ON A DISTRIBUTION PROPERTY OF THE RESIDUAL ORDER OF $a \pmod{pq}$

Leo Murata (Tokyo, Japan)

Koji Chinen (Higashi-Osaka, Japan)

Dedicated to Professors Zoltán Daróczy and Imre Kátai on their 75th anniversary

Communicated by Pavel Varbanets (Received June 04, 2013; accepted June 24, 2013)

Abstract. In the authors' previous papers, for a positive integer a and a prime number p such that (a, p) = 1, the distribution of the residual orders $D_a(p)$ of $a \pmod{p}$ was considered. Under the generalized Riemann hypothesis (GRH), the authors determined the natural density of the primes p satisfying $D_a(p) \equiv l \pmod{k}$ when k is a prime power, and proved the existence of an algorithm for computing the density when k is a composite integer other than prime powers. In this paper, we consider the distribution of the residual orders $D_a(pq)$ of $a \pmod{pq}$ where p and q are distinct primes. Under GRH and some slight restriction to the base a, we determine the natural density of the prime pairs (p, q) satisfying $D_a(pq) \equiv l \pmod{4}$ for l = 0, 1, 2, 3.

1. Introduction

Let p be an odd prime number and $\mathbf{Z}/p\mathbf{Z}^{\times}$ be the multiplicative group of all invertible residue classes modulo p. We define

$$D_a(p) := \left(\begin{array}{c} \text{the multiplicative order of the residue} \\ \text{class } a \pmod{p} \text{ in the group } \mathbf{Z}/p\mathbf{Z}^{\times} \end{array} \right)$$

Key words and phrases: Residual order, Artin's conjecture for primitive root. 2010 Mathematics Subject Classification: 11N05, 11N25, 11R18. https://doi.org/10.71352/ac.41.187

In the papers [1] – [3] and [7], we are interested in a distribution property of $D_a(p)$ with p varies and introduced the set, for an arbitrary residue class $l \pmod{k}$,

 $Q_a(x;k,l) := \{ p \le x ; p : \text{ prime, } D_a(p) \equiv l \pmod{k} \}.$

We studied about the existence of the natural density of $Q_a(x; k, l)$:

$$\Delta_a(k,l) = \lim_{x \to \infty} \frac{1}{\pi(x)} \sharp Q_a(x;k,l),$$

where $\pi(x)$ is the number of primes up to x. We proved that

1. We can prove the existence of the density $\Delta_a(k, l)$, for any residue class $l \pmod{k}$,

2. and in this proof, except for some special residue classes, we need Generalized Riemann Hypothesis.

3. We can calculate the exact value of the density $\Delta_a(k, l)$.

Our typical example is:

Theorem 1.1. Let a be a natural number and we decompose a into $a = a_0^2 a_1$, a_1 is square-free. If a_1 is odd, then we have

(1.1)
$$\Delta_a(4,0) = \Delta_a(4,2) = \frac{1}{3},$$

(1.2)
$$\Delta_a(4,1) = \Delta_a(4,3) = \frac{1}{6},$$

where we obtain (1.1) unconditionally and (1.2) under GRH (see [1] and [7] for details).

Here GRH means

Hypothesis 1.2. (Generalized Riemann Hypothesis) For any positive integers k and m, we assume that the Riemann Hypothesis holds for the Dedekind zeta function $\zeta_K(s)$ for the field $K = \mathbf{Q}(\zeta_m, a^{1/k})$ where $\zeta_m = \exp(2\pi i/m)$.

Now let p and q be two distinct prime numbers and let us consider the same distribution property of the residue class of a, but in the multiplicative group $\mathbf{Z}/pq\mathbf{Z}^{\times}$. The group $\mathbf{Z}/p\mathbf{Z}^{\times}$ is a simple cyclic group, but $\mathbf{Z}/pq\mathbf{Z}^{\times}$ is no more cyclic.

We are interested in the order of the residue class itself, namely we define

$$D_a(pq) := \begin{pmatrix} \text{the multiplicative order of the residue} \\ \text{class } a \pmod{pq} \text{ in the group } \mathbf{Z}/pq\mathbf{Z}^{\times} \end{pmatrix} = \sharp \langle a \pmod{pq} \rangle.$$

and

$$R_a(x;k,l) := \{(p,q) ; p,q : \text{ odd primes}, p \le x, q \le x, D_a(pq) \equiv l \pmod{k} \}.$$

The purpose of the paper is

- 1. to prove the existence of the natural density $\Gamma_a(4, l)$ for l = 0, 1, 2, 3,
- 2. and to calculate the explicit value of $\Gamma_a(4, l)$,

where the natural density means

$$\Gamma_a(k,l) := \lim_{x \to \infty} \pi(x)^{-2} \sharp R_a(x;k,l).$$

Our main theorem will be

Theorem 1.3. Let a be a natural number and we decompose a into $a = a_0^2 a_1$, a_1 is square-free. If a_1 is odd, then we have

- (I) the natural densities $\Gamma_a(4, l)$, l = 0, 1, 2, 3 exist
- (II) and the standard distribution is

$$(\Gamma_a(4,0), \ \Gamma_a(4,1), \ \Gamma_a(4,2), \ \Gamma_a(4,3)) = \left(\frac{5}{9}, \ \frac{1}{18}, \ \frac{1}{3}, \ \frac{1}{18}\right).$$

Moreover, for the existence of $\Gamma_a(4,1)$ and $\Gamma_a(4,3)$, we need GRH, whereas the existence of $\Gamma_a(4,0)$ and $\Gamma_a(4,2)$ is unconditional.

This theorem shows that, despite the change of group structure, as to the multiplicative order of a residue class, we can prove a similar result to Theorem 1.1. It is quite likely that there exists the density $\Gamma_a(k,l)$ for any residue class $l \pmod{k}$, but we cannot verify this so far.

As we describe in the next section, we can prove unconditionally from Theorem 1.1 that,

$$\Gamma_a(4,0) = \frac{5}{9}, \quad \Gamma_a(4,2) = \frac{1}{3}$$

So the main interest of Theorem 1.3 is the equi-distribution property

$$\Gamma_a(4,1) = \Gamma_a(4,3) = \frac{1}{18}$$

and to prove this we need GRH and difficult considerations so far.

Throughout this paper, we use the following notations: $\pi(x; k, l)$ is the number of prime numbers up to x which are congruent to $l \mod k$, $\varphi(n)$ means Euler's totient function, $\mu(n)$ is the Möbius function, $\omega(n)$ means the number of distinct prime factors of n, $\langle a_1, a_2, \cdots, a_i \rangle$ means the least common multiple of integers a_1, a_2, \cdots, a_i and (a, b) is the largest common divisor of integers a and b.

2. $R_a(x;k,l)$ with l=0

In this section, we study the set

 $R_a(x;k,0) = \{(p,q) ; p,q : \text{ odd primes}, p \le x, q \le x, D_a(pq) \equiv 0 \pmod{k} \}.$

The next lemma is useful in decomposing our problem about $(\mod pq)$ into problems about $(\mod p)$ and $(\mod q)$ (we omit the proof).

Lemma 2.1. We have

(2.1)
$$D_a(pq) = \langle D_a(p), D_a(q) \rangle$$

If $D_a(pq) \equiv 0 \pmod{4}$ then Lemma 2.1 shows that one of the $D_a(p)$ and $D_a(q)$ is congruent to 0 modulo 4. This means

$$\#R_a(x;4,0) = 2 \#\{p \le x; D_a(p) \equiv 0 \pmod{4}\} - - \#\{p,q \le x; D_a(p) \equiv 0 \pmod{4}, \ D_a(q) \equiv 0 \pmod{4}\}.$$

Then Theorem 1.1 gives $\Gamma_a(4,0) = 5/9$ directly, similarly $\Gamma_a(2,0) = 8/9$, and $\Gamma_a(4,2) = 1/3$.

