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Abstract. In this paper, we construct a general class of real functions
whose members, for odd n, are nth-order Jensen-convex but not nth-order
Wright-convex. This implies, for odd n, that the class of nth-order Jensen-
convex functions is strictly bigger than that of nth-order Wright-convex
functions while the analogous problem for even n remains unsolved.

1. Introduction

In the theory of convex functions three basic classes of convexity properties
are traditionally considered. Given a nonempty real interval I, a function
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f : I → R is called convex, Wright-convex, and Jensen-convex if f satisfies the
following inequalities

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) (x, y ∈ I, t ∈ [0, 1]),

f(tx+ (1− t)y) + f((1− t)x+ ty) ≤ f(x) + f(y) (x, y ∈ I, t ∈ [0, 1]),

f
(
1
2x+

1
2y
) ≤ 1

2f(x) +
1
2f(y) (x, y ∈ I),

respectively. Obviously, convex functions are alwaysWright-convex andWright-
convex functions are always Jensen-convex. If f is continuous, more generally
f is upper bounded on a set of positive measure or on a set of second Baire
category then these convexity properties are equivalent to each other (cf. [4],
[9], [10]).

One can easily see that beyond convex functions, also additive functions
are Wright-convex. Thus discontinuous additive functions are Wright-convex
but not convex (because convex functions are continuous at interior points of
I). Hence the class of Wright-convex functions is strictly larger than the class
of convex functions. The exact connection between the notions of convexity
and Wright-convexity was established by C. T. Ng [6] in 1987 in the following
result.

Theorem A. Let I ⊆ R be an open interval and f : I → R. Then f is Wright-
convex if and only if there exists a convex function g : I → R and an additive
function A : R → R such that f = g +A|I .

In view of Rodé’s generalization of the Hahn–Banach Theorem [11], Jensen-
convex functions can also be described in terms of additive functions.

Theorem B. Let I ⊆ R be an open interval and f : I → R. Then f is Jensen-
convex if and only if there exists a family {Aγ}γ∈Γ of real additive functions
and a family of real constants {aγ}γ∈Γ such that f = supγ∈Γ(Aγ |I + aγ).

As a consequence of this theorem, we can easily obtain that |A| = max(A,−A)
is a Jensen-convex function provided that A is a real additive function. To
demonstrate that there exist Jensen-convex but not Wright-convex functions,
we show that |A| is Wright-convex if and only if A(x) = cx holds for some real
constant c. Indeed, if |A| is Wright-convex then we have that

|A|(tx+ (1− t)y) ≤ |A|(tx+ (1− t)y) + |A|((1− t)x+ ty)

≤ |A|(x) + |A|(y) (x, y ∈ R, t ∈ [0, 1]).

Therefore, A is bounded on any compact interval [x, y]. By the classical the-
orem of Bernstein and Doetsch [1], it follows that A is a continuous additive
function, i.e., A(x) = cx for some constant c.
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In what follows, we recall the higher-order generalizations of the above no-
tions and formulate analogous problems. Given a natural number n, a function
f : I → R is called nth-order convex (or simply n-convex), nth-order Wright-
convex (or simply n-Wright-convex), and nth-order Jensen-convex (or simply
n-Jensen-convex) (cf. [2], [3], [4], [8], [9]), if f satisfies the following inequalities

[x0, . . . , xn+1; f ] ≥ 0
(
x0, . . . , xn+1 ∈ I, xi 	= xj (i 	= j)

)
,(

Δh1
· · ·Δhn+1

f
)
(x) ≥ 0

(
h1, . . . , hn+1 ∈ R+, x ∈ I ∩ (I − (h1 + · · ·+ hn+1))

)
,(

Δn+1
h f

)
(x) ≥ 0

(
h ∈ R+, x ∈ I ∩ (I − (n+ 1)h)

)
,

respectively. Here Δh stands for the difference operator defined by
(
Δhf

)
(x) :=

:= f(x + h) − f(x) and [x0, . . . , xn+1; f ] denotes the (n + 1)th-order divided
difference of f defined for pairwise distinct elements x0, . . . , xn+1 ∈ I by

[x0, . . . , xn+1; f ] :=

n+1∑
i=0

f(xi)∏n+1
j=0
j 
=i

(xi − xj)
.

