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Abstract. Monotonic matrices are combinatorial objects defined in con-
nection with certain questions in coding theory in [10]. It is an open
problem to determine the maximum number of filled cells in an n by n
monotonic matrix. In this note we determine this maximum value for
7 ≤ n ≤ 9. The arguments are based partly on theoretical considerations
and partly on computer aided exhaustive searches.

1. Introduction

Monotonic matrices are combinatorial objects. Let n be a positive integer
and consider an n by n square-shaped array that consists of n rows, n columns
and n2 cells. A cell is either empty or contains an element of the set {1, . . . , n}.
The fact that the cell at the intersection of the (a1)-th row and the (a2)-th
column is filled with the entry a3 will be recorded by the triplet (a1, a2, a3).

We call a partially filled array a monotonic matrix if the next three condi-
tions hold for any two distinct filled cells (a1, a2, a3), (b1, b2, b3) of the array.
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(i) (Row condition.) If a2 = b2, then

a1 	= b1, a3 	= b3,

a1 > b1 ⇐⇒ a3 > b3.

(ii) (Column condition.) If a1 = b1, then

a2 	= b2, a3 	= b3,

a2 > b2 ⇐⇒ a3 > b3.

(iii) (Positive slope condition.) If a3 = b3, then

a1 	= b1, a2 	= b2,

a1 > b1 ⇐⇒ a2 > b2.

The intuitive meaning of the row condition is the following. The equation
a2 = b2 says that the two cells are in the same row. They are not in the same
column as a1 	= b1. They do not hold the same number since a3 	= b3. Finally,
a1 > b1 ⇐⇒ a3 > b3 informs us that the cell on the right contains the larger
number.

Similarly, the intuitive content of the column condition is the following.
Since a1 = b1, the two cells are in the same column. As a2 	= b2, the cells are
not in the same row. Then a3 	= b3 means that the cells are not filled with the
same number. The equivalence a2 > b2 ⇐⇒ a3 > b3 asserts that the upper cell
contains the larger number.

Finally, the intuitive meaning of the positive slope condition is the next.
By a3 = b3, two cells are filled the same number. By a1 	= b1, a2 	= b2, the cells
are not in the same row and they are not in the same column. The condition
a1 > b1 ⇐⇒ a2 > b2 means that the straight line that passes through the
centers of the cells has a positive slope.

8 2 4 7 8
7 1 7 8
6 7 8
5 2 4 6
4 1 3 6
3 4 6
2 2 3 5
1 1 3 5

1 2 3 4 5 6 7 8

Table 1. Hickerson’s example

Table 1 exhibits an 8 by 8 monotonic matrix which has 23 filled-in cells.
The example is due to D. R. Hickerson.
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A monotonic matrix is called maximal if no more filled cells can be added
to it and produce a larger monotonic matrix. A monotonic matrix is called
a maximum monotonic matrix if there is no monotonic matrix with the same
order containing more filled-in cells. The reader can verify that the 3 by 3
monotonic matrices given by Table 2 are maximal and maximum monotonic
matrices respectively.

3
2

1

2 3
1

1 3

Table 2. A maximal and a maximum monotonic matrix

Let f(n) be the number of the filled-in cells in an n by n maximum mono-
tonic matrix.

The problem below is due to S. K. Stein.

Problem 1.1. Find upper and lower bounds for f(n). In particular determine
f(n).

In order to find out more about the connection between coding theory and
Stein’s problem and for further interesting results the reader should consult [3],
[5], [12], [13].

Lower bounds of f(n) are presented in [13] for n ≤ 16 and upper bounds
of f(n) are listed in [14] for n ≤ 10. The exact values of f(n) are known for
n ≤ 9. These values are summarized in Table 3. They were computed by K.
Joy for n ≤ 5. (See [11].) For n = 6 and for 7 ≤ n ≤ 9 they were established
by A. Tiskin [13] and the present paper respectively.

n 1 2 3 4 5 6 7 8 9
f(n) 1 2 5 8 11 14 19 23 28

Table 3. Values of f(n) for n ≤ 9

Both K. Joy and A. Tiskin used custom made programs. The extensive list
of very good quality lower bounds compiled in [13] speaks eloquently for the
strength of this approach.