Remark. We can prove a little more general result. Here we take a "base" $a \in \mathbf{N}$. We put

 $a = a_0^2 \cdot a_1, \quad a_1$: square free

and let r be a prime number. When a_1 is odd,

$$\Gamma_a(r^h, 0) = \begin{cases} \frac{1}{(r^2 - 1)^2} r(2r^2 - r - 2), & \text{if } h = 1, \\ \frac{2r^h - 2r^{h-2} - 1}{r^{2(h-2)}(r^2 - 1)^2}, & \text{if } h \ge 2. \end{cases}$$

For example, for the same a, $\Gamma_a(2,0) = 8/9$, $\Gamma_a(3,0) = 39/64$.

3. $R_a(x; 4, l)$, the case of l = 1, 3 (I)

As we described in the previous section, we can calculate $\#R_a(x;2,0)$, $\#R_a(x;4,0)$ and consequently $\#R_a(x;4,2)$. But the separation of $R_a(x;2,1)$ into $R_a(x;4,1)$ and $R_a(x;4,3)$ is rather difficult. We begin with reducing $\#R_a(x;4,1)$ to an infinite sum of $\#Q_a(x;k,l)$'s. The purpose of this section is the following formulas (3.1) and (3.2).

Proposition 3.1. We have

$$\sharp R_{a}(x;4,1) = \sharp Q_{a}(x;4,1)^{2} + \sharp Q_{a}(x;4,3)^{2} + \\
+ \sum_{\substack{D \leq x \\ D \equiv 1 \pmod{4} \\ D_{0} = 1, D_{1} > 1}} 2^{\omega(D_{1})-1} \left(\sharp Q_{a}(x;4D,D) - \sharp Q_{a}(x;4D,3D)\right)^{2} - \\
(3.1) - \sum_{\substack{D < x \\ D \equiv 3 \pmod{4} \\ D_{0} = 1, D_{1} > 1}} 2^{\omega(D_{1})-1} \left(\sharp Q_{a}(x;4D,D) - \sharp Q_{a}(x;4D,3D)\right)^{2},$$

where $D = D_0D_1$, all the prime factors of D_0 are congruent to 1 mod 4 and all the prime factors of D_1 are congruent to 3 mod 4. We have similarly

$$\sharp R_{a}(x;4,3) = 2 \cdot \sharp Q_{a}(x;4,1) \sharp Q_{a}(x;4,3) - - \sum_{\substack{D < x \\ D \equiv 1 \pmod{4} \\ D_{0}=1,D_{1}>1}} 2^{\omega(D_{1})-1} \left(\sharp Q_{a}(x;4D,D) - \sharp Q_{a}(x;4D,3D) \right)^{2} + \left(3.2 \right) + \sum_{\substack{D < x \\ D \equiv 3 \pmod{4} \\ D_{0}=1,D_{1}>1}} 2^{\omega(D_{1})-1} \left(\sharp Q_{a}(x;4D,D) - \sharp Q_{a}(x;4D,3D) \right)^{2} .$$

Proof. Here we prove only (3.1). By a simple equality

$$D_a(pq) = D_a(p) \frac{D_a(q)}{(D_a(p), D_a(q))},$$

we divide the condition

$$D_a(pq) \equiv 1 \pmod{4}$$

into two cases:

(I)
$$D_a(p) \equiv 1 \pmod{4}$$
 and $\frac{D_a(q)}{(D_a(p), D_a(q))} \equiv 1 \pmod{4}$.

(II)
$$D_a(p) \equiv 3 \pmod{4}$$
 and $\frac{D_a(q)}{(D_a(p), D_a(q))} \equiv 3 \pmod{4}$.

First we consider (I).

(3.3)
$$\sum_{\substack{p,q \le x \\ D_a(pq) \equiv 1 \pmod{4} \\ D_a(p) \equiv 1 \pmod{4}}} 1 = \sum_{\substack{p \le x \\ D_a(p) \equiv 1 \pmod{4}}} \sum_{\substack{p \le x \\ D_a(p) \equiv 1 \pmod{4}}} \sum_{\substack{q \le x \\ \frac{D_a(q)}{(D_a(p), D_a(q))} \equiv 1 \pmod{4}}} 1.$$

For a prime number p with $D_a(p) \equiv 1 \pmod{4}$, we calculate the inner sum of (3.3). Let us introduce the number

$$Q = (D_a(p), D_a(q)).$$

Then

$$\begin{array}{lll} \text{(the inner sum of (3.3))} & = & \sum_{Q|D_a(p)} \sum_{\substack{q \leq x \\ Q = (D_a(p), D_a(q)) \\ D_a(q)/Q \equiv 1 \pmod{4}}} 1 = \\ & = & \sum_{Q|D_a(p)} \sum_{Q'|\frac{D_a(p)}{Q}} \mu(Q') \sum_{\substack{q \leq x \\ QQ'|D_a(q) \\ D_a(q)/Q \equiv 1 \pmod{4}}} 1. \end{array}$$

Since all the numbers $D_a(p)$, Q and Q' are odd,

$$(3.4) D_a(q)/Q \equiv 1 \pmod{4} \Leftrightarrow D_a(q) \equiv Q \pmod{4Q}.$$

We introduce the number $\overline{Q'}$ by

(3.5)
$$\overline{Q'} = \begin{cases} 1, & \text{if } Q' \equiv 1, \pmod{4}, \\ 3, & \text{if } Q' \equiv 3, \pmod{4}. \end{cases}$$

Then

$$\begin{cases} D_a(q) \equiv Q \pmod{4Q} \\ D_a(q) \equiv 0 \pmod{QQ'} \end{cases} \Leftrightarrow D_a(q) \equiv \overline{Q'} \cdot QQ' \pmod{4QQ'}.$$

Consequently,

(the inner sum of (3.3)) =
$$\sum_{Q|D_a(p)} \sum_{Q'|\frac{D_a(p)}{Q}} \mu(Q') \sum_{\substack{q \le x \\ D_a(q) \equiv \overline{Q'}QQ' \pmod{4QQ'}}} 1.$$

Then (3.3) turns into:

We put QQ' = D, then D is odd and consequently,

$$(3.6) \qquad (3.3) = \sum_{\substack{D < x \\ D: \text{odd}}} \sum_{\substack{Q' \mid D \\ D_i \text{odd}}} \sum_{\substack{p \leq x \\ D_a(p) \equiv 1 \pmod{4} \\ D_a(p) \equiv 0 \pmod{D}}} \sum_{\substack{Q \leq x \\ D_a(q) \equiv \overline{Q'D} \pmod{4D}}} 1.$$

When $D \equiv 1 \pmod{4}$, then

$$\begin{cases} D_a(p) \equiv 1 \pmod{4} \\ D_a(p) \equiv 0 \pmod{D} \end{cases} \Leftrightarrow D_a(p) \equiv D \pmod{4D}, \end{cases}$$

and when $D \equiv 3 \pmod{4}$, then

$$\begin{cases} D_a(p) \equiv 1 \pmod{4} \\ D_a(p) \equiv 0 \pmod{D} \end{cases} \Leftrightarrow D_a(p) \equiv 3D \pmod{4D}. \end{cases}$$

