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Abstract. In this paper, we give some other characterizations of regu-
lar Hom(M,N). A property regular homomorphism via lifting is stud-
ied. Moreover, we also study regular submodules conditions and this is
one of way to check regularity of Hom(M,N). On the other hand, we
consider regular Hom(M,N) via weakly M -torsionless, idempotent sub-
modules conditions. Finally, we give some results of Δ-regular, ∇-regular
homomorphisms and some well-known results are obtained.

1. Introduction

The concept of the regularity of [M,N ] was introduced by Kasch and Mader
in [4] to extend the notion of regularity ring to [M,N ]. Recall that α ∈ [M,N ]
is called regular if α = αβα for some β ∈ [N,M ]. The module [M,N ] is said to
be regular if each α ∈ [M,N ] is regular. M is called a direct projective module
if whenever a factor module M/K is isomorphic to a summand of M then K
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is a summand of M (see [7]). According to Nicholson-Zhou [8], N is direct
M -projective if M/K ∼= P ≤⊕ N implies that K ≤⊕ M . In [8, Theorem 4],
it is shown that [M,N ] is regular if and only if α(M) is a direct summand of
N for every α ∈ [M,N ] and N is direct M -projective. In Section 2, we show
that for every α ∈ [M,N ], α is regular if and only if α(M) is a direct summand
of N and, for R-homomorphisms f : M → α(M) and g : α(M) → α(M),
there exists an R-homomorphism h : α(M) → M with fh = g. We also show
that if M is N -injective, then [M,N ] is regular if and only if [M,α(M)] is
regular for every α ∈ [M,N ] if and only if, for every α ∈ [M,N ], and for every
R-homomorphism f : M → α(M) and g : α(M) → α(M), there exists an
R-homomorphism h : α(M)→ M with fh = g.

An important line of research in this module classes is to investigate re-
lationships of regularity to substructures such as Jacobson radical J [M,N ] of
[M,N ], to the singular Δ[M,N ] and cosingular ∇[M,N ] ideals of [M,N ], and
to the notion of lying over or under a direct summand. Beidar and Kasch
[2] defined and studied the singular ideal Δ[M,N ] and the co-singular ideal
∇[M,N ] such as:

Δ[M,N ] = {f ∈ [M,N ] : Ker(f) ≤e M}
∇[M,N ] = {f ∈ [M,N ] : Im(f)� N}.

The other substructure, Jacobson radical J [M,N ] of [M,N ] was introduced
and studied by Kasch-Mader [4] and Nicholson-Zhou [8]. If M = ⊕s

i=1Mi and
N = ⊕t

j=1Nj are left R-modules, then (using the canonical injections and
projections) [M,N ] has a natural matrix representation as.

[M,N ] =

⎛⎜⎜⎝
[M1, N1] [M1, N2] · · · [M1, Nt]
[M2, N1] [M2, N2] · · · [M2, Nt]

· · · · · · · · ·
[Ms, N1] [Ms, N2] · · · [Ms, Nt]

⎞⎟⎟⎠ = ([Mi, Nj ])

where the elements of M and N are written as rows, and the matrix ([Mi, Nj ])
acts by right matrix multiplication. In [8, Theorem 10], it is shown that if
M = ⊕s

i=1Mi and N = ⊕t
j=1Nj are modules, then J [M,N ] = (J [Mi, Nj ]).

In [10], the authors proved that Δ[M,N ] = (Δ[Mi, Nj ]) and ∇[M,N ] =
= (∇[Mi, Nj ]).

In this paper, we continue further research regular homomorphisms. In
[13, Theorem 2.2], Zelmanowitz proved that a module M is regular if and only
if mR is projective and a direct summand of M . Approach as above we can see
easy that if M is projective then α ∈ [M,N ] is regular if and only if α(M) is
projective and a direct summand of N . We can be generalized this result with
weakly projective condition and prove that α ∈ [M,N ] is regular if and only
if α(M) is ”weakly” M -projective and a direct summand of N (Theorem 2.3).
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On the other hand, with regular condition submodules of M , we also have a
result of regular [M,N ]; we show that [M,N ] is regular if and only if [M,α(M)]
is regular for every α ∈ [M,N ]; where M is N -injective (Theorem 2.4).

The authors Chen-Nicholson proved that a module M is regular if and only
if M is torsionless and for every m ∈ M , m[M,RR] = eR for some e2 = e ∈ R,
see [3, Theorem 2.1]. We will extend this result for [M,N ] and show that [M,N ]
is regular if and only if N is weakly M -torsionless and, for any x ∈ [M,N ],
[N,M ]x = EMe for some e2 = e ∈ EM (Theorem 2.6).