Besides the efficiency there are other important factors to take into consid-
eration like reliability and ease of setting up a computation. Determining f(n)
can be reduced to various standard combinatorial optimization problems. For
instance it can be reduced to the maximum set packing problem or the max-
imum independent set or maximum clique problems. R. Pratt reformulated
the maximum independent set equivalent of the problem in terms of a zero-one
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linear program in the case n = 6. Then he used the SAS/OR MILP zero-one
linear program solver. (See [9].)

This approach is worth mentioning even if it just repeats an already suc-
cessfully completed computation. A zero-one linear program solver can be used
to solve various problems not only for finding maximum monotonic matrices.
This means that the solver can be tested on a host of problems while for a
custom made program the set of test problems is limited. A popular zero-one
linear program solver is used by a large number of users in different computing
environments. For this reason widely used programs tend to be more reliable.

There is a number of clique search algorithms (see [1]) and also there are
well tested implementations (see [2], [6], [8], [7]). For a collection of benchmark
problems see [4]. The author thinks that finding maximum monotonic matrices
is a good benchmark for testing clique search algorithms. The description of the
problem is simple and easy to communicate. Some cases are solved and some
remain open. The search spaces are large enough to make the computations
demanding. The results contribute to mathematical knowledge.

It is tempting to try the strengths of the clique solvers on computing f(n).
In this short note first we describe two combinatorial ideas that help to re-
duce the size of the search. The reduced problems then were processed by a
clique search program. It was not the purpose of this note to make a detailed
comparison of the performance of the various clique search algorithms and im-
plementations. The main point is that the clique approach with the available
clique solvers can settle Problem 1.1 for n ≤ 9.

2. The clique reformulation

Let Γ be a finite graph without loops and double edges. A subgraph Δ of
Γ is called a clique if any two distinct nodes of Δ are connected by an edge. A
clique Δ in Γ is called a k-clique if it has k nodes. It is called a maximal clique
if Γ does not have any nodes outside Δ that are connected with each node of
Δ. In other words Δ is a maximal clique in Γ if Δ cannot be extended to a
larger clique by adding a further node of Γ to it. A k-clique Δ in Γ is called a
maximum clique if Γ does not have any (k + 1)-clique.

The problems below are known as the maximum clique problem and the
k-clique problem respectively.

Problem 2.1. Find a maximum clique in a given graph.

Problem 2.2. Given a positive integer k, decide if a given graph has a k-clique.
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We define a graph Γ. The nodes of Γ are the elements of the 3-dimensional
Hamming space over the alphabet {1, . . . , n}

Hn = {(a1, a2, a3) : 1 ≤ a1, a2, a3 ≤ n}.

Two distinct nodes a, b ∈ Hn are connected by an edge in Γ if the row, column,
positive slope conditions hold for a, b.

Note that ifM is an n by n monotonic matrix, then the triplets correspond-
ing to the filled cells in M form the nodes of a clique Δ in Γ. Conversely, if Δ
is a clique in Γ, then the nodes of Δ form the filled cells of an n by n monotonic
matrix M . Maximum monotonic matrices correspond to maximum cliques. As
an illustration, Table 4 contains the adjacency matrix of Γ in the special case
n = 3. The rows and the columns of the adjacency matrix are labeled by the
elements of H3. A bullet in the cell at the intersection of row a and column b
indicates the triplets a, b are connected by an edge in Γ.

If M is a monotonic matrix, then ϕ(M) denotes number of filled-in cells in
M . The following lemma is folklore. For example it was used (without proof)
in [13] page 3. We state it for the sake of easier reference and completeness.

Lemma 2.1. Let M be an n by n monotonic matrix. There is an n by n
monotonic matrix M ′ such that ϕ(M) ≤ ϕ(M ′) and the cell in M ′ at the
position (1, 1) contains 1 and the cell in M ′ at the position (n, n) contains n.

Proof. Let M be an n by n monotonic matrix. The case n = 1 is trivial and
so we may assume that n ≥ 2. We prove the first case, the proof of the second
being similar. If the (1, 1) cell in M is filled with 1, then there is nothing to
prove. For the remaining part of the proof we may assume that the (1, 1) cell
in M is not filled with 1.