Therefore

$$(3.6) = \sum_{\substack{D < x \\ D \equiv 1 \pmod{4}}} \sum_{\substack{Q' \mid D}} \mu(Q') \sharp Q_a(x; 4D, D) \cdot \sharp Q_a(x; 4D, \overline{Q'}D) + \\ + \sum_{\substack{D \equiv 3 \pmod{4}}} \sum_{\substack{Q' \mid D}} \mu(Q') \sharp Q_a(x; 4D, 3D) \cdot \sharp Q_a(x; 4D, \overline{Q'}D).$$

We can obtain a similar formula for the case (II) on p.191, then we get an

important formula:

$$\sum_{\substack{p,q \leq x \\ D_a(pq) \equiv 1 \pmod{4}}} 1 = \sum_{\substack{D < x \\ D \equiv 1 \pmod{4}}} \sum_{\substack{Q' \mid D \\ Q' \mid D}} \mu(Q') \sharp Q_a(x; 4D, D) \sharp Q_a(x; 4D, \overline{Q'}D) + \sum_{\substack{D \leq x \\ D \equiv 3 \pmod{4}}} \sum_{\substack{Q' \mid D \\ Q' \mid D}} \mu(Q') \sharp Q_a(x; 4D, 3D) \sharp Q_a(x; 4D, \overline{Q'}D) + \sum_{\substack{D \leq x \\ D \equiv 1 \pmod{4}}} \sum_{\substack{Q' \mid D \\ Q' \mid D}} \mu(Q') \sharp Q_a(x; 4D, 3D) \sharp Q_a(x; 4D, \tilde{Q'}D) + \sum_{\substack{D \leq x \\ D \equiv 1 \pmod{4}}} \sum_{\substack{Q' \mid D \\ Q' \mid D}} \mu(Q') \sharp Q_a(x; 4D, D) \sharp Q_a(x; 4D, \tilde{Q'}D),$$
(3.7)

where

$$\overline{Q'} = \begin{cases} 1, & \text{if } Q' \equiv 1 \pmod{4}, \\ 3, & \text{if } Q' \equiv 3 \pmod{4}, \\ \tilde{Q'} = \begin{cases} 3, & \text{if } Q' \equiv 1 \pmod{4}, \\ 1, & \text{if } Q' \equiv 3 \pmod{4}. \end{cases}$$

Here we need a lemma on arithmetical functions (we omit the proof):

Lemma 3.2. Let D be an odd natural number and

$$D = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t} q_1^{f_1} q_2^{f_2} \cdots q_s^{f_s}$$

where p_i 's and q_j 's are distinct primes with $p_i \equiv 1 \pmod{4}$ and $q_j \equiv 3 \pmod{4}$, be the primary decomposition of D ($e_i \ge 1$, $f_j \ge 1$). We define

$$D_0 = \begin{cases} 1, & \text{if } t = 0, \\ p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}, & \text{if } t \ge 1, \end{cases}$$

$$D_1 = \begin{cases} 1, & \text{if } s = 0, \\ q_1^{f_1} q_2^{f_2} \cdots q_s^{f_s}, & \text{if } s \ge 1 \end{cases}$$

and $s = \omega(D_1)$. Then we have

$$\sum_{\substack{Q'|D\\Q'\equiv 1\pmod{4}}} \mu(Q') = \begin{cases} 1, & \text{if } D_0 = D_1 = 1, \\ 2^{s-1}, & \text{if } D_0 = 1, D_1 > 1, \\ 0, & \text{if } D_0 > 1, \end{cases}$$
$$\sum_{\substack{Q'|D\\Q'\equiv 3\pmod{4}}} \mu(Q') = \begin{cases} -2^{s-1}, & \text{if } D_0 = 1, D_1 > 1, \\ 0, & \text{if } D_0 > 1. \end{cases}$$

Taking Lemma 3.2 into account, we can derive Proposition 3.1 from (3.7) easily.

4. $R_a(x; 4, l)$, the case of l = 1, 3 (II) — evaluation of $\sharp Q_a(x; 4D, D)$ and $\sharp Q_a(x; 4D, 3D)$

Proposition 3.1 shows that, in order to calculate the natural density $\Gamma_a(4, l)$ of $R_a(x; 4, l)$, we need to study $\sharp Q_a(4D, lD)$, l = 1, 3. These two calculations proceed in parallel. Here we need some new notations (*cf.* [1] – [3] and [7], we make use of the same notations as those papers). For $\alpha \in \mathbf{N}$, let $\langle \alpha \pmod{p} \rangle$ denote the cyclic subgroup generated by $\alpha \pmod{p}$ in $\mathbf{Z}/p\mathbf{Z}^{\times}$ and $[\mathbf{Z}/p\mathbf{Z}^{\times} :$ $\langle \alpha \pmod{p} \rangle$] denote its index. Let

$$N_{\alpha}(x; n, s \pmod{t}) = \{ p \le x; p : \text{ prime, } p \equiv s \pmod{t}, \\ [\mathbf{Z}/p\mathbf{Z}^{\times} : \langle \alpha \pmod{p} \rangle] = n \}.$$

Our result is as follows and here we describe the proof only for $\sharp Q_a(x; 4D, D)$.

Proposition 4.1. We have

(4.1)
$$Q_a(x; 4D, D) = \bigcup_{f \ge 1} \bigcup_{k: \text{odd}} N_a(x; k \cdot 2^f, 1 + kD \cdot 2^f \pmod{kD \cdot 2^{f+2}}),$$

(4.2)
$$Q_a(x; 4D, 3D) = \bigcup_{f \ge 1} \bigcup_{k: \text{odd}} N_a(x; k \cdot 2^f, 1 + 3kD \cdot 2^f \pmod{kD \cdot 2^{f+2}})$$

and clearly these are disjoint unions.

Proof. We start from a simple facts:

(4.3)
$$Q_a(x;4D,D) = Q_{a^D}(x;4,1) \cap Q_a(x;D,0),$$
$$Q_a(x;4D,3D) = Q_{a^D}(x;4,3) \cap Q_a(x;D,0).$$

Now we refer to Lemma 3.1 (iii) of [1]. This result gives

$$\begin{array}{lll} Q_{a^{D}}(x,4,1) & = & \bigcup_{f \ge 1} \bigcup_{l \ge 0} N_{a^{D}}(x;(4l+1) \cdot 2^{f},1+2^{f} \pmod{2^{f+2}}) \\ & \bigcup_{f \ge 1} \bigcup_{l \ge 0} N_{a^{D}}(x;(4l+3) \cdot 2^{f},1+3 \cdot 2^{f} \pmod{2^{f+2}}). \end{array}$$

Then, from (4.3), we have

$$\begin{aligned} Q_a(x, 4D, D) &= \bigcup_{f \ge 1} \bigcup_{l \ge 0} N_{a^D}(x; (4l+1) \cdot 2^f, 1+2^f \pmod{2^{f+2}}) \cap Q_a(x; D, 0) \\ (4.4) &\bigcup \bigcup_{f \ge 1} \bigcup_{l \ge 0} N_{a^D}(x; (4l+3) \cdot 2^f, 1+3 \cdot 2^f \pmod{2^{f+2}}) \cap Q_a(x; D, 0). \end{aligned}$$

We remark here that, when $D|D_a(p)$, then

(4.5)
$$I_{a^D}(p) = D \cdot I_a(p),$$

where $I_{\alpha}(p)$ denote the index, i.e.

$$I_{\alpha}(p) = \frac{p-1}{D_{\alpha}(p)}.$$

Then we can prove

(4.6)
$$N_{a^{D}}(x; (4l+1) \cdot 2^{f}, 1+2^{f} \pmod{2^{f+2}}) \cap Q_{a}(x; D, 0) = N_{a}(x; k \cdot 2^{f}, 1+2^{f} \pmod{2^{f+2}}) \cap Q_{a}(x; D, 0),$$

where k is the number defined by

$$k = \frac{4l+1}{D} \in \mathbf{N}$$

(we omit the proof).