Obviously, n-Wright-convex functions are always n-Jensen-convex. On the
other hand, the implication that n-convex functions are always n-Wright-convex
easily follows from the identity(
Δh1

· · ·Δhn
f
)
(x) = h1 · · ·hn

∑
(i1,...,in)

[x, x+ hi1 , . . . , x+ hi1 + · · ·+ hin ; f ] ,

where the summation is taken over all permutations (i1, . . . , in) of the set
{1, . . . , n} (see [2]).

One can also see that, in the particular case n = 1, the notions of 1-
convexity, 1-Wright-convexity, and 1-Jensen-convexity are equivalent to that of
convexity, Wright-convexity, and Jensen-convexity, respectively. Indeed, tak-
ing x, y ∈ with x < y and t ∈]0, 1[, and, for n = 1, substituting x0 := 1,
x1 := tx+(1−t)y, x2 := y; h1 := t(y−x), h2 := (1−t)(y−x); and h := 1

2 (y−x)
in the inequalities defining the notions of 1-convexity, 1-Wright-convexity, and
1-Jensen-convexity above, these inequalities turn out to be equivalent to those
that define convexity, Wright-convexity, and Jensen-convexity, respectively.

It is now a natural problem is to characterize the classes n-convex, n-
Wright-convex, and n-Jensen-convex functions and to show that these classes
are different. The following characterization of n convexity is due to Popoviciu
([4, Thm. 15.8.5], [8], [9]).

Theorem C. Let n ≥ 2, I ⊆ R be an open interval and f : I → R. Then f is
n-convex if and only if f is (n−1) times continuously differentiable and f (n−1)

is convex.
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As a consequence of this theorem, it follows that polynomials of degree n
are always n-convex.

The description of n-Wright-convex functions was obtained by Maksa and
Páles in [5].

Theorem D. Let n ≥ 1, I ⊆ R be an open interval and f : I → R. Then
f is n-Wright-convex if and only if there exists a unique n-convex function
g : I → R such that f |Q∩I = g|Q∩I and f − g is a polynomial function of nth
degree, i.e., there exists A0 ∈ R and, for each k ∈ {1, . . . , n}, there exists a
symmetric k-additive function Ak : Rk → R such that

f(x) = g(x) +An(x, . . . , x) + · · ·+A1(x) +A0 (x ∈ I).

Thus, polynomial functions of nth degree are always n-Wright-convex. The-
orem D clearly implies that the class of n-Wright-convex functions is strictly
bigger than that of n-convex functions. What concerns n-Jensen-convex func-
tions, there is no known characterization of this class of functions. Further-
more, for even n it is not known if there exists an n-Jensen-convex function
which is not n-Wright-convex. For odd n, Nikodem, Rajba and Wa̧sowicz [7]
succeeded to construct a function which is n-Jensen-convex but not n-Wright-
convex. More precisely, they showed that, for some discontinuous additive
function A : R → R, the function f := |A|n is n-Jensen-convex but not n-
Wright-convex. In view of the main result of this paper, it will easily follow
that this conclusion remains valid for all discontinuous additive functions A.
The main tool of our approach is the use of the above decomposition theorem
of Maksa and Páles.

2. Main results

Given a natural number n, a function f : R → R is called nth-order posi-
tively Q-homogeneous if the identity

(2.1) f(rx) = |r|nf(x) (x ∈ R, r ∈ Q)

holds.

The main result of this paper is stated in the following theorem.