Case 1. The (1, 1) cell in M is empty. Let us look at the (1)-st row and the
(1)-st column of M . If none of them contains a 1, then they contain elements
from the set {2, . . . , n}. We now can place a 1 in the position (1, 1) to get
a new monotonic matrix M ′. Next suppose that the (1)-st row contains a 1.
Then the (1)-st column cannot contain a 1. We can move this 1 to the position
(1, 1) to get a monotonic matrix M ′. Finally suppose that the (1)-st column
contains a 1. Now we can move this 1 to the position (1, 1).

Case 2. The (1, 1) cell in M is not empty. Suppose that the position (1, 1)
contains k, where k ≥ 2. We simply can replace k by 1 to get a new monotonic
matrix M ′. �
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1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

111 • • • • • • • • • • • • • • • • • • • •
112 • • • • • • • • • • • • • • • •
113 • • • • • • • • • • • •
121 • • • • • • • • • • • • • • • •
122 • • • • • • • • • • • • • •
123 • • • • • • • • • • • •
131 • • • • • • • • • • • •
132 • • • • • • • • • • • •
133 • • • • • • • • • • • •
211 • • • • • • • • • • • • • • • •
212 • • • • • • • • • • • • • •
213 • • • • • • • • • • • •
221 • • • • • • • • • • • • • •
222 • • • • • • • • • • • • • •
223 • • • • • • • • • • • • • •
231 • • • • • • • • • • • •
232 • • • • • • • • • • • • • •
233 • • • • • • • • • • • • • • • •
311 • • • • • • • • • • • •
312 • • • • • • • • • • • •
313 • • • • • • • • • • • •
321 • • • • • • • • • • • •
322 • • • • • • • • • • • • • •
323 • • • • • • • • • • • • • • • •
331 • • • • • • • • • • • •
332 • • • • • • • • • • • • • • • •
333 • • • • • • • • • • • • • • • • • • • •

Table 4. The adjacency matrix of Γ in the case n = 3

×
×
×
×
×
×
×
× × × 1 × × × ×

×
×
×
×
×
×
×
k × × × × × × ×

Table 5. Two cases in Lemma 2.1
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3. Symmetries

Let a = (a1, a2, a3), b = (b1, b2, b3) be triplets of an n by n monotonic
matrix. Set

(3.1) a′ = (a′1, a
′
2, a

′
3) = (a2, a1, a3),

(3.2) b′ = (b′1, b
′
2, b

′
3) = (b2, b1, b3).

We constructed a′ from a by swapping the first and the second components.
Similarly, we constructed b′ from b by swapping the first and the second com-
ponents.

Lemma 3.1. The row, column, positive slope conditions hold for a′, b′.

Proof. The row condition for the triplets a′, b′ is the following.

(i′) (Row condition.) If a′2 = b′2, then

a′1 	= b′1, a
′
3 	= b′3,

a′1 > b′1 ⇐⇒ a′3 > b′3.

Using (3.1), (3.2) we can replace a′i, b
′
i in (i

′) in terms of ai, bi and we get the
column condition (ii) for a, b. The column and positive slope conditions for a′i,
b′i can be checked in an analogous way. �

Let again a = (a1, a2, a3), b = (b1, b2, b3) be triplets of an n by n monotonic
matrix. Set

(3.3) a′′ = (a′′1 , a
′′
2 , a

′′
3) = (n+ 1− a1, n+ 1− a2, n+ 1− a3),

(3.4) b′′ = (b′′1 , b
′′
2 , b

′′
3) = (n+ 1− b1, n+ 1− b2, n+ 1− b3).

Lemma 3.2. The row, column, positive slope conditions hold for a′′, b′′.

Proof. Let us write the row condition for the triplets a′′, b′′. The result is
the following.

(i′′) (Row condition.) If a′′2 = b′′2 , then

a′′1 	= b′′1 , a
′′
3 	= b′′3 ,

a′′1 > b′′1 ⇐⇒ a′′3 > b′′3 .
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Then using (3.3), (3.4) we can express a′′i , b
′′
i in (i′′) in terms of ai, bi. We

will end up with the row condition (i) for a, b. The column and positive slope
conditions for a′′i , b

′′
i can be checked in a similar way. �

Let the map Φi,j : Hn → Hn be defined by Φi,j(a) = a′, where a′ is
constructed from a by swapping the (i)-th and the (j)-th components. Lemma
3.1 shows that Φi,j is an automorphism of the graph Γ.