We remark that by the fact (4.6), we succeed in unifying the sub-index into "a".

Now we are in a position to prove (4.1), and for this purpose it is sufficient to prove

(4.7)
$$N_a(x; k \cdot 2^f, 1 + 2^f \pmod{2^{f+2}}) \cap Q_a(x; D, 0) = N_a(x; k \cdot 2^f, 1 + kD \cdot 2^f \pmod{kD \cdot 2^{f+2}}).$$

Proof of (4.7). Let

$$p \in N_a(x; k \cdot 2^f, 1 + 2^f \pmod{2^{f+2}}) \cap Q_a(x; D, 0).$$

Then

$$I_{a^D}(p) = 2^f Dk$$

and

$$p \equiv 1 \pmod{2^f \cdot Dk}$$
.

With the condition $p \equiv 1 + 2^f \pmod{2^{f+2}}$, the Chinense remainder theorem shows

 $p \equiv 1 + kD \cdot 2^f \pmod{kD \cdot 2^{f+2}}.$

This proves " \subset " in (4.7).

For the another inclusion, let

$$p \in N_a(x; k \cdot 2^f, 1 + kD \cdot 2^f \pmod{kD \cdot 2^{f+2}}, 1 + kD \cdot 2^f \pmod{kD \cdot 2^{f+2}}$$

then trivially $p \in N_a(x; k \cdot 2^f, 1 + 2^f \pmod{2^{f+2}})$. Now we put

$$p - 1 = kD \cdot 2^f + \beta \, kD \cdot 2^f$$

with $\beta \in \mathbf{N}$. Since $I_a(p) = k \cdot 2^f$, we have

$$D_a(p) = D(1+4\beta).$$

This shows $p \in Q_a(x; D, 0)$, and we proved (4.7) as well as Proposition 4.1.

5. Behavior of $\sharp Q_a(x; 4D, lD)$ (I) — existence of the natural density

In this section we present an asymptotic formula for $\sharp Q_a(x; 4D, lD)$. Our method is almost on the same line as [1, Section 4], so we omit the proof. First we prepare some notations. For any integer m, we define

$$m_0 = \prod_{\substack{q \mid m \\ q: \text{prime}}} q$$
 (i.e. the core of m)

and introduce the number fields

$$K_{m} = \mathbf{Q}(\zeta_{m_{0}}, a^{1/m}),$$

$$G_{k \cdot 2^{f}, n, d} = K_{k \cdot 2^{f}}(\zeta_{n}, \zeta_{k d \cdot 2^{f}}, a^{1/k \cdot 2^{f}n}),$$

$$\tilde{G}_{k \cdot 2^{f}, n, d} = G_{k \cdot 2^{f}, n, d}(\zeta_{k D \cdot 2^{f+2}}).$$

We take automorphisms σ_1 and $\sigma_3 \in \operatorname{Aut}(\mathbf{Q}(\zeta_{kD\cdot 2^{f+2}})/\mathbf{Q})$ defined by

(5.1)
$$\begin{aligned} \sigma_1 &: \quad \zeta_{kD\cdot 2^{f+2}} \mapsto \zeta_{kD\cdot 2^{f+2}} \stackrel{1+kD\cdot 2^j}{\xrightarrow{}} \\ \sigma_3 &: \quad \zeta_{kD\cdot 2^{f+2}} \mapsto \zeta_{kD\cdot 2^{f+2}} \stackrel{1+3kD\cdot 2^j}{\xrightarrow{}} \end{aligned}$$

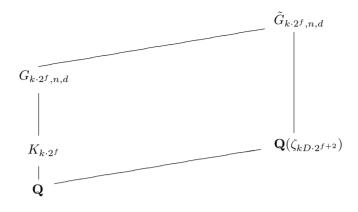
and consider σ_1^* and $\sigma_3^* \in \operatorname{Aut}(\tilde{G}_{k\cdot 2^f,n,d}/K_{k\cdot 2^f})$ satisfying

(5.2)
$$\begin{cases} \sigma_j^* |_{G_{k \cdot 2^f, n, d}} = \text{id.} \\ \sigma_j^* |_{\mathbf{Q}(\zeta_{k D \cdot 2^{f+2}})} = \sigma_j \end{cases} \quad (j = 1, 3)$$

(we use σ_1 for estimating $\#Q_a(x; 4D, D)$ and σ_3 for $\#Q_a(x; 4D, 3D)$).

We define the number $c_j(n) = c_j(k, n, d)$ by

$$c_j(n) = \begin{cases} 1, & \text{if } \sigma_j^* \text{ exists,} \\ 0, & \text{if not.} \end{cases}$$



Now our result is the following:

Theorem 5.1. Let a be a natural number and we decompose a into $a = a_0^2 a_1$, a_1 is square-free. We assume GRH.

(i) For any odd natural number D and l = 1, 3, we have

$$\sharp Q_a(x; 4D, lD) = \Delta_a(4D, lD) \text{li} x + O\left(\frac{x}{\log x \log \log x} \cdot D^2 \log D\right),$$

where the constant implied by O-symbol is absolute.

(ii) The densities $\Delta_a(4D, lD)$ (l = 1, 3) are given by the following:

(5.3)
$$\Delta_a(4D, D) = \sum_{\substack{f \ge 1\\k: \text{odd}}} \frac{2k_0}{\varphi(k_0)} \sum_{d|2k_0} \frac{\mu(d)}{d} \sum_{n=1}^{\infty} \frac{\mu(n)c_1(n)}{[\tilde{G}_{k \cdot 2^f, n, d} : \mathbf{Q}]}$$

(5.4)
$$\Delta_a(4D, 3D) = \sum_{\substack{f \ge 1\\k: \text{odd}}} \frac{2k_0}{\varphi(k_0)} \sum_{d|2k_0} \frac{\mu(d)}{d} \sum_{n=1}^{\infty} \frac{\mu(n)c_3(n)}{[\tilde{G}_{k\cdot 2^f, n, d}: \mathbf{Q}]}.$$

6. Behavior of $\sharp Q_a(x; 4D, lD)$ (II) — the case a_1 is odd

We can prove the following Theorem 6.1 and it is effectively used in determining the densities $\Gamma_a(4, l)$ (l = 1, 3): **Theorem 6.1.** Let $a = a_0^2 a_1$, a_1 is square free and a_1 is odd. Then we have for any odd natural number D,

$$\Delta_a(4D, D) = \Delta_a(4D, 3D).$$

This section is allotted to the proof of Theorem 6.1.

We prove Theorem 6.1 by showing that the series expressing $\Delta_a(4D, D)$ and $\Delta_a(4D, 3D)$ (see (5.3) and (5.4)) coincide each other, more precisely, the coefficients $c_1(n)$ and $c_3(n)$ always the same. The methods are similar to those of our previous papers [1] and [2] (see [1, Proposition 4.8] and [2, Section 3]).

The coefficient $c_j(n)$ actually depends on five parameters d, f, k, n and D. The cases where $f \ge 2$ or f = 1 and d is even are rather simple and are treated like [1, Proposition 4.8] (see Proposition 6.2). For the case f = 1 and d is odd, we must investigate closely the behavior of σ_j (see (5.1)) on certain number fields. It needs a little complicated calculation and will be dealt with in several steps (see Propositions 6.7, 6.9 and 6.10).

