − kπ
= cot z (z ∈ D).

By the partial fraction decomposition of the function 1/ sinr explicit formu-
las can be obtained for A2r (see [7]). Using another method we give formulas
for all functions Ar (r ∈ N).

Theorem 1. Let r = 2, 3, . . .. The function Ar can be written in the following
form

(2) Ar(z) =

+∞∑
k=−∞

1

(z − kπ)r
=

1

sinr z
Sr(cos z) (z ∈ D),

where Sr are algebraic polynomials of degree ≤ (r − 2) (Sr ∈ Pr−2 shortly).
They satisfy the recursive relation:

S2(z) = 1,

Sr+1(z) = zSr(z) +
1− z2

r
S′r(z)

(z ∈ C, r = 2, 3, . . .).

(3)

Proof. If r = 2 then

+∞∑
k=−∞

1

(z − kπ)2
=

1

sin2 z
=

1

sin2 z
S2(cos z) (z ∈ D)

(see [5, p. 246]). In general case, we prove the statement by induction. Suppose
that for an r ∈ N we have

sinr z ·
+∞∑

k=−∞

1

(z − kπ)r
= Sr(cos z) (z ∈ D).
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After derivation, we get

r sinr−1 z · cos z ·
+∞∑

k=−∞

1

(z − kπ)r
− r sinr z ·

+∞∑
k=−∞

1

(z − kπ)r+1
=

= −S′r(cos z) · sin z,
thus

sinr+1 z ·
+∞∑

k=−∞

1

(z − kπ)r+1
= cos z · sinr z ·

+∞∑
k=−∞

1

(z − kπ)r
+

+
1

r
S′r(cos z) · sin2 z =

= cos z · Sr(cos z) +
1− cos2 z

r
S′r(cos z) = Sr+1(cos z),

which means that the statement is true for (r + 1), too. �

The first few Sr polynomials obtained from the above recursive relation are
as follows:

S2(z) = 1,

S3(z) = z,

S4(z) =
1
3 (2z

2 + 1),

S5(z) =
1
3 (z

3 + 2z),

S6(z) =
1
15 (2z

4 + 11z2 + 2),

S7(z) =
1
45 (2z

5 + 26z3 + 17z),

S8(z) =
1

315 (4z
6 + 114z4 + 180z2 + 17),

S9(z) =
1

315 (z
7 + 60z5 + 192z3 + 62z),

S10(z) =
1

2835 (2z
8 + 247z6 + 1452z4 + 1072z2 + 62).

(4)

Consequently for Ar we obtain the following formulas which are valid at all
points z ∈ D. The convergence is absolute in every z ∈ D and uniform in every
compact subset of D.

A2(z) =

+∞∑
k=−∞

1

(z − kπ)2
=

1

sin2 z
,

A3(z) =
+∞∑

k=−∞

1

(z − kπ)3
=

1

sin3 z
cos z,

A4(z) =

+∞∑
k=−∞

1

(z − kπ)4
=

1

sin4 z

[
1
3 +

2
3 cos

2 z
]
,
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A5(z) =

+∞∑
k=−∞

1

(z − kπ)5
=

1

sin5 z

[
2
3 cos z +

1
3 cos

3 z
]
,

A6(z) =

+∞∑
k=−∞

1

(z − kπ)6
=

1

sin6 z

[
2
15 +

11
15 cos

2 z + 2
15 cos

4 z
]
,

A7(z) =

+∞∑
k=−∞

1

(z − kπ)7
=

1

sin7 z

[
17
45 cos z +

26
45 cos

3 z + 2
45 cos

5 z
]
.

1.2. Now we consider the doubly infinite series
∑

k∈Z
(−1)k

(z−kπ)r , which is abso-

lutely convergent on D and uniformly convergent in every compact subset of
D for every r = 2, 3, . . .. The sum

A±r (z) :=
+∞∑

k=−∞

(−1)k
(z − kπ)r

(z ∈ D, r = 2, 3, . . .).

is a π-periodic meromorphic function on C with rth order poles at the points
kπ (k ∈ Z).

If r = 1, then

lim
n→+∞

n∑
k=−n

(−1)k
z − kπ

=
1

sin z
(z ∈ D),

and the convergence is absolute in D and uniform in every compact subset of
D, see [5, p. 246]. Let

(5) A±1 (z) := lim
n→+∞

n∑
k=−n

(−1)k
z − kπ

=
1

sin z
(z ∈ D).