Let the map Φ : Hn → Hn be defined by Φ(a) = a′′, where

a′′ = (n+ 1− a1, n+ 1− a2, n+ 1− a3).

Lemma 3.2 gives that Φ is an automorphism of the graph Γ.

The automorphisms Φi,j , Φ generate a subgroup G of the group of auto-
morphisms of Γ. We define a binary relation ∼ on the vertex set Hn of Γ.
Namely, a ∼ b if there is a g ∈ G such that b = g(a). The relation ∼ is an
equivalence relation. Therefore the nodes of Γ are partitioned into equivalence
classes C1, . . . , Cs. We order the equivalence classes by decreasing size. The
largest equivalence class comes first and the smallest equivalence class comes
last. In other words we assume that |C1| ≥ · · · ≥ |Cs|.

We come now to the point where the equivalence classes are utilized in the
clique search. Let a be a vertex of the graph Γ. If b is vertex of Γ such that
{a, b} is an edge of Γ, then b is adjacent to a or in other words b is a neighbor of
a. The set of all the neighbors of a is denoted by N(a). As Γ does not contain
loops, a is not an element of N(a).

Let Δ be a maximum clique in Γ. Choose a vertex a of Γ. Note that either
Δ \ {a} is a maximum clique of the subgraph of Γ spanned by N(a) or Δ is
a maximum clique of the subgraph of Γ spanned by Hn \ {a}. Therefore we
end up with two smaller instances of the maximum clique problem. The usual
way to proceed is to iterate this procedure and build a search tree to locate a
maximum clique in Γ. This approach does not rely on equivalence classes.

Next suppose that the vertex set of Γ is partitioned into equivalence classes
C1, . . . , Cs. Further assume that a1, . . . , as is a fixed complete set of represen-
tatives of the equivalence classes such that a1 ∈ C1, . . . , as ∈ Cs. Again let Δ
be a maximum clique in Γ. The sets C1, . . . , Cs form a partition of the vertex
set of Γ. Consequently each node of Δ belongs to some Ci. If C1 does not
contain any nodes of Δ, then Δ is a maximum clique of the subgraph of Γ
spanned by Hn \C1. If C1 contains a node of Δ, then applying the maps Φi,j ,
Φ we may assume that a1 is a node of Δ. In this case Δ \ {a1} is a maximum
clique of the subgraph of Γ spanned by N(a1) As before we end up with two
smaller instances of the maximum clique problem. However, typically |C1| > 1
and so the subgraph of Γ spanned by Hn \ C1 is typically smaller than the
subgraph of Γ spanned by Hn \ {a}. This observation shows how the use of
equivalence classes reduces the size of the search tree.



Monotonic matrices 315

This result is crucial and so we spell it out as a lemma and offer a more
formal justification. Consider the subgraphs Γi of Γ spanned by

N(ai) \ (C1 ∪ · · · ∪ Ci−1), 1 ≤ i ≤ s.

Lemma 3.3. If Γ contains a k-clique, then Γi contains a (k − 1)-clique for
some i, 1 ≤ i ≤ s.

Proof. Let Δ be a k-clique in Γ. Let V = Hn be the set of vertices of Γ
and let U be the set of vertices of Δ. The equivalence classes C1, . . . , Cs form
a partition of V . Thus either C1 ∩ U = ∅ or C1 ∩ U 	= ∅.

If C1∩U 	= ∅, then there is a u ∈ C1∩U . As a1, u ∈ C1, there is a g ∈ G such
that g(u) = a1. Let Δ

′ be the subgraph of Γ spanned by g(U) = {g(u) : u ∈ U}.
Since Δ is a k-clique in Γ, Δ′ is a k-clique in Γ. Let Δ1 be the subgraph of
Γ spanned by g(U) \ {a1}. As Δ′ is a k-clique in Γ, it follows that Δ1 is a
(k − 1)-clique in the subgraph Γ1 spanned by N(a1).

In this case there is a (k − 1)-clique in Γ1, as required. Therefore for the
remaining part of the proof we may assume that C1 ∩ U = ∅. Now Δ is
a k-clique in the subgraph Γ(1) spanned by V1 = V \ C1. The equivalence
classes C2, . . . , Cs form a partition of V1 and consequently either C2 ∩ U = ∅
or C2 ∩ U 	= ∅.