In addition, we show that some characterizations of [M,N ] with property:
When are H[M,N ] = H for every non-empty subset H of [M,N ]?. We prove
that [M,N ] is regular if and only if for every non-empty subset H of [M,N ]
with H[N,M ]H ⊆ H implies H[M,N ]H = H if and only if for every non-
empty subset H of [M,N ] with ENH ∩ HEM ⊆ H implies H[N,M ]H = H
(Proposition 2.8).

Following [6], a submodule X of N is called a semisupplement of Y in
N if N = X + Y and X ∩ Y � N . X is called a semicomplement of Y
in M if X ∩ Y = 0 and X + Y is essential in M. The authors Lee-Zhou
give some characterizations Δ-regular and ∇-regular of endomorphism ring via
semisupplement and semicomplement submodules. In this paper, we also have
some similar results for regular [M,N ] with the condition on semisupplement
and semicomplement submodules (Proposition 2.10 and Proposition 2.11).

In this paper, R will present an associative ring with identity and all mod-
ules over R are unitary right modules. We write MR to indicate that M is a
right R-module. Throughout this paper, homomorphisms of modules are writ-
ten on the left of their arguments. Let M and N be modules. For convenience
of the readers, we follow the notations used in [8] or [14], let EM := EndR(M)
and [M,N ] := HomR(M,N). Then [M,N ] is an (EN , EM )-bimodule. We
also denote J(R) and Rad(M) for the Jacobson radical of R and module M ,
respectively. For a submodule N ofM , we use N ≤ M (N < M) and N ≤⊕ M
to mean that N is a submodule of M (respectively, proper submodule), N is a
direct summand of M , and we write N ≤e M and N � M to indicate that N
is an essential, respectively small of M . For a subset X of R, let r(X) denote
the right annihilator of X in R.

2. Some results of regular morphisms

We call that a right R-module A is called semi M -projective if, for any sub-
module B of M , every epimorphism π : M → B and every R-homomorphism
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α : A → B, there exists an R-homomorphism β : A → M such that πα = β.
Following Wisbauer ([12]), M is semi-projective if M is semi M -projective.

Lemma 2.1. Let M be a right R-module. The following conditions are equiv-
alent:

(1) For every s ∈ EM , Ker(s) is a direct summand of M .

(2) s(M) is semi M -projective for every s ∈ EM .

Proof. (1) ⇒ (2). We first claim that M is semi-projective. Let f : M → A
be an epimorphism and g : M → A be an R-homomorphism with A ≤ M .
Let ι : A → M be the inclusion. By the hypothesis Ker(ιf) = e(M) for some
e2 = e ∈ S. But Ker(ιf) = Ker(f) and so Ker(f) ≤⊕ M . It follows that f is
an epimorphism splits. There exists h : A → M such that fh = idA. We have
f(hg) = (fh)g = g. Thus M is semi-projective.

For all s ∈ S, Ker(s) ≤⊕ M and so s(M) % e(M) for some e2 = e ∈ S. We
consider the following diagram:

M

e(M)

M A 0

�
p

�
g

�f �

with A ≤ M . Let ι : e(M) → M be the inclusion and p : M → e(M) be
the projection. Since M is semi-projective, there exists h : M → M such that
fh = gp. This implies that f(hι) = g. Thus e(M) is semi M -projective and so
s(M) is too.

(2)⇒ (1). For each s ∈ S, we have

s(M)

M s(M) 0
�

ids(M)

�s �

Since s(M) is semi M -projective, there exists h : s(M) → M such that sh =
= ids(M). Therefore s is an epimorphism splits and so Ker(s) ≤⊕ M. �



A note on regular morphisms 253

Corollary 2.2. Let M be a right R-module. The following conditions are
equivalent:

(1) EM is regular.

(2) α(M) is a direct summand of N and α(M) is semi M -projective for all
α ∈ EM .

Theorem 2.3. Let M and N be modules and α ∈ [M,N ]. The following
conditions are equivalent for α ∈ [M,N ]:

(1) α is regular.

(2) α(M) is a direct summand of N and, for R-homomorphisms f : M →
→ α(M) and g : α(M) → α(M), there exists an R-homomorphism
h : α(M)→ M with fh = g.

α(M)

���
�

�
�

�
g

��
M

f
�� α(M) �� 0

Proof. (1) ⇒ (2). By regularity of α, we can obtain that α(M) is a direct
summand of N and Ker(α) is a direct summand of M . Hence there exists
u : α(M) → M such that fu = idα(M) because of the diagram. Let h = ug.
Then fh = f(ug) = g.