Here we review the notation (see also (5.1) and (5.2)):

$$f, n \in \mathbf{N}; \ k \in \mathbf{N}, k : \text{odd};$$

$$d \in \mathbf{N}, d|k_0; \ D \in \mathbf{N}, D : \text{odd}, D > 1.$$

From now on, we assume $a = a_0^2 a_1$, a_1 is square free and a_1 is odd. The following proposition can be proved similarly to [1, Proposition 4.8], so we omit the proof:

Proposition 6.2. (i) When $f \ge 2$, we have

$$c_1(n) = c_3(n).$$

(ii) When f = 1 and d is even, we have

$$c_1(n) = c_3(n) = 0.$$

Now we proceed to the case f = 1 and d is odd. Here we follow the lines of [2, Section 3]. Let

$$L = \mathbf{Q}(\zeta_{8kD}), \quad M = G_{4k,n,d} = \mathbf{Q}(\zeta_n, \zeta_{2kd}, a^{1/2kn}).$$

Then we have $LM = \tilde{G}_{4k,n,d}$. We put $K = L \cap M$. In this case, $\sigma_j \in \operatorname{Aut}(L/\mathbf{Q})$ is defined by

(6.1)
$$\begin{aligned} \sigma_1 &: \zeta_{8kD} \mapsto \zeta_{8kD}^{1+2kD} \\ \sigma_3 &: \zeta_{8kD} \mapsto \zeta_{8kD}^{1+6kD}. \end{aligned}$$

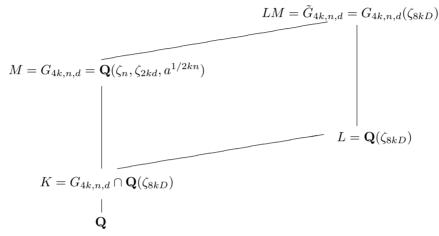
We know that

$$\sigma_j|_K = \mathrm{id} \Leftrightarrow c_j(n) = 1$$

for $K = M \cap L$ (see [2, p.700]). So the procedure will be as follows:

1° We calculate the degree $[K : \mathbf{Q}]$.

 2° We determine the intersection field K and investigate the behavior of σ_j on K.



1° Calculation of
$$[K : \mathbf{Q}]$$

First we need the following (the proof is elementary and we omit it):

Lemma 6.3. Let $D, k, n \in \mathbf{N}$, D, k be odd, d|k, d, n be square free and we denote the odd part of n by \underline{n} . Then we have

$$\frac{\varphi(\langle \underline{n}, kd \rangle)\varphi(kD)}{\varphi(\langle n, kd, kD \rangle)} = \varphi(kD'),$$

where d' = (d, D), $n' = \prod_{p:\text{prime, } p \mid \underline{n}, \ p \mid D, \ p \nmid k} p$ and D' = d'n'.

Remark. Note that (n', d') = (n', kd') = 1 and D'|D.

We know $\operatorname{Gal}(LM/M) \cong \operatorname{Gal}(L/K)$ for $K = M \cap L$ (see [2, Lemma 3.1]) and so $[L:K] = [\tilde{G}_{4k,n,d}: G_{4k,n,d}]$. From this, we can calculate $[K:\mathbf{Q}]$ by

$$[K:\mathbf{Q}] = \frac{[L:\mathbf{Q}]}{[L:K]} = \frac{[\mathbf{Q}(\zeta_{8kD}):\mathbf{Q}]}{[\tilde{G}_{4k,n,d}:G_{4k,n,d}]} = \frac{[\mathbf{Q}(\zeta_{8kD}):\mathbf{Q}][G_{4k,n,d}:\mathbf{Q}]}{[\tilde{G}_{4k,n,d}:\mathbf{Q}]}.$$

Note that

$$G_{4k,n,d} = \mathbf{Q}(\zeta_{\langle n,2kd \rangle}, a^{1/2kn}),$$

$$\tilde{G}_{4k,n,d} = \mathbf{Q}(\zeta_{\langle n,2kd,8kD \rangle}, a^{1/2kn}).$$

Using [7, Proposition 3.1], we can calculate the degrees $[G_{4k,n,d} : \mathbf{Q}]$ and $[\tilde{G}_{4k,n,d} : \mathbf{Q}]$:

Proposition 6.4. The degrees $[G_{4k,n,d} : \mathbf{Q}]$ and $[\overline{G}_{4k,n,d} : \mathbf{Q}]$ are given as follows:

Cases		$[G_{4k,n,d}:\mathbf{Q}]$
$a_1 \equiv 1 \pmod{4}$		$2kn\varphi(\langle \underline{n}, kd \rangle)$
	$a_1 \langle \underline{n}, kd \rangle$	$kn\varphi(\langle \underline{n}, kd \rangle)$
$a_1 \equiv 3 \pmod{4}$		$2kn\varphi(\langle \underline{n}, kd \rangle)$

Cases		$[ilde{G}_{4k,n,d}:\mathbf{Q}]$
$a_1 \equiv 1 \pmod{4}$	$a_1 \nmid \langle \underline{n}, kd, kD \rangle$	$8kn\varphi(\langle \underline{n}, kd, kD \rangle)$
	$a_1 \langle \underline{n}, kd, kD \rangle$	$4kn\varphi(\langle \underline{n}, kd, kD \rangle)$
$a_1 \equiv 3 \pmod{4}$	$a_1 \nmid \langle \underline{n}, kd, kD \rangle$	$8kn\varphi(\langle \underline{n}, kd, kD \rangle)$
	$a_1 \langle \underline{n}, kd, kD \rangle$	$4kn\varphi(\langle \underline{n}, kd, kD \rangle)$

Proof. It is easy from [7, Proposition 3.1].

Remark. Read the table like " $[G_{4k,n,d} : \mathbf{Q}] = kn\varphi(\langle \underline{n}, kd \rangle)$ if and only if $a_1 \equiv 1 \pmod{4}$ and $a_1 | \langle \underline{n}, kd \rangle$ ", etc.

Next, since kD is odd, we have

(6.2)
$$[\mathbf{Q}(\zeta_{8kD}):\mathbf{Q}] = 4\varphi(kD).$$

Now we can determine the degree $[K : \mathbf{Q}]$ as follows:

Proposition 6.5. The degrees $[K : \mathbf{Q}]$ are given as follows:

Cases		$[K:\mathbf{Q}]$
(I) $a_1 \equiv 1 \pmod{4}$	(i) $a_1 \langle \underline{n}, kd \rangle, a_1 \langle \underline{n}, kd, kD \rangle$	$\varphi(kD')$
	(ii) $a_1 \nmid \langle \underline{n}, kd \rangle, a_1 \nmid \langle \underline{n}, kd, kD \rangle$	$\varphi(kD')$
	(iii) $a_1 \nmid \langle \underline{n}, kd \rangle, a_1 \mid \langle \underline{n}, kd, kD \rangle$	$2\varphi(kD')$
(II) $a_1 \equiv 3 \pmod{4}$	(i) $a_1 \langle \underline{n}, kd, kD \rangle$	$2\varphi(kD')$
	(ii) $a_1 \nmid \langle \underline{n}, kd, kD \rangle$	$\varphi(kD')$

Proof. The proof is easy from Proposition 6.4 and (6.2).

Remark. Read the table like "When $a_1 \equiv 1 \pmod{4}$, $[K : \mathbf{Q}] = \varphi(kD')$ if and only if $a_1 \nmid \langle \underline{n}, kd \rangle$ and $a_1 \nmid \langle \underline{n}, kd, kD \rangle$ ", etc.