By the partial fraction decomposition of the function 1/ sinr explicit formu-
las can be obtained for A±2r−1 (see [7]). Using another method we give formulas
for all functions A±r (r ∈ N).

Theorem 2. Let r = 1, 2, . . .. The function A±r can be written in the following
form

A±r (z) =
+∞∑

k=−∞

(−1)k
(z − kπ)r

=
1

sinr z
Qr(cos z) (z ∈ D),

where Qr ∈ Pr−1, satisfies the recursive relation:

Q1(z) = 1,

Qr+1(z) = zQr(z) +
1− z2

r
Q′r(z)

(z ∈ C, r = 1, 2, . . .).

(6)
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The proof of this statement is similar to the proof of Theorem 1, so we omit
the details.

The first few Qr polynomials obtained from the above recursive relation are
as follows:

Q1(z) = 1,

Q2(z) = z,

Q3(z) =
1
2 (z

2 + 1),

Q4(z) =
1
6 (z

3 + 5z),

Q5(z) =
1
24 (z

4 + 18z2 + 5),

Q6(z) =
1

120 (z
5 + 58z3 + 61z),

Q7(z) =
1

720 (z
6 + 179z4 + 479z2 + 61),

Q8(z) =
1

5040 (z
7 + 543z5 + 3111z3 + 1385z),

Q9(z) =
1

40320 (z
8 + 1636z6 + 18270z4 + 19028z2 + 1385).

(7)

Consequently for A±r we obtain the following formulas which are valid at all
points z ∈ D. The convergence is absolute in every z ∈ D and uniform in every
compact subset of D.

A±1 (z) =
+∞∑

k=−∞

(−1)k
(z − kπ)

=
1

sin z
,

A±2 (z) =
+∞∑

k=−∞

(−1)k
(z − kπ)2

=
1

sin2 z
cos z,

A±3 (z) =
+∞∑

k=−∞

(−1)k
(z − kπ)3

=
1

sin3 z

[
1
2 +

1
2 cos

2 z
]
,

A±4 (z) =
+∞∑

k=−∞

(−1)k
(z − kπ)4

=
1

sin4 z

[
5
6 cos z +

1
6 cos

3 z
]
,

A±5 (z) =
+∞∑

k=−∞

(−1)k
(z − kπ)5

=
1

sin5 z

[
5
24 +

3
4 cos

2 z + 1
24 cos

4 z
]
,

A±6 (z) =
+∞∑

k=−∞

(−1)k
(z − kπ)6

=
1

sin6 z

[
61
120 cos z +

29
60 cos

3 z + 1
120 cos

5 z
]
,

A±7 (z) =
+∞∑

k=−∞

(−1)k
(z − kπ)7

=
1

sin7 z

[
61
720 +

479
720 cos

2 z + 179
720 cos

4 z + 1
720 cos

6 z
]
.
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2. Inequalities

In this section we shall consider the functions Ar and A±r on R and shall
give exact lower and upper estimates.

2.1. Let us define the functions∗:

(8)
Ur(x) := (sinr x) ·Ar(x) =

+∞∑
k=−∞

sinr x

(x− kπ)r

(x ∈ R, r = 1, 2, . . .).

Theorem 1 states that Ur is an algebraic polynomial of the cos function:

Ur(x) = Sr(cosx) (x ∈ R, r = 1, 2, 3, . . .),

where Sr (∈ Pr−2) satisfies the recursive relation (3).

Theorem 3. (i) Let r be any positive and even integer. Then Ur is a π-periodic
even function and

(9) m(Ur) ≤ Ur(x) ≤ 1 (x ∈ R),

where

(10) m(Ur) = Sr(0) =
2r(2r − 1)

r!
|Br| (r = 2, 4, 6, . . .).

The values of Sr(0) (r = 2, 4, 6, . . .) can be computed using the recursive relation
(3), Br denotes the rth Bernoulli number. On the interval [0, π/2] the upper
(lower) bound is attained exactly at the point x = 0 (x = π/2).

(ii) Let r be any positive and odd integer. Then Ur is a 2π-periodic even
function and

−1 ≤ Ur(x) ≤ 1 (x ∈ R).