(2)⇒ (1) is obvious. �

The following theorem extends Nicholson-Zhou [8, Theorem 4].

Theorem 2.4. Assume that M is N -injective. The following conditions are
equivalent:

(1) [M,N ] is regular.

(2) [M,α(M)] is regular for every α ∈ [M,N ].

(3) For every α ∈ [M,N ], and for every R-homomorphism f : M → α(M)
and g : α(M)→ α(M), there exists an R-homomorphism h : α(M)→ M
with fh = g.

α(M)

���
�

�
�

�
g

��
M

f
�� α(M) �� 0
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Proof. (1) ⇒ (2). Let α ∈ [M,N ] and f ∈ [M,α(M)]. By (1), there exists
g ∈ [N,M ] such that ιf = (ιf)g(ιf) with the inclusion ι : α(M) → N. Let
β = g|α(M) : α(M)→ M . Then α = αβα.

(2) ⇒ (3). Let f : M → α(M) be an epimorphism. Since [M,α(M)] is
regular, we can obtain that Ker(f) is a direct summand of M . Hence there
exists k : α(M)→ M such that fk = 1α(M). Let h = kg and so fh = g.

(3)⇒ (1). Let α ∈ [M,N ]. There exists β ∈ [α(M),M ] such that α = αβα.
Since M is N -injective, there exists γ ∈ [N,M ] such that γ|α(M) = β. Thus
α = αγα. �

Corollary 2.5. Assume that R is a right self-injective ring. The following
conditions are equivalent for a right R-module M :

(1) M is regular.

(2) Every principal submodule of M is regular.

(3) Every principal submodule of M is projective.

An R-moduleN isM -torsionless if it can be embedded into a direct product
of copies of M .

We call an R-module N weakly M -torsionless, if r[M,N ]([N,M ]) = 0. It is
easy to see that M -torsionless modules are weakly M -torsionless. Moreover,
N is RR-torsionless if and only if N is weakly RR-torsionless.

Theorem 2.6. Let M and N be R-modules.

(1) [M,N ] is regular if and only if N is weakly M -torsionless and, for any
x ∈ [M,N ], [N,M ]x = EMe for some e2 = e ∈ EM .

(2) [M,N ] is regular if and only if, for any x, y ∈ [M,N ],

(a) [N,M ]x = EMe for some e2 = e ∈ EM .

(b) y = (y1f1 + · · · + ynfn)y for some y1, ..., yn ∈ [M,N ] and for some
f1, ..., fn ∈ [N,M ].

Proof. (1) Assume that [M,N ] is regular. We first show that N is weakly
M -torsionless. Let f ∈ r[M,N ]([N,M ]) and gf = 0 for all g ∈ [N,M ]. Since
[M,N ] is regular, we can obtain that f = fgf = 0.

Let x ∈ [M,N ]. Since [M,N ] is regular, there exists y ∈ [N,M ] such that
x = xyx. Hence [N,M ]x = [N,M ]xyx. Let e = yx. Then e2 = e ∈ EM . Now
[N,M ]x = [N,M ]xe ⊂ EMe. The other inclusion is similar.
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Assume that N is weaklyM -torsionless and, for any x ∈ [M,N ] , [N,M ]x =
= EMe for some e2 = e ∈ EM . Then e = yx for some y ∈ [N,M ]. We must
show that x = xe. For all u ∈ [N,M ], we can obtain that u(x − xe) =
= ux − uxe = ux − (ux)e = 0 since ux ∈ [N,M ]x = EMe. Then x − xe ∈
∈ r[M,N ]([N,M ]) = 0 and so x = xyx.

(2) Assume that [M,N ] is regular. By (1), we can obtain that [N,M ]x =
= EMe for some e2 = e ∈ EM , i.e., (a) holds. For every y ∈ [M,N ], there
exists z ∈ [N,M ] such that y = yzy and so (b) holds.

For converse, let y ∈ [M,N ]. Because of (1), we must show that N is weakly
M -torsionless, i.e. r[M,N ]([N,M ]) = {f ∈ [M,N ] : gf = 0; ∀g ∈ [N,M ]}. Since
y ∈ r[M,N ]([N,M ]), we can obtain that fiy = 0 for some f1 . . . fn ∈ [N,M ].
Therefore y = (y1f1 + · · ·+ ynfn)y = 0. �

We have the following corollary.

