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Abstract. We consider the functional equation
f(n2—|—m2+a+b) =g(n®+a)+g(m’>+0b) forall n,meN,

where a, b are non-negative integers with a +b > 0 and f, g are multiplica-
tive functions.

1. Introduction

In the following, let N and P be the set of positive integers and prime
numbers, respectively. We denote by M the set of all multiplicative functions
f such that f(1) = 1. Furthermore, we deal with the set B of non-negative
integers which can be represented as a sum of two squares of integers and with
S the set of all squares of positive integers. (m,n) denotes the greatest common
divisor of the integers m,n and (%) denotes the Legendre symbol.

We say that subsets A and B of N are additive uniqueness sets (AU-sets)
for M if there is exactly one element f € M which satisfies

fla+b)=f(a)+ f(b) forall a€ A and b€ B.
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In 1992, C. Spiro [11] showed that A = B = P are AU-sets for M. In [3]
written jointly with J.-M. De Koninck and I. Kétai we proved that A = S and
B = P are also AU-sets for M. For other results we refer to [1], 2], [4], [5],
[7], [8], [9] and [10]. For example, we proved the following two results:

Theorem A. ([9]) If a € N and f € M satisfy the conditions f(4)f(9) #0
and
f (n2 +m? +a) = f(n®*+a)+ f(m?) forall n,méeN,

then f (n) =n for alln € N, (n,2a) = 1.

Theorem B. ([7]) If a non-negative integer a and f € M satisfy the
conditions f(2)f(5) # 0 and

f(rP+m*+a+1)=f(n*+a)+ f(m*+1) forall n,meN,
then f(n) =n for alln €N, (n,2) = 1.
Our purpose of this note is to prove the following

Theorem 1.  Assume that non-negative integers a,b with a +b > 0 and
f, g € M satisfy the condition

f(n2+m2+a+b):g(n2+a)+g(m2+b) for all n,m € N.

If either
g(i*+a)=i*+a for i=1,2...,6
or
g(i2+b)=72+0b for j=1,2...,6,
then
g(k* +a) =k*+a, g(k* +b) =k*>+b forallk €N
and

f(n)=n forall neN, (n,2(a+0b)) =1

For the case f = g, we have

Theorem 2.  Assume that non-negative integers a,b with a +b > 0 and
f € M satisfy the condition

f(R*+m®+a+b)=f(n®>+a)+ f(m*>+b) forall n,meN.

If either
f2+a)=i*+a for i=1,2...,6
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or
fG2+b) =42 +0b for j=1,2...,6,
then
f* +a) =k +a, f(K>+0)=k*>+0b forallk €N
and
f(n)=n foral neN, (n,2K)=1,
where

K=K(ab) :=(b [ »

2. Proof of Theorem 1

We shall use the following results:

Lemma 1. Let a and b be non-negative integers and F,G be arithmetical
functions, for which the condition

(1) F(n?+m?+a+b) =Gn*+a) +G(m? +b)
is satisfied for all n,m € N. For each j € N let Sj := G(j* +a). Then
(2) Sn+12 = Sn+9 + Sn+8 + Sn+7 - Sn+5 - Sn+4 - Sn+3 + Sn

holds for all n € N and

Sy = 25;—5;

Sg = 255+ 54 —25;

Sog = 8g+255— 52— 51

S0 = Sg+3S5 —S53—25,

S11 =89 +4S5 —S3 — 5 — 25,
S12 = Sg+ 4S5+ 5S4 — S — 45,

Proof. The proof is similar to that in Lemma 1 of [9].
First we infer from (1) that

G(n* +a) + G(m? +b) = G(m® +a) + G(n* +b)
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for all n,m € N, and so
Gn?+b) —Gn?*+a)=G(1+b) —G(1+a) forall neN.

Let
D:=G(1+b)—G(1+a).

Then, we infer from (1) that
(4) F@*4+m?>+a+b)=Gn*+a)+Gm?*+a)+D (Yn,mecN).