On the interval [0, π] the upper (lower) bound is attained exactly at the point
x = 0 (x = π).

Remark 1. By (4) the first few values of Sr(0) are

S2(0) = 1, S4(0) =
1
3 , S6(0) =

2
15 , S8(0) =

17
315 , S10 =

62
2835 .

∗At points x ∈ R for which the function is formally undefined but has a finite limit, it is
defined to be its limit.
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Remark 2. We recall that the Bernoulli numbers Bn (n ∈ N0) satisfy the
recurrence relation

B0 = 1,(
n

0

)
B0 +

(
n

1

)
B1 +

(
n

2

)
B2 + · · ·+

(
n

n− 1

)
Bn−1 = 0 (n = 2, 3, . . .)

(see [9] or [6, I, p. 682]). The first few Bernoulli numbers Bn are

B0 = 1, B1 = −1
2
, B2 =

1

6
, B4 = − 1

30
, B6 =

1

42
, B8 = − 1

30

with B2n+1 = 0 for n ∈ N \ {1}.

Proof of Theorem 3. Let r be an arbitrary positive integer. Then by (1)
and (2) we have Ur(x) = Sr(cosx) (x ∈ R). From the recursive relation (3) it
follows that (by induction)

• the polynomial Sr is even (odd) if r is even (odd),

• every coefficients of Sr are nonnegative,

• Sr(1) = 1 and Sr(−1) = (−1)r.
Using these facts we obtain every statements of Theorem 3. We show only

the assertion with respect to the minimum of Ur, if r = 2, 4, 6, . . .. Using (2)
we have

min
x∈R

Ur(x) = min
x∈R

Sr(cosx) = Sr

(
cos

π

2

)
= Sr(0) =

=

+∞∑
k=−∞

sinr π
2(

π
2 − kπ

)r = 2r

πr

+∞∑
k=−∞

1

(2k − 1)r
.

Since
+∞∑

k=−∞

1

(2k − 1)r
=
2(2r − 1)

2r

+∞∑
k=1

1

kr
(r = 2, 4, 6, . . .),

and (see [6, p. 684] or [9, (40)])

(11) Br = 2(−1)r/2−1 r!

(2π)r

+∞∑
k=1

1

kr
(r = 2, 4, 6, . . .),

thus we have

min
x∈R

Ur(x) = m(Ur) = Sr(0) =
2r(2r − 1)

r!
|Br| (r = 2, 4, 6, . . .) �
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The first few values of m(Ur) (r = 2, 4, . . .) are

m(U2) = 1, m(U4) =
1

3
, m(U6) =

2

15
, m(U8) =

17

315
, m(U10) =

62

2835
.

Since for every r = 2, 4, 6, . . .

0 < m(Ur) =
2r(2r − 1)

r!
|Br| = 2

2r − 1

πr

+∞∑
k=1

1

kr
< 4

2r − 1

πr
,

thus we have
lim

r→+∞m(Ur) = 0.

Remark 3. From (11) we obtain the exact values of the Rieman’s zeta-function
at positive even integers:

ζ(r) =

+∞∑
k=1

1

kr
= (−1)r/2−1 (2π)

r

2 · r! Br (r = 2, 4, 6, . . .).

Thus ζ(r) can be computed recursively using the Bernoulli numbers or the
values Sr(0).

Remark 4. In the theory of wavelet analysis the exact lower and upper bounds
for the functions Ur(x) (x ∈ R) have important applications (see [2], [4, p. 24]).
For positive even integers the inequality (9) is known, see [2, p. 90]. There the
following explicit form for the lower bound m(Ur) is proved:

m(Ur) =
1

(r − 1)!

r/2−1∏
k=1

(1 + λk)
2

|λk| (r = 2, 4, 6, . . .),

where λk’s are the roots of the Euler–Frobenius polynomials. But the exact
values of λk’s are not known. The explicit forms (10) are more simple and they
are computable, moreover the above proof of (9) is also simpler than in [2].

2.2. Let

(12)
Vr(x) := (sinr x) ·A±r (x) =

+∞∑
k=−∞

(−1)k sinr x

(x− kπ)r

(x ∈ R, r = 1, 2, . . .).