Corollary 2.7. The following conditions are equivalent for R-modules M
and N :

(1) [M,N ] is regular.

(2) For any x1, x2, ..., xn, y ∈ [M,N ],

(a)
∑k

i=1[N,M ]xi = EMe for some e2 = e ∈ EM

(b) y = (y1f1 + · · · + ynfn)y for some y1, ..., yn ∈ [M,N ] and for some
f1, ..., fn ∈ [N,M ].

(3) N is weakly M -torsionless and, for every elements x1, x2, ..., xn ∈ [M,N ],∑n
i=1[N,M ]xi = EMe for some e2 = e ∈ EM .

Proof. (1) ⇒ (2). Assume that [M,N ] is regular. By Theorem 2.6(2),
for each y ∈ [M,N ], we can obtain that y = (y1f1 + · · · + ynfn)y for some
y1, ..., yn ∈ [M,N ] and for some f1, ..., fn ∈ [N,M ].

Now assume that x1, x2, ..., xn ∈ [M,N ]. We show that
∑n

i=1[N,M ]xi =
= EMe for some e2 = e ∈ EM . The case n = 1 is clear from Theorem 2.6. If
n > 1, then [N,M ]xn = EMf for some f2 = f ∈ EM . By the hypothesis on
induction,

n−1∑
i=1

[N,M ]xi(1− f) = EMg

for some g2 = g ∈ EM . It is easy to see that gf = 0, e = f + g − fg is
an idempotent, fe = f = ef and ge = g = eg. Since [N,M ]xif ⊂ EMf =
= [N,M ]xn for each i = 1, 2, ..., n− 1, we can obtain that

EMe = EMf + EMg =

= [N,M ]xn + (
∑n−1

i=1 [N,M ]xi)(1− f) =

= [N,M ]xn +
∑n−1

i=1 [N,M ]xi.
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(2)⇒ (3). is clear.

(3)⇒ (1). By Theorem 2.6. �

Regularity subsets are shown in the following result.

Proposition 2.8. The following conditions are equivalent for R-modules M
and N :

(1) [M,N ] is regular.

(2) For every non-empty subset H of [M,N ] with H[N,M ]H ⊆ H implies
H[M,N ]H = H.

(3) For every non-empty subset H of [M,N ] with ENH ∩HEM ⊆ H implies
H[N,M ]H = H.

Proof. (1)⇒ (2) is clear.

(2)⇒ (3). Note that H[N,M ]H ⊆ ENH ∩HEM . Thus (3) is clear.

(3) ⇒ (1). For every f ∈ [M,N ], let H = ENf ∩ fEM . We have that
ENH ∩HEM ⊆ H and obtain that H[N,M ]H = H by (3). Thus f ∈ ENf ∩
∩fEM = H[N,M ]H ⊆ f [N,M ]f , that means f = fgf for some g ∈ [N,M ].

�

Lemma 2.9. Assume that u ∈ [M,N ] and v ∈ [N,M ]. Then:

(1) (u− uvu)(M) = u(M) ∩ (1− uv)(N) and N = u(M) + (1− uv)(N).

(2) Ker(u− uvu) = Ker(u)⊕Ker(1− vu).

Proof. (1). It is easy to see that u(M)+(1−uv)(N) =M and (u−uvu)(M) ≤
≤ u(M)∩ (1−uv)(N). On the other hand, for all m ∈ u(M)∩ (1−uv)(N), we
write m = u(x) = (1− uv)(n) with x ∈ M and n ∈ N . Then n = u(x+ v(n))
and hence x = (1− uv)(n) = (u− uvu)(x+ v(n)) ∈ (u− uvu)(M).

(2). We have Ker(u − uvu) ≤ Ker(u) + Ker(1 − uv) and Ker(u) ∩
∩Ker(1 − uv) = 0. On the other hand, for all m ∈ Ker(u − uvu),
m = vu(m)+(1−vu)(m) with vu(m) ∈ Ker(1−vu) and (1−vu)(m) ∈ Ker(u);
so Ker(u− uvu) = Ker(u) +Ker(1− vu). �

Let M and N be modules and let I be an EM -EN -submodule of [M,N ].
f ∈ [M,N ] is called I-regular if there exists a g ∈ [N,M ] such that fgf−f ∈ I.

Following [6], a submodule X of N is called semisupplement of Y in N if
N = X + Y and X ∩ Y � N .



A note on regular morphisms 257

Proposition 2.10. The following conditions are equivalent for u ∈ [M,N ]:

(1) u is ∇-regular.