In the following, for each j € N let S; := G(j? + a). It follows from (4)
that if positive integers k, [, u and v satisfying the condition

k2+12:U2+U2,
then
F*+1P+a+b)=Gk*+a)+G(*+a)+D =
=F?+v*+a+b) =Gu?+a)+Gw?+a)+ D,
which shows that
(5) k2412 =u?+0% implies Sp+ S =S, +S,.

Since
2n+ 12+ (n—2) = (2n—1)* + (n + 2)?

and
2n+1)* 4+ (n—7)2=2n 572+ (n+5)>

hold for all n € N, we get from (5) that
(6) Son+1 + Sn—2 = S2n—1 + Sni2

and
Son+1 + Sn—7 = Son—5 + Sn+s.

These imply that
Snts — Sny2 + Sno — Sn—7 = Sopn_1 — Son—s5 =

Snt1 — Sn—3 + Son—3 — Sopn_5 = Spt1 — Sn—z + Sp — Sn—4,
which proves (2).

Now we prove (3). Indeed, by using (6), we have

Sy = 82341 = 255 — 51,
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and
S11 = S2.541 = Sg + S7 — S3 = 8¢ + 455 — S3 — S — 251.

Finally, by using (5) and the facts

8 +12=724+4% 102°+52=112+2% and 122+1%2=92+48?,

we have
Ss =87+ 54— 51 =255+ 54 — 254,
S19 = S11 + 859 — S5 = S + 355 — S35 — 25,
and
S12 =89+ S — 51 =S¢ + 455 + Sy — 52 — 454,
which completes the proof (3). Lemma 1 is proved. |

Lemma 2. (K-H. Indlekofer and N. M. Timofeev [6].) Let C be non-zero
integer and A, B € N such that (A, B) =1, (AB, 2C) = 1. Then there exists
a positive constant = 0(A, B, C) such that

|M§x:Mn+@:BWH%m(&n+CﬁﬂﬂLmEBH>%£;
holds for all x > xo(A, B,C). Hence B is the set of non-negative integers which
can be represented as a sum of two squares of integers.

Proof of Theorem 1. Assume that non-negative integers a,b with a +b > 0
and f, g € M satisfy the condition

f(® +m? +a+0b) = g(n® +a) + g(m* +b)
for all n, m € N.

Case I: g(i®+a)=1i*>+a for i=1,2--- 6.
Apply Lemma 1 with f = F and g = G, it is clear to check from (3) that
S; := g(i>+a) = i>+a is also true for all 1 < i < 12. Assume that S,, = n?+a
for all n < N, N > 12. Then we infer from (2) that
Sy =[(N=3)%+a]+[(N—-4)2+d+[(N-5)+a]—
—[(N=7)2+a] —[(N=8)%*+a] - [(N =92 +a]+ [N -12)*> +a] =
=N? +a.

Thus, we have proved that

(7 S, =g(n*+a)=n*+a foral necN.
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Next, we shall prove that
() S, =gn?+b)=n*>+0b foral ncN.
Since g(n? +b) = g(n®>+a)+ D, D = g(b+1) — g(a+ 1), we get from (7) that
9) g(n®+b)=n*+a)+[gb+1)—gla+1)]=n’>+[gb+1)—1] =n?+L
for all n € N, where L := g(b+ 1) — 1. From the relation
[n? +0][(n + 1)* + 8] = (n® +n +)* + b,
we infer from the multiplicativity of g that
gn® +blg[(n+1)2 +b] =g[(n* +n+b)2+b] if 2n+1,4b+1) = 1.
This with (9) shows that
n® + L[(n+1)*+ L] =[n*+n+b)>+L] if (2n+1,4b+1) =1,
which gives
2n(n+ 1)L+ L>=2n(n+1)b+b> if 2n+1,4b4+1)=1.

Since there are infinitely many n € N such that (2n + 1,4b + 1) = 1, the last
relation shows that L = b. Therefore (9) completes the proof of (8).

Let C := a+b. We get from our assumptions and (7)—(8) that
(10) fla+C)=a+C foral ae€bB,

where B denotes the set of non-negative integers which can be represented as
a sum of two squares of integers.