Theorem 2 states that Vr is an algebraic polynomial of the cos function:

Vr(x) = Qr(cosx) (x ∈ R, r = 1, 2, 3, . . .),

where Qr (∈ Pr−1) satisfies the recursive relation (6).
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Theorem 4. (i) Let r be an arbitrary positive odd integer. Then Vr is a π-
periodic even function and

m(Vr) ≤ Vr(x) =

+∞∑
k=−∞

(−1)k sinr x

(x− kπ)r
≤ 1 (x ∈ R, r = 1, 3, 5, . . .),

where

(13) m(Vr) = Qr(0) (r = 1, 3, 5, . . .).

The values of Qr(0) (r = 1, 3, 5, . . .) can be computed by the recursive relations
(6). On the interval [0, π/2] the upper (lower) bound is attained exactly at the
point x = 0 (x = π/2).

(ii) Let r be any positive and even integer. Then Vr is a 2π-periodic even
function and

−1 ≤ Vr(x) ≤ 1 (x ∈ R, r = 2, 4, 6, . . .).

On the interval [0, π] the upper (lower) bound is attained exactly at the point
x = 0 (x = π).

Proof. Theorem 2 states that Vr(x) = Qr(cosx) (x ∈ R), where Qr is an
even (odd) algebraic polynomial if r odd (even); every coefficients of Qr are
nonnegative; Qr(1) = 1 and Qr(−1) = (−1)r+1. From these facts we obtain
every statements of Theorem 4. �

By (7) and (13) the first few values of m(Vr) are
(14)

m(V1) = 1, m(V3) =
1
2 , m(V5) =

5
24 , m(V7) =

61
720 , m(V9) =

277
8064 .

Remark 5. Since the algebraic polynomial Qr is even if r is odd, thus

min
x∈R

Vr(x) = min
x∈R

Qr(cosx) = Qr

(
cos π

2

)
= Qr(0) =

=

+∞∑
k=−∞

(−1)k sinr π
2(

π
2 − kπ

)r = 2r

πr

+∞∑
k=−∞

(−1)k+1

(2k − 1)r
=
2r+1

πr

+∞∑
k=1

(−1)k+1

(2k − 1)r
.

Consequently we obtain the following exact values for the sum of the series∑
k∈N(−1)k+1/(2k − 1)r:

Fr :=

+∞∑
k=1

(−1)k+1

(2k − 1)r
=

πr

2r+1
Qr(0) (r = 1, 3, 5, . . .).

By (14) we have

F1 =
1

4
π, F3 =

1

32
π3, F5 =

5

1536
π3, F7 =

61

184320
π7, F9 =

277

8257536
π9.
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3. Derivatives

Not so easy to find explicit forms for the derivatives of the cot or of the
1/ sin functions. Starting from their series representation different computable
formulas may be given. Exact lower and upper bounds for the derivatives will
be also presented.

3.1. Let us consider first the derivatives of cot. From the identity

cot z = lim
n→+∞

n∑
k=−n

1

z − kπ
(z ∈ D)

(here the convergence is uniform in every compact subset of D) we have

cot(r) z =
dr

dzr
cot z = (−1)rr!

+∞∑
k=−∞

1

(z − kπ)r+1
(z ∈ D, r = 1, 2, . . .).

The idea is that, the above sum can be written as algebraic polynomials
of some trigonometric functions. We recall the following known result, which
states that cot(r) can be expressed as a polynomial of the cot function.

Theorem 5. (See [1, p. 161], [4, p. 23].) Let r be a positive integer. Then we
have

dr

dzr
cot z = (−1)rPr(cot z) (z ∈ D),

where the algebraic polynomial Pr of degree (r+1) obeys the following recursive
relation

P0(z) = z, Pr+1(z) = (1 + z2)P ′r(z) (z ∈ C).

Consequently for every z ∈ D we have

cot′ z = −(cot2 z + 1),

cot′′ z = 2 cot3 z + 2 cot z,

cot(3) z = −(6 cot4 z + 8 cot2 z + 2),

cot(4) z = 24 cot5 z + 40 cot3 z + 16 cot z.