2° Determination of K and $c_i(n)$

Recall

$$L = \mathbf{Q}(\zeta_{8kD}),$$

$$M = G_{4k,n,d} = \mathbf{Q}(\zeta_n, \zeta_{2kd}, a^{1/2kn}).$$

We determine the intersection field $K = L \cap M$ with the help of the fact that K is a subfield of the cyclotomic field L. Recall D' = d'n', d' = (d, D) and $n' = \prod_{p|\underline{n}, p|D, p \nmid k} p$.

Lemma 6.6.

$$\mathbf{Q}(\zeta_{kD'}) \subset L \cap M.$$

Proof can be carried out in an elementary manner and we omit it.

First we deal with the cases (I-i), (I-ii) and (II-ii) in Proposition 6.5 (where $[K : \mathbf{Q}] = \varphi(kD')$):

Proposition 6.7. If $[K : \mathbf{Q}] = \varphi(kD')$, then $K = \mathbf{Q}(\zeta_{kD'})$ and $c_1(n) = c_3(n) = 1$.

Proof. The fact $[K : \mathbf{Q}] = \varphi(kD')$ and Lemma 6.6 implies $K = \mathbf{Q}(\zeta_{kD'})$. We look into the actions of σ_1 and σ_3 . Putting D = D'D'', we have $\zeta_{kD'} = \zeta_{8kD} {}^{8D''}$ and

$$\sigma_1(\zeta_{kD'}) = (\zeta_{8kD}{}^{8D''})^{1+2kD} = \zeta_{8kD}{}^{8D''}\zeta_{8kD}{}^{16kDD''} = \zeta_{kD'}$$

This shows $\sigma_1|_K = \text{id}$ and $c_1(n) = 1$. Similarly we can easily see $\sigma_3|_K = \text{id}$ and $c_3(n) = 1$.

For the cases (I-iii) and (II-i) in Proposition 6.5 (where $[K : \mathbf{Q}] = 2\varphi(kD')$), we know $\mathbf{Q}(\zeta_{kD'}) \subset K = L \cap M$ and $[K : \mathbf{Q}(\zeta_{kD'})] = 2$ from Proposition 6.5 and Lemma 6.6. So, to determine the field K, we must find a quadratic algebraic number α such that $\alpha \in L \cap M$ and $\alpha \notin \mathbf{Q}(\zeta_{kD'})$. Then we have

$$K = \mathbf{Q}(\zeta_{kD'}, \alpha).$$



The following lemma is required:

Lemma 6.8. Let $m \in \mathbb{Z}$, D_m be the discriminant of $\mathbb{Q}(\sqrt{m})$ and $d = |D_m|$. Then we have

$$\mathbf{Q}(\sqrt{m}) \subset \mathbf{Q}(\zeta_d).$$

Conversely, if $\mathbf{Q}(\sqrt{m}) \subset \mathbf{Q}(\zeta_n)$, then d|n.

Proof. See a suitable textbook in algebraic number theory (see also [2, Lemma 3.2]). ■

First we consider the case (I-iii) of Proposition 6.5 (recall the conditions $a_1 \nmid \langle \underline{n}, kd \rangle$ and $a_1 \mid \langle \underline{n}, kd, kD \rangle$). We decompose a_1 as $a_1 = b_1 b_2$, where b_1 is the product of all the primes which divide $\langle \underline{n}, kd \rangle$. The following conditions are frequently used in the subsequent discussion:

$$b_1|\langle \underline{n}, kd \rangle, \quad b_2 \nmid \langle \underline{n}, kd \rangle, \quad b_2|kD,$$

$$(b_2, \langle \underline{n}, kd \rangle) = 1, \quad (b_2, kD') = 1.$$

Proposition 6.9. When $a_1 \equiv 1 \pmod{4}$, $a_1 \nmid \langle \underline{n}, kd \rangle$ and $a_1 \mid \langle \underline{n}, kd, kD \rangle$, we have

$$K = \mathbf{Q}\left(\zeta_{kD'}, \sqrt{(-1)^{\frac{b_2-1}{2}}b_2}\right)$$

and

$$c_1(n) = c_3(n) = 1.$$

Proof. First we consider the case $b_1 \equiv 1 \pmod{4}$. Then $b_2 \equiv 1 \pmod{4}$ since $a_1 \equiv 1 \pmod{4}$. We can see $\sqrt{b_1} \in M = G_{4k,n,d} = \mathbf{Q}(\zeta_{2\langle \underline{n}, kd \rangle}, a^{1/2kn})$ because

 $\mathbf{Q}(\sqrt{b_1}) \subset \mathbf{Q}(\zeta_{b_1})$ (see Lemma 6.8) and $\zeta_{b_1} = \zeta_{2\langle \underline{n}, kd \rangle}^{2\langle \underline{n}, kd \rangle/b_1} \in M$ (note that $b_1|\langle \underline{n}, kd \rangle$). On the other hand, we see

$$\sqrt{b_2} = \frac{\sqrt{a_1}}{\sqrt{b_1}} \in M$$

since $\sqrt{a_1} \in M$. Moreover we know $\sqrt{b_2} \in L$ because $\mathbf{Q}(\sqrt{b_2}) \subset \mathbf{Q}(\zeta_{b_2})$ (see Lemma 6.8) and $\zeta_{b_1} = \zeta_{8kD}^{8kD/b_2} \in L$ (note that $b_2|kD$). Thus we have $\sqrt{b_2} \in L \cap M$. We also notice that $\sqrt{b_2} \notin \mathbf{Q}(\zeta_{kD'})$ since $(b_2, kD') = 1$. Hence we obtain

$$K = \mathbf{Q}(\zeta_{kD'}, \sqrt{b_2}).$$

Next we consider the action of σ_1 on K. We already know $\sigma_1(\zeta_{kD'}) = \zeta_{kD'}$ (see the proof of Proposition 6.7). As to $\sqrt{b_2}$, we have

$$\sigma_1(\zeta_{b_2}) = \sigma_1(\zeta_{8kD}^{8 \cdot kD/b_2}) = (\zeta_{8kD}^{1+2kD})^{8 \cdot kD/b_2} = \zeta_{b_2},$$

for $b_2|kD$. So, $\mathbf{Q}(\zeta_{b_2})$ is fixed by σ_1 . Since $\sqrt{b_2} \in \mathbf{Q}(\zeta_{b_2})$, $\sqrt{b_2}^{\sigma_2} = \sqrt{b_2}$. Thus we have proved $\sigma_1|_K = \text{id}$ and $c_1(n) = 1$. The case $b_1 \equiv 3 \pmod{4}$ is similar: we have $K = \mathbf{Q}(\zeta_{kD'}, \sqrt{-b_2})$ and can verify $\sigma_3|_K = \text{id}$, thus $c_3(n) = 1$.

The case (II-i) in Proposition 6.5 can be dealt with similarly to the previous proposition, so we state the result without proof:

Proposition 6.10. Let $a_1 \equiv 3 \pmod{4}$ and $a_1 | \langle \underline{n}, kd, kD \rangle$. Then we have the following:

(a) If $a_1 \nmid \langle \underline{n}, kd \rangle$, then

$$K = \mathbf{Q}\left(\zeta_{kD'}, \sqrt{(-1)^{\frac{b_2-3}{2}}b_2}\right).$$

(b) If $a_1 | \langle \underline{n}, kd \rangle$, then

$$K = \mathbf{Q}\left(\zeta_{kD'}, \sqrt{-1}\right).$$

In both cases, $c_1(n) = c_3(n)$.

