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Abstract. We consider the functional equation

f
(
n2 +m2 + a+ b

)
= g(n2 + a) + g(m2 + b) for all n,m ∈ N,

where a, b are non-negative integers with a+ b > 0 and f, g are multiplica-
tive functions.

1. Introduction

In the following, let N and P be the set of positive integers and prime
numbers, respectively. We denote by M the set of all multiplicative functions
f such that f(1) = 1. Furthermore, we deal with the set B of non-negative
integers which can be represented as a sum of two squares of integers and with
S the set of all squares of positive integers. (m,n) denotes the greatest common
divisor of the integers m,n and (xp ) denotes the Legendre symbol.

We say that subsets A and B of N are additive uniqueness sets (AU-sets)
for M if there is exactly one element f ∈ M which satisfies

f(a+ b) = f(a) + f(b) for all a ∈ A and b ∈ B.
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In 1992, C. Spiro [11] showed that A = B = P are AU-sets for M. In [3]
written jointly with J.-M. De Koninck and I. Kátai we proved that A = S and
B = P are also AU-sets for M. For other results we refer to [1], [2], [4], [5],
[7], [8], [9] and [10]. For example, we proved the following two results:

Theorem A. ([9]) If a ∈ N and f ∈ M satisfy the conditions f(4)f(9) 	= 0
and

f
(
n2 +m2 + a

)
= f(n2 + a) + f(m2) for all n,m ∈ N,

then f (n) = n for all n ∈ N, (n, 2a) = 1.

Theorem B. ([7]) If a non-negative integer a and f ∈ M satisfy the
conditions f(2)f(5) 	= 0 and

f
(
n2 +m2 + a+ 1

)
= f(n2 + a) + f(m2 + 1) for all n,m ∈ N,

then f(n) = n for all n ∈ N, (n, 2) = 1.

Our purpose of this note is to prove the following

Theorem 1. Assume that non-negative integers a, b with a + b > 0 and
f, g ∈ M satisfy the condition

f
(
n2 +m2 + a+ b

)
= g(n2 + a) + g(m2 + b) for all n,m ∈ N.

If either
g(i2 + a) = i2 + a for i = 1, 2 . . . , 6

or
g(j2 + b) = j2 + b for j = 1, 2 . . . , 6,

then
g(k2 + a) = k2 + a, g(k2 + b) = k2 + b for all k ∈ N

and
f(n) = n for all n ∈ N, (n, 2(a+ b)) = 1.

For the case f = g, we have

Theorem 2. Assume that non-negative integers a, b with a + b > 0 and
f ∈ M satisfy the condition

f
(
n2 +m2 + a+ b

)
= f(n2 + a) + f(m2 + b) for all n,m ∈ N.

If either
f(i2 + a) = i2 + a for i = 1, 2 . . . , 6



Note on the identity function 237

or
f(j2 + b) = j2 + b for j = 1, 2 . . . , 6,

then
f(k2 + a) = k2 + a, f(k2 + b) = k2 + b for all k ∈ N

and
f(n) = n for all n ∈ N, (n, 2K) = 1,

where
K = K(a, b) := (a, b)

∏
p|a+b(

a
p

)
=

(
b
p

)
=−1

p.

2. Proof of Theorem 1

We shall use the following results:

Lemma 1. Let a and b be non-negative integers and F,G be arithmetical
functions, for which the condition

(1) F (n2 +m2 + a+ b) = G(n2 + a) +G(m2 + b)

is satisfied for all n,m ∈ N. For each j ∈ N let Sj := G(j2 + a). Then

(2) Sn+12 = Sn+9 + Sn+8 + Sn+7 − Sn+5 − Sn+4 − Sn+3 + Sn

holds for all n ∈ N and

(3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

S7 = 2S5 − S1

S8 = 2S5 + S4 − 2S1

S9 = S6 + 2S5 − S2 − S1

S10 = S6 + 3S5 − S3 − 2S1

S11 = S6 + 4S5 − S3 − S2 − 2S1

S12 = S6 + 4S5 + S4 − S2 − 4S1

Proof. The proof is similar to that in Lemma 1 of [9].