If C2 ∩ U 	= ∅, then there is a u ∈ C2 ∩ U . The earlier argument gives that
there is a (k−1)-clique in the subgraph Γ2 spanned by N(a2)\C1, as required.
For the remaining part of the proof we may assume that C2∩U = ∅. Now Δ is
a k-clique in the subgraph Γ(2) spanned by V2 = V \ (C1 ∪ C2). Continuing in
this way finally we get that Γi contains a (k − 1)-clique for some i, 1 ≤ i ≤ s.
�

We used two methods to compute the equivalence classes C1, . . . , Cs of
the equivalence relation ∼. The first can be called the graph decomposition
method. Let us construct a graph Ω. The nodes of Ω are the elements of Hn.
We connect the node (a1, a2, a3) with the nodes (a2, a1, a3) and (a3, a2, a1).
Further we connect the node (a1, a2, a3) with the node (n + 1 − a1, n + 1 −
−a2, n+1−a3). The graph Ω can be decomposed into connected components.
The nodes of the connected components form the equivalence classes of the
relation ∼. As an example we exhibited the adjacency matrix of Ω in the case
n = 3 in Table 6. The graphical representation of this graph (without a loop
on the node (2, 2, 2)) can be seen in Figure 1. The connected components can
be identified readily and so one can read off the equivalence classes.

The second method of constructing the equivalence classes of the relation
∼ can be called the valuation method. Consider an element a ∈ Hn, a =
= (a1, a2, a3). Let us arrange the three coordinates of a in increasing order to



316 S. Szabó

1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

111 •
112 • •
113 • •
121 • •
122 • • •
123 • •
131 • •
132 • •
133 • • •
211 • • •
212 • •
213 • • •
221 • •
222 •
223 • •
231 • • •
232 • •
233 • • •
311 • • •
312 • •
313 • •
321 • •
322 • • •
323 • •
331 • •
332 • •
333 •

Table 6. The adjacency matrix of Ω in the case n = 3

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � �

323 121 131 313 223 221 132 312

233 211 311 133 322 122 231 213

332 112 113 331 232 212 321 123

222 111 333

Figure 1. The graphical representation of Ω in the case n = 3
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get the triplets

a′ = (a′1, a
′
2, a

′
3),

a′′ = (a′′1 , a
′′
2 , a

′′
3) = (n+ 1− a′3, n+ 1− a′2, n+ 1− a′1).

This means that

{a1, a2, a3} = {a′1, a′2, a′3}, a′1 ≤ a′2 ≤ a′3.

To the triplet a let us assign the minimum of the values

μ(a′) = (a′1 − 1)n2 + (a′2 − 1)n+ (a′3 − 1),

μ(a′′) = (a′′1 − 1)n2 + (a′′2 − 1)n+ (a′′3 − 1)

and denote this number by ν(a). Further let a∗ be either a′ or a′′ depending
on which has the smaller ν value.

Lemma 3.4. a ∼ b if and only if ν(a) = ν(b).

Proof. Let a = (a1, a2, a3), b = (b1, b2, b3) and suppose that a ∼ b. Now one
of

a′ = b′, a′ = b′′, a′′ = b′, a′′ = b′′

holds and consequently ν(a) = ν(b), as required.

Next assume that ν(a) = ν(b). Now one of

μ(a′) = μ(b′), μ(a′) = μ(b′′), μ(a′′) = μ(b′), μ(a′′) = μ(b′′)

must hold. From this it follows that one of

a′ = b′, a′ = b′′, a′′ = b′, a′′ = b′′

holds and so a ∼ b, as required. �
Table 7 illustrates the equivalence class computations in the case n = 3.

From Table 7 one can read off that the triplets

(1, 1, 2), (1, 2, 1), (2, 1, 1), (2, 3, 3), (3, 2, 3), (3, 3, 2)

form an equivalence class. The number of the elements of an equivalence class
can be as large as 12 and can be as small as 1. When n = 7 the equivalence
class of the triplet (1, 2, 3) contains each permutation of the elements 1, 2, 3.
In addition the triplet (1, 2, 3) is equivalent to (8 − 1, 8 − 2, 8 − 3) = (7, 6, 5).
The equivalence class of (1, 2, 3) contains each permutation of the elements 5,
6, 7. On the other hand the equivalence class of the triplet (4, 4, 4) contains
only one element.
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a a∗ ν a a∗ ν a a∗ ν
111 111 0 211 112 1 311 113 2
112 112 1 212 122 4 312 123 5
113 113 2 213 123 5 313 113 2
121 112 1 221 122 4 321 123 5
122 122 4 222 222 13 322 122 4
123 123 5 223 122 4 323 112 1
131 113 2 231 123 5 331 113 2
132 123 5 232 122 4 332 112 1
133 113 2 233 112 1 333 111 0