Theorem 1. Let n be an odd natural number and let f : R → R be a nonneg-
ative nth-order positively Q-homogeneous function. Then the following state-
ments are equivalent.
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(i) f is continuous;

(ii) f is of the form f(x) = c|x|n for some constant c ≥ 0;

(iii) f is nth-order convex;

(iv) f is nth-order Wright-convex.

Proof. Assume that f is continuous. Putting x = 1 in (2.1), we have that
f(r) = |r|nf(1) for all r ∈ Q. The continuity of f yields that f(x) = |x|nf(1)
for all x ∈ R. Thus (ii) holds with c = f(1) ≥ 0.

Assume that (ii) holds. If n = 1, then f(x) = c|x|, hence f is obviously
convex, i.e., 1-convex. Now assume that n is odd and n > 1. Then n ≥ 3.
By Popoviciu’s characterization theorem of higher-order convexity (cf. [9], [4,
Thm. 15.8.5]), in order to prove that f is nth-order convex, it is equivalent
to showing that f is (n − 1) times continuously differentiable and f (n−1) is
convex. Using (ii) and the oddness of n, a simple computation yields that
f (n−1)(x) = cn!|x|. Hence f is indeed (n− 1) times continuously differentiable
and f (n−1) is convex resulting that f is nth-order convex.

If f is nth-order convex, then f is also nth-order Wright-convex (cf. [2]),
i.e., (iii) trivially implies (iv).

Finally, assume that f is nth-order Wright-convex. Then, by Theorem D,
there exists a continuous nth-order convex function g : R → R and an nth
degree polynomial function P : R → R such that

(2.2) f(x) = g(x) + P (x) (x ∈ R) and P (r) = 0 (r ∈ Q).

The polynomiality of P results that it is of the form

(2.3) P (x) = An(x, . . . , x) + · · ·+A1(x) +A0 (x ∈ R),

where, for k ∈ {1, . . . , n}, Ak : Rk → R is an i-additive function and A0 is a
constant. Substituting x = r ∈ Q, into the first equality in (2.2), it follows that

g(r) = f(r)− P (r) = f(r) = |r|nf(1) (r ∈ Q).

Thus, by the continuity of g, we get that g(x) = |x|nf(1) for all x ∈ R.
Combining this with (2.2) and (2.3), we obtain that

f(x) = |x|nf(1) +An(x, . . . , x) + · · ·+A1(x) +A0 (x ∈ R).

Replacing x by rx and using the kth-order Q-homogeneity of k-additive func-
tions, we get

|r|nf(x) = |r|n|x|nf(1) + rnAn(x, . . . , x) + · · ·+ rA1(x) +A0 (x ∈ R, r ∈ Q),
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which, by a continuity argument, yields that

|y|nf(x) = |y|n|x|nf(1) + ynAn(x, . . . , x) + · · ·+ yA1(x) +A0 (x, y ∈ R).

For positive y, both sides of this equation are polynomials of y. By comparing
the coefficients of yk, it follows that Ak = 0 for k ∈ {0, 1, . . . , n− 1}. Thus we
get

|y|nf(x) = |y|n|x|nf(1) + ynAn(x, . . . , x) (x, y ∈ R).

Substituting y = 1 and y = −1, by the oddness of n, it follows that
f(x) = |x|nf(1) +An(x, . . . , x) and

−f(x) = −|x|nf(1) +An(x, . . . , x) (x ∈ R).

Hence An is also identically zero and we get

f(x) = |x|nf(1) (x ∈ R),

which shows the continuity of f , i.e., the validity of (i). �

Corollary. Let n be an odd natural number and let A1, . . . , Ak : Rn → R be
symmetric n-additive functions. Then the function f : R → R defined by

(2.4) f(x) := |A1(x, . . . , x)|+ · · ·+ |Ak(x, . . . , x)| (x ∈ R)

is nth-order Wright-convex if and only if A1, . . . , Ak are continuous.

