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Abstract. In the paper, we prove a joint limit theorem for a collection of
periodic Hurwitz zeta-functions with transcendental and rational parame-
ters.

1. Introduction

Let s = 0 + it be a complex variable, a;, 0 < « < 1, be a fixed parameter,
and a = {a,, : m € N=NU {0} be a periodic sequence of complex numbers
with minimal period k£ € N. The periodic Hurwitz zeta-function (s, a;a) is
defined, for o > 1, by the series

C(Saava): aimgv
mz::() (m+ a)

and continues analytically to the whole complex plane, except, maybe, for a
simple pole at the point s = 1 with residue
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If @ = 0, then the function {(s,«;a) is entire. This easily follows from the
equality

k—1
1 a+m
C(S,O{, a) = E T;)aﬂlc(57 T)7 o> ]-7

where ((s, ) is the classical Hurwitz zeta-function.

In [5], two joint limit theorems on the weak convergence of probability mea-
sures on the complex plane for periodic Hurwitz zeta-functions were proved.
For j =1,...,r, let {(s,a;,a;) be a periodic Hurwitz zeta-function with pa-
rameter o, 0 < a; < 1, and periodic sequence of complex numbers a; =
= {am; : m € Ny} with minimal period k; € N. For brevity, we use the
notation o = (01,...,0.), c +it = (o1 +it,...,0, +it), « = (a1,...,Q),
a=(ag,...,a,) and {(s,;a) = (C(s,al, ia1), ... C(s, an; ur)). Denote by B(.S)
the class of Borel sets of the space S, and by measA the Lebesgue measure of
a measurable set A C R. Then in [5], the weak convergence as T'— oo of the
probability measure

Pr(A) %meas{t € [0,T): Cla +it,asa) € A}, A€ B(C)),

was discussed. The cases of algebraically independent and rational parameters
aq,...,q, were considered. For statements of the mentional results, we need
some notation and definitions.

Denote by v = {s € C : |s| = 1} the unit circle on the complex pane, and

define
Q) = H Ym and (= H'Ypa
p

m=0

where 7, = 7 for all m € N, and v, = « for all primes p, respectively. The tori
Q7 and Q5 are compact topological Abelian groups with respect to the product
topology and the operation of pointwise multiplication. Moreover, let

Q, = H Qy,
j=1

where €y; =, for j =1,...,r. Then ©, is also a compact topological group.
This gives two probability spaces (2, B(£2;),m, ) and (Qs2, B(Q2), map), where
my i and moy are the probability Haar measures on (2, B(£;)) and (2, B(22)),
respectively. Denote by w1;(m) and wa(p) the projections of wi; € Q1 to v,
and of wy € Qg to 7,, respectively. Let w = (w11....,w1,) be the elements
of Q,. On the probability space (Q;,B(£;), m1z) define the C"-valued ran-
dom element ((c, a,w;a) by the formula (o, a,w;a) = (C(Ul,al,wlj; ay),...,
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C(or, aywip; ar)), where, for o; > %,

o0
_ N Omgwri(m)
C((Tﬁaj,wlj,aj)—n;)m, j=1,...,n

Let PLQ be the distribution of the random element g(g, a,w;a). The first joint
theorem of [5] is the following statement,

i ) 1
Theorem 1.1. Suppose that min o; > 3,

IIT

and that the numbers aq, ..., «,

are algebraically independent over Q. Then ]3T converges weakly to Py ¢ as
T — 0. N

Now let a; = Z—Jj, 0<a; <gj,a;,q; €N, (aj,q;) =1,j=1,...,r. On
the probability space (22, B(€2), map), define the C"-valued random element
g(O’, o, WQ,Q) by the formula g(g7 a, WQ,Q) = (C(Ula a1, W2, a1)7 sy <(0T7 Qp, W25
aT)), where, for o; > %,

U(m—a;)/q;,jw2(M)
mei

o0
(05, 05,wj305) = walgy)a)” D s J=1

m=1

Let Pgﬁ be the distribution of the random element ¢ (o, a,wq;a). The second
joint theorem of [5] is of the following form.