From Theorem 1 it follows that the derivatives of the cot function can be
expressed also by polynomials of the cos function.
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Theorem 6. Let r be a positive integer. Then we have

(15)
dr

dzr
cot z = (−1)r r!Ar+1(z) =

(−1)r r!
sinr+1 z

Sr+1(cos z) (z ∈ D),

where the algebraic polynomials Sr are given by the recursive relation (3).

Using (4) we have for every z ∈ D

cot′ z =
−1
sin2 z

,

cot′′ z =
2

sin3 z
cos z,

cot(3) z =
−6
sin4 z

[
1
3 +

2
3 cos

2 z
]
=

−2
sin4 z

[
1 + 2 cos2 z

]
,

cot(4) z =
4!

sin5 z

[
2
3 cos z +

1
3 cos

3 z
]
=

8

sin5 z

[
2 cos z + cos3 z

]
.

The main advantage of the above representation of cot(r) is that the their
exact lower and upper bounds can be obtained more easily then by using The-
orem 5. Indeed, from (8) and (15) we have:

SCr (x) := sinr+1 x · cot(r) x = (−1)r r! sinr+1 x ·Ar+1(x) =

= (−1)r r!Ur+1(x) = (−1)r r!Sr+1(cosx)

(x ∈ R, r = 1, 2, 3, . . .).

Thus by Theorem 3 we have

Theorem 7. (i) Let r be an odd positive integer. Then the function SCr is a
π-periodic even function and

0 < r!m(Ur+1) ≤ −SCr (x) = − sinr+1 x · cot(r) x ≤ r!

(x ∈ R, r = 1, 3, 5, . . .),

where m(Ur+1) is given by (10). On the interval [0, π/2] the upper (lower)
bound is attained exactly at the point x = 0 (x = π/2).

(ii) Let r be an even positive integer. Then the function SCr is a 2π-periodic
even function and

−r! ≤ SCr (x) = sinr+1 x · cot(r) x ≤ r!

(x ∈ R, r = 2, 4, 6, . . .).

On the interval [0, π] the upper (lower) bound is attained exactly at the point
x = 0 (x = π).
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3.2. The derivatives of the csc := 1/ sin function can be obtained from the
identity

csc z =
1

sin z
= lim

n→+∞

n∑
k=−n

(−1)k
z − kπ

(z ∈ D)

(here the convergence is uniform in every compact subset of D):

csc(r) z =

(
1

sin

)(r)

(z) = (−1)rr!
+∞∑

k=−∞

(−1)k
(z − kπ)r+1

(z ∈ D, r = 1, 2, . . .).

From Theorem 2 it follows that the derivatives of the 1/ sin function can be
expressed also by polynomials of the cos function.

Theorem 8. Let r be a positive integer. Then we have

(16) csc(r) z = (−1)r r!A±r+1(z) =
(−1)r r!
sinr+1 z

Qr+1(cos z) (z ∈ D),

where the algebraic polynomials Qr are given by the recursive relation (6).

Using (7) we have for every z ∈ D

csc′ z =
−1
sin2 z

· cos z,

csc′′ z =
1

sin3 z
[1 + cos2 z],

csc(3) z =
−1
sin4 z

[
5 cos z + cos3 z

]
,

csc(4) z =
1

sin5 z

[
5 + 18 cos2 z + cos4 z

]
.

From (12) and (16) we have:

SCSr (x) := sinr+1 x · csc(r) x = (−1)r r! sinr+1 x ·A±r+1(x) =

= (−1)r r!Vr+1(x) = (−1)r r!Qr+1(cosx)

(x ∈ R, r = 1, 2, 3, . . .).

Thus by Theorem 4 we have

Theorem 9. (i) Let r be an even positive integer. Then the function SCSr is
a π-periodic even function and

0 < r!m(Vr+1) ≤ −SCSr (x) = − sinr+1 x · csc(r) x ≤ r!

(x ∈ R, r = 1, 3, 5, . . .),
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where m(Vr+1) is given by (14). On the interval [0, π/2] the upper (lower)
bound is attained exactly at the point x = 0 (x = π/2).

(ii) Let r be an odd positive integer. Then the function SCSr is a 2π-periodic
even function and

−r! ≤ SCSr (x) = sinr+1 x · csc(r) x ≤ r!

(x ∈ R, r = 2, 4, 6, . . .).

On the interval [0, π] the upper (lower) bound is attained exactly at the point
x = 0 (x = π).
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