The results which are obtained in this section are summarized in the following theorem:

Theorem 6.11. If a_1 is odd, then the coefficients $c_j(n)$ in (5.3) and (5.4) always satisfy

$$c_1(n) = c_3(n).$$

More precisely,

$$if f \ge 2, \ then \ c_1(n) = c_3(n);$$

$$if f = 1 \ and \ d \ is \ even, \ then \ c_1(n) = c_3(n) = 0;$$

$$if f = 1 \ and \ d \ is \ odd,$$

(I)
$$if \ a_1 \equiv 1 \ (\text{mod } 4) \ and$$

(i)
$$a_1 | \langle \underline{n}, kd \rangle, \ a_1 | \langle \underline{n}, kd, kD \rangle,$$

(ii)
$$a_1 \nmid \langle \underline{n}, kd \rangle, \ a_1 \nmid \langle \underline{n}, kd, kD \rangle,$$

$$then \ K = \mathbf{Q}(\zeta_{kD'}), \ c_1(n) = c_3(n) = 1;$$

(iii)
$$a_1 \nmid \langle \underline{n}, kd \rangle, \ a_1 | \langle \underline{n}, kd, kD \rangle,$$

$$then \ K = \mathbf{Q}\left(\zeta_{kD'}, \sqrt{(-1)^{\frac{b_2 - 1}{2}}b_2}\right), \ c_1(n) = c_3(n) = 0;$$

(II) if $a_1 \equiv 3 \pmod{4}$ and

(i-a)
$$a_1 \nmid \langle \underline{n}, kd \rangle$$
, $a_1 \mid \langle \underline{n}, kd, kD \rangle$,
then $K = \mathbf{Q}\left(\zeta_{kD'}, \sqrt{(-1)^{\frac{b_2-3}{2}}b_2}\right)$, $c_1(n) = c_3(n)$;
(i-b) $a_1 \mid \langle \underline{n}, kd \rangle$, $a_1 \mid \langle \underline{n}, kd, kD \rangle$,
then $K = \mathbf{Q}(\zeta_{kD'}, \sqrt{-1})$, $c_1(n) = c_3(n)$;
(ii) $a_1 \nmid \langle \underline{n}, kd, kD \rangle$,
then $K = \mathbf{Q}(\zeta_{kD'})$, $c_1(n) = c_3(n) = 1$.

We know from Theorem 6.11 that the series (5.3) and (5.4) are the same, and this completes the proof of Theorem 6.1.

1;

7. The existence of the density $\Gamma_a(4, l)$

We prove the main result Theorem 1.3. Let us start from the formula (3.1). Our proof bases upon the following facts:

1° We assume GRH. When a_1 is odd, then for l = 1, 3,

(7.1)
$$\#Q_a(x;4,l) = \frac{1}{6} \operatorname{li} x + O\left(\frac{x}{\log x \log \log x}\right)$$

([7, Theorem 1.2]).

 2° We assume GRH. In Section 5, we proved, for any D < x,

where $\Delta_a(4D, lD)$ is a positive constant, the natural density of $Q_a(x; 4D, lD)$ (l = 1, 3). And if a_1 is odd, then

(7.3)
$$\Delta_a(4D, D) = \Delta_a(4D, 3D).$$

 3° Furthermore here we remark that

$$(7.4) \qquad \qquad \sharp Q_a(x; 4D, lD) \le \pi(x; D, 1),$$

in fact, if $p \in Q_a(x; 4D, lD)$, then p-1 is divisible by $D_a(p)$, which is divisible by D. Similarly we have

(7.5)
$$\sharp Q_a(x; 4D, lD) \le \frac{x}{D}.$$

Proof of Theorem 1.3. We take

$$y = (\log \log x)^{1/3},$$

 $z = (\log x)^{20/3}.$

$$\sum_{\substack{D \le x \\ D \equiv 1 \pmod{4} \\ D_0 = 1, D_1 > 1}} 2^{s-1} \left(\sharp Q_a(x; 4D, D) - \sharp Q_a(x; 4D, 3D) \right)^2 = \left(\sum_{\substack{1 \le D \le y \\ D \equiv 1 \pmod{4} \\ D_0 = 1, D_1 > 1}} + \sum_{\substack{y \le D \le z \\ D \equiv 1 \pmod{4} \\ D_0 = 1, D_1 > 1}} + \sum_{\substack{y \le D \le z \\ D \equiv 1 \pmod{4} \\ D_0 = 1, D_1 > 1}} + \sum_{\substack{x \le D \le x \\ D \equiv 1 \pmod{4} \\ D_0 = 1, D_1 > 1}} \right) \times 2^{s-1} \left(\sharp Q_a(x; 4D, D) - \sharp Q_a(x; 4D, 3D) \right)^2 = \\ = E_1 + E_2 + E_3, \quad \text{say.}$$

Estimate of E_1 . By making use of (7.2) and (7.3), we have

$$E_{1} = \sum_{\substack{D < y \\ D \equiv 1 \pmod{4} \\ D_{0} = 1, D_{1} > 1}} 2^{s-1} \left\{ (\Delta_{a}(4D, D) - \Delta_{a}(4D, 3D)) | i x + \right. \\ \left. + O\left(\frac{x}{\log 1, \log 4}\right) + O\left(\frac{x}{\log x \log \log x} D^{2} \log D\right) \right\}^{2} = \left. \\ \left. = \sum_{\substack{D < y \\ D \equiv 1 \pmod{4} \\ D_{0} = 1, D_{1} > 1}} 2^{s-1} O\left(\frac{x^{2}}{(\log x)^{2} (\log \log x)^{2}} D^{4} \log^{2} D\right) \right. \\ \left. \ll \sum_{\substack{D < y \\ D < y}} D^{\log 2} \cdot D^{4} \log^{2} D \frac{x^{2}}{(\log x)^{2} (\log \log x)^{2}} = \right. \\ \left. = o\left(\frac{x^{2}}{\log^{2} x}\right), \right.$$

since $y = (\log \log x)^{1/3}$.

Estimate of E_3 . Here we use the estimate (7.5):

$$E_{3} < \sum_{\substack{z \leq D < x \\ D \equiv 1 \pmod{4} \\ D_{0} = 1, D_{1} > 1}} 2^{s-1} \left(\frac{x}{D}\right)^{2} < \\ < \sum_{z < D} D^{\log 2} \frac{x^{2}}{D^{2}} = \\ = x^{2} O\left(z^{\log 2 - 1}\right).$$

Since $z = (\log x)^{20/3}$, we have

(7.7)
$$E_3 = o\left(\frac{1}{\log^2 x}\right).$$

Estimate of E_2 . Here we use the estimate (7.4):

$$\sharp Q_a(x; 4D, lD) \le \pi(x; D, 1),$$

and in our case, D satisfies

$$D < z = (\log x)^{20/3},$$

then we have

$$\pi(x; D, 1) \ll \frac{1}{\varphi(D)} \pi(x).$$

Then,

(7.8)

$$E_{2} < \sum_{y < D < z} D^{\log 2} \left\{ \frac{1}{\varphi(D)} \pi(x) \right\}^{2} \ll \\ \ll \pi(x)^{2} \sum_{y < D} \frac{D^{\log 2}}{D^{2}} (\log \log D)^{2} \ll \\ \ll \pi(x)^{2} y^{-0.3} = \\ = o(\pi(x)^{2}).$$

Now, combining (3.1), (7.1), (7.6) - (7.8), we proved

$$\sharp R_a(x;4,1) = \frac{1}{18}(\ln x)^2 + o((\ln (x))^2),$$

and this gives the natural density of $R_a(x; 4, 1)$, i.e. $\Gamma_a(4, 1) = 1/18$. Similarly, $\Gamma_a(4, 3) = 1/18$.