First we infer from (1) that

G(n2 + a) +G(m2 + b) = G(m2 + a) +G(n2 + b)
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for all n,m ∈ N, and so

G(n2 + b)−G(n2 + a) = G(1 + b)−G(1 + a) for all n ∈ N.

Let
D := G(1 + b)−G(1 + a).

Then, we infer from (1) that

(4) F (n2 +m2 + a+ b) = G(n2 + a) +G(m2 + a) +D (∀n,m ∈ N).

In the following, for each j ∈ N let Sj := G(j2 + a). It follows from (4)
that if positive integers k, l, u and v satisfying the condition

k2 + l2 = u2 + v2,

then
F (k2 + l2 + a+ b) = G(k2 + a) +G(l2 + a) +D =

= F (u2 + v2 + a+ b) = G(u2 + a) +G(v2 + a) +D,

which shows that

(5) k2 + l2 = u2 + v2 implies Sk + Sl = Su + Sv.

Since
(2n+ 1)2 + (n− 2)2 = (2n− 1)2 + (n+ 2)2

and
(2n+ 1)2 + (n− 7)2 = (2n− 5)2 + (n+ 5)2

hold for all n ∈ N, we get from (5) that

(6) S2n+1 + Sn−2 = S2n−1 + Sn+2

and
S2n+1 + Sn−7 = S2n−5 + Sn+5.

These imply that

Sn+5 − Sn+2 + Sn−2 − Sn−7 = S2n−1 − S2n−5 =

Sn+1 − Sn−3 + S2n−3 − S2n−5 = Sn+1 − Sn−3 + Sn − Sn−4,

which proves (2).

Now we prove (3). Indeed, by using (6), we have

S7 = S2.3+1 = 2S5 − S1,
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S9 = S2.4+1 = S7 + S6 − S2 = S6 + 2S5 − S2 − S1

and
S11 = S2.5+1 = S9 + S7 − S3 = S6 + 4S5 − S3 − S2 − 2S1.

Finally, by using (5) and the facts

82 + 12 = 72 + 42, 102 + 52 = 112 + 22 and 122 + 12 = 92 + 82,

we have
S8 = S7 + S4 − S1 = 2S5 + S4 − 2S1,

S10 = S11 + S2 − S5 = S6 + 3S5 − S3 − 2S1

and
S12 = S9 + S8 − S1 = S6 + 4S5 + S4 − S2 − 4S1,

which completes the proof (3). Lemma 1 is proved. �

Lemma 2. (K-H. Indlekofer and N. M. Timofeev [6].) Let C be non-zero
integer and A, B ∈ N such that (A, B) = 1, (AB, 2C) = 1. Then there exists
a positive constant θ = θ(A,B,C) such that

|{n ≤ x : A(n+ C) = B(m+ C), (A, n+ C) = 1, n, m ∈ B}| > θ
x

log x

holds for all x ≥ x0(A,B,C). Hence B is the set of non-negative integers which
can be represented as a sum of two squares of integers.

Proof of Theorem 1. Assume that non-negative integers a, b with a+ b > 0
and f, g ∈ M satisfy the condition

f(n2 +m2 + a+ b) = g(n2 + a) + g(m2 + b)

for all n, m ∈ N.

Case I: g(i2 + a) = i2 + a for i = 1, 2 · · · , 6.
Apply Lemma 1 with f = F and g = G, it is clear to check from (3) that

Si := g(i2+a) = i2+a is also true for all 1 ≤ i ≤ 12. Assume that Sn = n2+a
for all n ≤ N, N ≥ 12. Then we infer from (2) that

SN = [(N − 3)2 + a] + [(N − 4)2 + a] + [(N − 5)2 + a]−
− [(N − 7)2 + a]− [(N − 8)2 + a]− [(N − 9)2 + a] + [(N − 12)2 + a] =

= N2 + a.