Proof. If the symmetric n-additive functions A1, . . . , Ak are continuous, then
they are of the form

Ai(x1, . . . , xn) = cix1 · · ·xn (x1, . . . , xn ∈ R)

for some constants ci ∈ R (see [4, Thm. 13.4.3]). Therefore, for all x ∈ R we
have that f(x) = (|c1|+ · · ·+ |ck|)|x|n. Obviously f is a nonnegative nth-order
positively Q-homogeneous which satisfies condition (ii) of the Theorem 1 with
c = |c1|+ · · ·+ |ck|. Thus f is also nth-order Wright-convex.

To prove the converse, let A1, . . . , Ak : Rn → R be symmetric n-additive
functions and let f be defined by (2.4). By the Q-homogeneity property of
n-additive functions, we immediately have that f is a nonnegative nth-order
positively Q-homogeneous. If f is nth-order Wright-convex, then, in view of
the equivalence of conditions (iv) and (i) of the Theorem 1, it follows that f is
continuous. Then it is continuous at the origin and hence for ε = 1 there exists
δ > 0 such that f(x) < ε whenever |x| < δ. This implies that |Ak(x, . . . , x)| < ε
for |x| < δ and k ∈ {1, . . . , n}. Hence, for all k ∈ {1, . . . , n}, the nth degree
polynomial function x 
→ Ak(x, . . . , x) is bounded on the open interval ]− δ, δ[.
This yields that A1, . . . , An are continuous. �
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By taking a discontinuous additive function A in the subsequent theorem,
we obtain that the class of nth-order Jensen-convex functions is strictly bigger
than the class of nth-order Wright-convex functions provided that n is an odd
natural number. The analogous statement for even n is conjectured and has
been an open problem.

Theorem 2. Let A : R → R be an additive function and n be an odd natural
number. Then the function f := |A|n is nth-order Jensen-convex. The function
f is nth-order Wright-convex if and only if A is continuous.

Proof. The function g(y) = |y|n is (n−1) times continuously differentiable on
R, and by the oddness of n, we have that its (n−1) derivative g(n−1)(y) = n!|y|
is convex. Thus, by Popoviciu’s characterization theorem of nth-order convex-
ity (cf. [9], [4, Thm. 15.8.5]), it follows that g is nth-order convex. Therefore,
it is also nth-order Jensen-convex. This yields that, for all y ∈ R and h ≥ 0,
we have that

(2.5) 0 ≤ (
Δn+1

h g
)
(y) =

n+1∑
k=0

(−1)n+1−k

(
n+ 1

k

)
g(y + kh)

By the evenness of n+ 1 we obtain the identity(
Δn+1
−h g

)
(y) = (−1)n+1

(
Δn+1

h g
)
(y − (n+ 1)h) =

(
Δn+1

h g
)
(y − (n+ 1)h),

which shows that (2.5) is also valid for all y ∈ R and h ≤ 0.

Now observe that f = g ◦A, and hence, for x, u ∈ R,

(
Δn+1

u f
)
(x) =

n+1∑
k=0

(−1)n+1−k

(
n+ 1

k

)
f(x+ ku) =

=

n+1∑
k=0

(−1)n+1−k

(
n+ 1

k

)
g
(
A(x+ ku)

)
=

=

n+1∑
k=0

(−1)n+1−k

(
n+ 1

k

)
g
(
A(x) + kA(u)

)
=

=
(
Δn+1

A(u)g
)(
A(x)

) ≥ 0,

which completes the proof of the nth-order Jensen-convexity of f .

Finally, assume that f is nth-order Wright-convex. Then, with the n-
additive function A1(x1, . . . , xn) := A(x1) · · ·A(xn) we have that f is of the
form (2.4) (where k = 1), hence, by the Corollary, f is nth-order Wright-convex
if and only if the n-additive function A1 is continuous. However, this can only
happen if the additive function A is continuous.
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References

[1] Bernstein, F. and G. Doetsch, Zur Theorie der konvexen Funktionen,
Math. Ann. 76 (1915), 514–526.
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