By using Lemma 2, for each n € N, (n, 2C) = 1 there are o, 8 € B such
that
nla+C)=p+C, (n, a+C)=1,
which with (10) implies
fn)(a+C) = fn)fa+C) = flnla+C)] = f(B+C)=B+C=n(a+C).

Therefore

(11) f(n) =n holds for all neN, (n, 2C)=1.

Case II: g(j>+b)=j%2+0b for j=1,2--- 6.
The proof is similar to Case I.

Theorem 1 is proved. ]
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3. Proof of Theorem 2

Assume that non-negative integers a,b with a + b > 0 and f € M satisfy
all conditions of Theorem 2. We infer from Theorem 1 that

(12) FR2+a) =k +a, f(B2+b)=k>+b forall ke N
and
(13) f(n)=n forall neN, (n,2(a+0d))=1.

It is clear that Theorem 2 will follow if we can prove the following:

(14) f) =p" for peP, pt2K=(b) [[ »

(5)(2)—

Assume first that p € P, p > 2, p|C, pt (a,b), £ € Nand (%) = 1. We consider
the equation

(15) 22 +b=ply.

Since (*?b) = () = 1, therefore (ab,p) = 1 and there are z,,y, € N such that

:rz—l—b:yzpl and (pe—xg)2+b= (p€—2$z+yz)pe~

It is obvious that one of y, and p’ — 2z + y, is coprime to p. Assume that
z¢,yr € N satisfy (15) and (ye,p) = 1. Let = p‘t+x¢ and y = p“t? + 2zt +y,.
Then (z,y) is also a solution of (15).

Hence an application of the Chinese Remainder Theorem shows that there
is tg € N for which

(pétg + 2xto + yo, 2(k + 1)) =1.
Thus we have proved that
(z0,50) = (P"to + e, Pt + 2weto + ye)

is a solution of (15) with the condition (yo,2(k + 1)) = 1.

Finally, we infer from (12) and (13) that

Py =g +b=f (25 +b) = f (p'y0) = F (¢°) F(yo) = f (¥°) o,

which proves (14) for the case (f) = 1. Similarly, we prove (14) for the case
(2)=1.

Theorem 2 is proved. ]



242

B.M. Phong

References

Chung, P.V., Multiplicative functions satisfying the equation f(m? +
+n?) = f(m?) + f(n?), Math. Slovaca, 46 (1996), No. 2-3, 165-171.
Chung, P.V. and B.M. Phong, Additive uniqueness sets for multi-
plicative functions, Publ. Math. Debrecen, 55 (1999), 237-243.

De Koninck, J.-M., I. Katai and B.M. Phong, A new characteristic
of the identity function, Journal of Number Theory, 63 (1997), 325-338.
Dubickas, A. and P. Sarka, On multiplicative functions which are ad-
ditive on sums of primes, Aequat. Math. 86 (2013), 81-89.

Fang, J.-H., A characterisation of the identity function with equation
flp+q+r)= f(p)+ f(q) + f(r), Combinatorica, 31 (2011), 697-701.
Indlekofer, K.-H. and N.M. Timofeev, Shifted B-numbers as a set
of uniqueness for additive and multiplicative functions, Acta Arith. 116
(2005), 295-313.

Indlekofer, K.-H. and B.M. Phong, Additive uniqueness set for multi-
plicative functions, Annales Univ. Sci. Budapest. Sect. Comp., 26 (2006),
65-77.

Phong, B.M., A characterization of the identity function, Acta Acad.
Paedag. Agriensis (Eger), Sec. Matematicae, (1997), 1-9.

Phong, B.M., On sets characterizing the identity function, Ann. Univ.
Sci. Budapest., Sect. Comp., 24 (2004), 295-306.

Phong, B.M., A characterization of the identity function with functional
equations, Annales Univ. Sci. Budapest., Sect. Comp., 32 (2010), 247-252.
Spiro, C., Additive uniqueness set for arithmetic functions, J. Number
Theory, 42 (1992), 232-246.

B. M. Phong

Department of Computer Algebra

Faculty of Informatics

Eo6tvos Lorand University

H-1117 Budapest, Pdzmdny Péter sétény 1/C
Hungary

bui@compalg.inf.elte.hu