Table 7. The equivalence classes in the case n = 3

A group of order 12, the direct product of the non-commutative group of
order 6 and the group of order 2, is acting on the elements on the Hamming
space Hn. The equivalence classes are the orbits of this action. Therefore the
size of each equivalence class is a divisor of 12. The triplets (1, 1, 1), (n, n, n)
always form one complete equivalence class of the nodes Hn of the graph Γ for
each n.

4. Semi-crosses

Let U be a fixed finite ground set and let A1, . . . , Ar be fixed subsets of U .
A family of subsets B1, . . . , Bk ∈ {A1, . . . , Ar} is called a packing set of U if
Bi ∩ Bj = ∅ for each i, j, 1 ≤ i, j ≤ k, i 	= j. A packing set {B1, . . . , Bk} of
U is called a k-packing set. The packing set {B1, . . . , Bk} is called a maximal
packing set if it is not part of any larger packing set of U . The packing set
{B1, . . . , Bk} is called a maximum packing set of U if U does not have any
(k + 1)-packing set. The next problem is known as the maximum packing set
problem.

Problem 4.1. Given a finite set U and a family of subsets A1, . . . , Ar of U .
Find a maximum packing set of U .

We will show that by introducing certain 3-dimensional star bodies, the so
called semi-crosses, we can reformulate our maximum monotonic matrix search
as a suitable maximum packing set problem.

Let e1, e2, e3 be orthogonal unit vectors in 3-dimensional Euclidean space.
The union of the 3-dimensional unit cubes parallel to the coordinate unit vec-
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tors e1, e2, e3 whose centers are

jei, 1 ≤ i ≤ 3, 0 ≤ j ≤ n− 1

is called the standard 3-dimensional semi-cross with arm length n − 1. An
(n− 1, 3)-semi-cross is any translate of that semi-cross by an integer vector. It
consists of a corner cube and three arms composed of n− 1 cubes.

One can consider the Hamming space Hn embedded into Z3 and note that
the Hamming sphere centered at (1, 1, 1) with radius 1 coincides with the (n−
1, 3)-semi-cross in Z3 centered at (1, 1, 1). Let a ∈ Hn and let Sa be the
(n− 1, 3)-semi-cross centered at a. Set Aa = Sa ∩Hn.

Lemma 4.1. The distinct triplets a, b ∈ Hn are filled cells of an n by n mono-
tonic matrix if and only if Aa ∩Ab = ∅.

Proof. Let a = (a1, a2, a3), b = (b1, b2, b3). Suppose that the distinct triplets
a, b are filled cells in an n by n monotonic matrix. In order to prove the
claim of the lemma assume on the contrary that Aa ∩ Ab 	= ∅. It follows that
Sa ∩Sb 	= ∅ and so one of a1 = b1, a2 = b2, a3 = b3 must hold. If a1 = b1, then
either a2 = b2 or a3 = b3. This violates column condition (ii). If a2 = b2, then
either a1 = b1 or a3 = b3. Consequently the row condition (i) is violated. If
a3 = b3, then either a1 = b1 or a2 = b2 and so the positive slope condition (iii)
is violated.

Next suppose that Aa ∩ Ab = ∅. It follows that Sa ∩ Sb = ∅. Let d be
hamming distance of a and b in Hn. If d = 0, then we get the contradiction
that a = b. If d = 1, then we get the contradiction that Sa ∩ Sb 	= ∅. If d = 2,
then one of a1 = b1, a2 = b2, a3 = b3 must hold. Now conditions (ii), (i), (iii)
hold respectively. If d = 3, then conditions (i), (ii), (iii) hold vacuously. This
completes the proof. �

Using Lemma 4.1 we can reformulate our maximum monotonic matrix prob-
lem as a maximum packing set problem. Let U be the Hamming space Hn.
The given subsets Ai of U let be identified with the sets Aa = Sa∩Hn for each
a ∈ Hn. The maximum packing sets of U naturally correspond to maximum n
by n monotonic matrices. As an illustration the subsets Aa = Sa∩Hn, a ∈ Hn

are presented in Table 8 in the special case n = 3.