(2) There exist v ∈ [N,M ] and a semisupplement X of u(M) in N such that
the following diagram is commutative:

M
u−→ N

↑ v ↓ πX

N
πX−→ N/X.

(3) There exists a semisupplement X of u(M) in N such that (1−uv)(N) ≤ X
for some v ∈ [N,M ].

Proof. (2)⇔ (3) is obvious.

(1) ⇒ (2) Assume that there exists v ∈ [N,M ] such that u − uvu ∈ ∇.
Let H = (u − uvu)(M) ≤ N . Then by Lemma 2.9, X = (1 − uv)(N) is a
semisupplement of u(M) in N . Since H ≤ X, uvu(m)+X = u(m)+X ∈ N/X
for all m ∈ M . It follows that (πXuv)(u(m)) = πX(u(m)). We have that
N = u(M) +X and obtain that πXuv = πX .

(3) ⇒ (1) By (3), there exists a semisupplement X of u(M) in N such
that (1 − uv)(N) ≤ X for some v ∈ [N,M ]. Then (u − uvu)(M) = u(M) ∩
∩(1 − uv)(N) ≤ u(M) ∩ X � N and so (u − uvu)(M) � N . It follows that
u− uvu ∈ ∇. �

Again according to [6], a submodule X of N is called semicomplement of Y
in M if X ⊕ Y ≤e M.

Proposition 2.11. The following conditions are equivalent for u ∈ [M,N ]:

(1) u is Δ-regular.

(2) There exists v ∈ [N,M ] and a semicomplement X of Ker(u) in M such
that the following diagram is commutative:

u(X)
i1−→ N

↓ (u|X)−1 ↓ v

X
i2−→ M.

(3) There exists a semicomplement X of Ker(u) in M such that X ≤
≤ Ker(1− vu) for some v ∈ [N,M ].
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Proof. (2)⇔ (3) is obvious.

(1) ⇒ (2). Assume that there exists v ∈ [N,M ] such that u − uvu ∈ Δ.
Let H = (u − uvu)(M) ≤ N . Then by Lemma 2.9, X = Ker(1 − vu) is a
semicomplement of Ker(u) in M . For all x ∈ X, we have vu(x) = x. It follows
that following diagram is commutative in (2).

(3) ⇒ (1). By (3), there exists a semicomplement X of Ker(u)) in M
such that X ≤ Ker(1 − vu) for some v ∈ [N,M ]. Then Ker(u) ⊕ X ≤
≤ Ker(u) ⊕ Ker(1 − vu) = Ker(u − uvu) and so Ker(u − uvu) ≤e M . It
follows that u− uvu ∈ Δ. �

We call an R-module N semisupplemented if every submodule of N has a
semisupplement.

Theorem 2.12. Let M be a finitely generated, self-projective R-module and
N ∈ Gen(M). If [M,N ]EM

is semisupplemented, then [M,N ]/∇[M,N ] is
semisimple.

Proof. Let Ā = A/∇[M,N ] be a submodule of [M,N ]/∇[M,N ]. Since
[M,N ] is semisupplemented, there exists B ≤ [M,N ] such that [M,N ] = A+B
and A ∩B � [M,N ]. For any f ∈ A ∩B, it is easy to see that fEM ≤ A ∩B
and fEM � [M,N ] because A∩B � [M,N ]. Now we show that f ∈ ∇[M,N ].
Let K be a submodule of N with M = Imf +K. By [12, 18.4],

[M,N ] = [M,f(M)] + [M,K].

It follows that fEM + [M,K] = [M,N ]. Since fEM � [M,N ], we can obtain
that [M,K] = [M,N ]. Now [M,K] = [M,N ] gives that N = [M,N ]M =
= [M,K]M ≤ K because of N ∈ Gen(M). Therefore N = K, i.e., Imf � N .
It follows that f ∈ ∇[M,N ]. �

Recall that;

(D2) For any submodule A of M for which M/A is isomorphic to a direct
summand of M , then A is a direct summand of M .

(GD2) For any submodule A of M for which M/A is isomorphic to M , then A
is a direct summand of M .

Lemma 2.13. Let M and N be R-modules. If N satisfies GD2, then

∇[M,N ] ⊆ J [M,N ].

Proof. See [9, Lemma 3.1]. �
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Corollary 2.14. Let M be a finitely generated, self-projective R-module and
N ∈ Gen(M) satisfies GD2. If [M,N ] is semisupplemented, then

[M,N ]/J [M,N ]

is semisimple.

Proof. It is clear from Theorem 2.12 and Lemma 2.13. �
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