8. Numerical examples

In this section, we show some results of numerical experiment on the density $\Gamma_a(4, l)$. For the computer calculation, we use the relation (2.1), that is, we first calculate the residual orders $D_a(p)$ in 0 for some <math>x, and next we use the GCD algorithm to get $D_a(pq)$. We use the data of $D_a(p)$ which are already obtained in our previous papers [2] and [3]. Here we take x up to 10^7 and show the values $\pi(x)^{-2} \sharp R_a(x; 4, l)$ for several a's. The program is written in the C language, compiled by GCC. If $x = 10^7$, then we have about $2.2 \cdot 10^{11}$ pairs (p,q) satisfying $0 < q < p \leq x$. We did numerical experiments to calculate $D_a(pq)$ from the data $(D_a(p), D_a(q))$ by the GCD algorithm in the range above. Calculation time depends on a, but it takes approximately 20 hours for each a at 2.66GHz CPU.

(i) The case $a_1 \equiv 1 \pmod{4}$

We show two examples a = 13 and 20 (Tables 8.1 and 8.2). The theoretical densities are

$$\Gamma_a(4,0) = \frac{5}{9} = 0.555555..., \qquad \Gamma_a(4,1) = \frac{1}{18} = 0.055555...,$$

$$\Gamma_a(4,2) = \frac{1}{3} = 0.333333..., \qquad \Gamma_a(4,3) = \frac{1}{18} = 0.05555....$$

x	l = 0	l = 1	l = 2	l = 3
10^{2}	0.507246	0.036232	0.416667	0.039855
10^{3}	0.583147	0.055768	0.305750	0.055335
10^{4}	0.547737	0.055817	0.340427	0.056020
10^{5}	0.556690	0.055162	0.332985	0.055163
10^{6}	0.554714	0.055844	0.333596	0.055846
10^{7}	0.555568	0.055465	0.333504	0.055464

Table 8.1. The case a = 13

x	l = 0	l = 1	l=2	l = 3
10^{2}	0.584980	0.039526	0.304348	0.071146
10^{3}	0.546112	0.054399	0.345455	0.054034
10^{4}	0.546999	0.058023	0.337129	0.057849
10^{5}	0.553677	0.056013	0.334307	0.056004
10^{6}	0.555689	0.055712	0.332883	0.055716
10^{7}	0.555655	0.055542	0.333261	0.055542

Table 8.2. The case a = 20

(ii) The case $a_1 \equiv 3 \pmod{4}$

We show two examples a = 11 and 12 (Tables 8.3 and 8.4). The theoretical densities are

$\Gamma_a(4,0) = \frac{5}{9} = 0.555555,$	$\Gamma_a(4,1) = \frac{1}{18} = 0.05555,$
$\Gamma_a(4,2)=\frac{1}{3}=0.333333,$	$\Gamma_a(4,3) = \frac{1}{18} = 0.05555$

x	l = 0	l = 1	l=2	l = 3
10^{2}	0.525692	0.019763	0.415020	0.039526
10^{3}	0.585907	0.043008	0.328222	0.042862
10^{4}	0.548096	0.059315	0.333240	0.059348
10^{5}	0.555764	0.055373	0.333472	0.055391
10^{6}	0.555451	0.055442	0.333664	0.055443
10^{7}	0.555532	0.055543	0.333380	0.055544

Table 8.3. The case a = 11

x	l = 0	l = 1	l = 2	l = 3
10^{2}	0.584980	0.051383	0.304348	0.059289
10^{3}	0.554217	0.052647	0.341292	0.051844
10^{4}	0.557908	0.055952	0.330073	0.056067
10^{5}	0.555208	0.055452	0.333889	0.055450
10^{6}	0.554873	0.055455	0.334217	0.055455
10^{7}	0.555667	0.055590	0.333154	0.055590

Table 8.4. The case a = 12

(iii) The case $a_1 \equiv 2 \pmod{4}$

We show two examples a = 2 and 10 (Tables 8.5 and 8.6). At present, we know the theoretical densities $\Gamma_a(4,0)$ and $\Gamma_a(4,2)$ only:

$$\begin{split} \Gamma_2(4,0) &= \frac{95}{144} = 0.659722..., \qquad \Gamma_2(4,2) = \frac{147}{576} = 0.255208..., \\ \Gamma_{10}(4,0) &= \frac{5}{9} = 0.555555..., \qquad \Gamma_{10}(4,2) = \frac{1}{3} = 0.333333.... \end{split}$$

The calculation of the exact theoretical density of $\Gamma_2(4,1)$ needs much deeper considerations of the algebraic quantities which appear in our Section 5.

x	l = 0	l = 1	l=2	l = 3
10^{2}	0.619565	0.057971	0.278986	0.043478
10^{3}	0.671019	0.053026	0.240603	0.035351
10^{4}	0.662134	0.047510	0.256798	0.033558
10^{5}	0.660447	0.050167	0.254528	0.034858
10^{6}	0.659085	0.050778	0.255461	0.034676
10^{7}	0.659746	0.050637	0.255088	0.034528

Table 8.5. The case a = 2

x	l = 0	l = 1	l=2	l = 3
10^{2}	0.462451	0.106719	0.359684	0.071146
10^{3}	0.546112	0.057977	0.337349	0.058562
10^{4}	0.550286	0.055265	0.339327	0.055122
10^{5}	0.556737	0.055526	0.332222	0.055515
10^{6}	0.554601	0.055575	0.334251	0.055573
10^{7}	0.555573	0.055500	0.333428	0.055500

Table 8.6. The case a = 10

References

- Chinen, K. and L. Murata, On a distribution property of the residual order of a (mod p), J. Number Theory, 105 (2004), 60–81.
- [2] Chinen, K. and L. Murata, On a distribution property of the residual order of a (mod p) — III, J. Math. Soc. Japan, 58-3 (2006), 693–720.
- [3] Chinen, K. and L. Murata, On a distribution property of the residual order of a (mod p) — IV, in Number Theory: Tradition and Modernization, W. Zhang and Y. Tanigawa, eds., Developments in Math. 15, 11–22, Springer Verlag, 2006.
- [4] **Hasse, H.,** Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl $a \neq 0$ von durch eine vorgegebene Primzahl $l \neq 2$ teilbarer bzw. unteibarer Ordnung mod p ist, *Math. Ann.*, **162** (1965), 74–76.
- [5] Hooley, C., On Artin's conjecture, J. Reine Angew. Math., 225 (1967), 209–220.
- [6] Lagarias, J.C. and A.M. Odlyzko, Effective versions of the Chebotarev density theorem, in *Algebraic Number Fields (Durham, 1975)*, 409–464, Academic Press, London, 1977.
- [7] Murata, L. and K. Chinen, On a distribution property of the residual order of a (mod p) — II, J. Number Theory, 105 (2004), 82–100.
- [8] Odoni, R.W.K., A conjecture of Krishnamurthy on decimal periods and some allied problems, J. Number Theory, 13 (1981), 303–319.

L. Murata

Department of Mathematics Faculty of Economics Meiji Gakuin University 1-2-37 Shirokanedai, Minato-ku Tokyo, 108-8636 Japan leo@eco.meijigakuin.ac.jp

K. Chinen

Department of Mathematics School of Science and Engineering Kinki University 3-4-1, Kowakae Higashi-Osaka, 577-8502 Japan chinen@math.kindai.ac.jp