Thus, we have proved that

(7) Sn = g(n2 + a) = n2 + a for all n ∈ N.
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Next, we shall prove that

(8) Sn = g(n2 + b) = n2 + b for all n ∈ N.

Since g(n2+ b) = g(n2+ a) +D, D = g(b+1)− g(a+1), we get from (7) that

(9) g(n2 + b) = (n2 + a) + [g(b+ 1)− g(a+ 1)] = n2 + [g(b+ 1)− 1] = n2 +L

for all n ∈ N, where L := g(b+ 1)− 1. From the relation

[n2 + b][(n+ 1)2 + b] = (n2 + n+ b)2 + b,

we infer from the multiplicativity of g that

g[n2 + b]g[(n+ 1)2 + b] = g[(n2 + n+ b)2 + b] if (2n+ 1, 4b+ 1) = 1.

This with (9) shows that

[n2 + L][(n+ 1)2 + L] = [(n2 + n+ b)2 + L] if (2n+ 1, 4b+ 1) = 1,

which gives

2n(n+ 1)L+ L2 = 2n(n+ 1)b+ b2 if (2n+ 1, 4b+ 1) = 1.

Since there are infinitely many n ∈ N such that (2n + 1, 4b + 1) = 1, the last
relation shows that L = b. Therefore (9) completes the proof of (8).

Let C := a+ b. We get from our assumptions and (7)–(8) that

(10) f (α+ C) = α+ C for all α ∈ B,
where B denotes the set of non-negative integers which can be represented as
a sum of two squares of integers.

By using Lemma 2, for each n ∈ N, (n, 2C) = 1 there are α, β ∈ B such
that

n(α+ C) = β + C, (n, α+ C) = 1,

which with (10) implies

f(n)(α+ C) = f(n)f(α+ C) = f [n(α+ C)] = f(β + C) = β + C = n(α+ C).

Therefore

(11) f(n) = n holds for all n ∈ N, (n, 2C) = 1.

Case II: g(j2 + b) = j2 + b for j = 1, 2 · · · , 6.
The proof is similar to Case I.

Theorem 1 is proved. �
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3. Proof of Theorem 2

Assume that non-negative integers a, b with a + b > 0 and f ∈ M satisfy
all conditions of Theorem 2. We infer from Theorem 1 that

(12) f(k2 + a) = k2 + a, f(k2 + b) = k2 + b for all k ∈ N

and

(13) f(n) = n for all n ∈ N, (n, 2(a+ b)) = 1.

It is clear that Theorem 2 will follow if we can prove the following:

(14) f(p�) = p� for p ∈ P, p � 2K = (a, b)
∏

p|a+b(
a
p

)
=

(
b
p

)
=−1

p.

Assume first that p ∈ P, p > 2, p|C, p � (a, b), � ∈ N and (ap ) = 1. We consider
the equation

(15) x2 + b = p�y.

Since (−b
p ) = (ap ) = 1, therefore (ab, p) = 1 and there are x�, y� ∈ N such that

x2
� + b = y�p

� and
(
p� − x�

)2
+ b =

(
p� − 2x� + y�

)
p�.

It is obvious that one of y� and p� − 2x� + y� is coprime to p. Assume that
x�, y� ∈ N satisfy (15) and (y�, p) = 1. Let x = p�t+x� and y = p�t2+2x�t+y�.
Then (x, y) is also a solution of (15).

Hence an application of the Chinese Remainder Theorem shows that there
is t0 ∈ N for which (

p�t20 + 2x�t0 + y�, 2(k + 1)
)
= 1.

Thus we have proved that

(x0, y0) = (p�t0 + x�, p
�t20 + 2x�t0 + y�)

is a solution of (15) with the condition (y0, 2(k + 1)) = 1.

Finally, we infer from (12) and (13) that

p�y0 = x2
0 + b = f

(
x2
0 + b

)
= f

(
p�y0

)
= f

(
p�
)
f(y0) = f

(
p�
)
y0,

which proves (14) for the case (ap ) = 1. Similarly, we prove (14) for the case

( bp ) = 1.

Theorem 2 is proved. �
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