We would like to point out that the maximum packing set problem can be
reduced to a maximum clique problem. We do not claim that this reduction
is necessarily advantageous. We define a graph Γ. The nodes of Γ are the
elements of the set U , that is, the members of the family {A1, . . . , Ar}. Two
distinct nodes Ai and Aj are connected by an edge if Ai ∩ Aj = ∅. Cliques in
Γ naturally correspond to packing sets of U .
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1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

111 • • • • • • •
112 • • • • • •
113 • • • • •
121 • • • • • •
122 • • • • •
123 • • • •
131 • • • • •
132 • • • •
133 • • •
211 • • • • • •
212 • • • • •
213 • • • •
221 • • • • •
222 • • • •
223 • • •
231 • • • •
232 • • •
233 • •
311 • • • • •
312 • • • •
313 • • •
321 • • • •
322 • • •
323 • •
331 • • •
332 • •
333 •

Table 8. The family of subsets Aa = Sa ∩Hn in the case n = 3

5. The computations

One cannot be cautious enough when carrying out a computer aided proof.
First, because this type of proof is not universally greeted with enthusiasm.
Second, because there are many doors open for mistakes. Being mindful of
these difficulties we exercised the utmost care.

We constructed the adjacency matrix of the graph Γ based on the definition
given in Section 1. These are n3 by n3 size matrices. For small values of n
such as n = 2, 3, 4 we inspected the matrix. In order to double check the
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matrix construction by means of an independent computation we constructed
the adjacency matrix of the graph Γ using the packing reformulation described
in Section 4 and compared the corresponding matrices.

The equivalence classes we defined in Section 3 were computed and in-
spected for small values of n. Since again there were independent ways to arrive
at these equivalence classes we could check the results against each other. Let
g(n) be the number of equivalence classes of the n by n monotonic matrices.
Table 9 displays some values of g(n). The most simple minded way to utilize
the equivalence classes is the following.

n 3 4 5 6 7 8 9 10
g(n) 6 10 19 28 44 60 85 110

Table 9. Values of g(n) for 3 ≤ n ≤ 10.

The triplets x = (1, 1, 1) and y = (n, n, n) form one complete equivalence
class C0. Let C1, . . . , Cs be the remaining equivalence classes such that |C1| ≥
· · · ≥ |Cs|. Let a1, . . . , as be a complete set of representatives of the equivalence
classes C1, . . . , Cs such that a1 ∈ C1, . . . , as ∈ Cs. Let the subgraphs Γi of Γ
be spanned by

[N(ai) ∩N(x) ∩N(y)] \ (C0 ∪ · · · ∪ Ci−1), 1 ≤ i ≤ s.

When we want to verify that for a given k the graph Γ contains a k-clique,
by Lemmas 2.1 and 3.3, we may focus our attention to check if the graph Γi

contains a (k − 3)-clique for some i, 1 ≤ i ≤ s.

For example when we want to check if there is a 9 by 9 monotonic matrix
M with 29 filled-in entries, that is, for which ϕ(M) = 29 holds we check if Γi

has a 26-clique for some i, 1 ≤ i ≤ 84. This means that we carry out 84 clique
searches independently of each other.

Studying Table 7 the reader will notice that if the triplets (1, 1, 1) and
(3, 3, 3) are filled cells of a 3 by 3 monotonic matrix then neither the triplet
(1, 1, 2) nor the triplet (1, 1, 3) can be filled cells in this monotonic matrix. This
means that the whole equivalence class of (1, 1, 2) can be removed in the course
of the clique search. Similarly, the whole equivalence class of (1, 1, 3) can be
removed. So we may restrict our attention on fewer cases than Table 9 suggests
at first glance.

Two different clique search algorithms starting on the same graph generally
do not construct the same search tree. Therefore comparing the search trees
built by different algorithms cannot be exploited to double check computations.
However, we can check our computation by running the clique search algorithm
on the same graph but on different machines and checking if in a given level
the two search trees have the same number of nodes.
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