Theorem 1.2. Forj =1,...,r, suppose that o;; = %, 0 < aj <gj,aj,q; €N,
J

(e, q5) =1, and that o; > L. Then ]3T converges weakly to P ¢ as T — oo.

5
The aim of this note is to consider the weak convergence of the probability
measure

Pr(A) = %meas{t €10,7]:¢(o —&-it,g,g) c A}7 A€ BT,

where g = (01,...,0T,81,...,8T1), g = (al,...,ar,al,...,arl), a = (Cll,

"'7urvala"'7a7“1)7 and €(57g7g) = (<(57a1;a1)a"'aC(aaar;aT)7<(Saal;al)a

..,((s,0yr,; 0, ). Here the parameters ay, . . ., ;. are algebraically independent
over Q, while the parameters ay,...,a,, are rational. For j = 1,...,ry, a; =
= {@m; : m € N} is a periodic sequence of complex numbers with minimal
period Ej eN.

Define Q = Q,; x 3. Then again € is a topological compact group, and we
have a new probability space (Q, B(Q), mp), where my is the probability Haar
measure on (£, B(2)). Denote by w = (w11,...,w1r,wa) the elements of €,
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and on the probability space (2, B(2),mg), define the C"*"-valued random
element ((0,a,w;a) by the formula

<(813a17w2;61)7 s 7((6-\?”17627“15“]2;/&7’1))’

1
where, for o; > 3,

>\ pnwi;(m)
jW1g .
C(0]7QJ7W177QJ)ZZM, ]:1,...,’/',

~ 1
and, for o; > 3,

2 i Q(m—ay)/q; jw2(M)

((G),qj,w2;05) = walq;)g; - , =1,

m=1
7nEa,j(m0d qj)

Let P; be the distribution of the random element ((o,a,w;a). Now we state

the main result of the paper.

Theorem 1.3. Suppose that min ( min ¢;, min ;) > %, the numbers aq,
1<j<sr 1<j<m
..., ap are algebraically independent over Q, and that, for j = 1,...,rq,

o = Z—j, 0 <a; <gqj, aj,q; €N, (aj,q;) = 1. Then Pr converges weakly
to Pe as T — oo.

2. A limit theorem on

Denote by P the set of all prime numbers.

Lemma 2.1. Suppose that the numbers aq,...,a, are algebraically indepen-
dent over Q. Then

ef 1 .
Qr(A) Y Fmeas{t € [0,7]: (m+ )™ :m € No),...,
(m+a,)™" :meNy),(p™™:peP)) € A}, AeB(),
converges weakly to the Haar measure myg as T — oo.

Proof of the lemma is given in [3, Theorem 3]. |
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3. Limit theorems for absolutely convergent series

Let 01 > 4 be a fixed number, and

. g1
un(m,aj):exp{—(m) }, meNy, neN, j=1,...,r,
J

() = exp{ . (m)‘”}, m,n € N.

n

For j =1,...,r, the sequence a; is bounded. Therefore, a standard application
of the Mellin formula and contour integration imply the absolute convergence
for o > % of the series

gt (m, 1)

Cn(5>0‘j5 aj) = Z

—, J=1...,m
m=0 (m+a3)
and N
Amjwij (m)un(m, o)
Cnl(s, o, wij505) = ’ , j=1,...,m
7> W55 G5 mz::o (m + aj)°
For j =1,...,71, define f(s,a;) = ¢; and
~ L > am—a» ,j Un (m)
fn(S,Oéj;aj): Z ( J);;;] v '

m=1

m=a; (mod qj)

Then we have that

((s,&j;ﬁj):f(s,&j)f(s,&j;ﬁj), jzl,...ﬂ’.

Also, for j =1,...,rq, define f(7;,q;,w2) = wg(qj)q;j and

i 2i(m*aj)/qj jwa(m)v,(m)

moi

[, 05, was ;) =
m=1
'm.Ea.j(ruod a;)

Then, similarly as above, we have that the series for f,(s,a;;a;) and
fn(G},@;,wa;d;) converge absolutely for o > 3.
Let, for brevity,

En(g)gy g) :(<n(017a1; a1)7 .- '7<n(UT7aT; a’r‘)7f(81;al)7fn(alaa1;al)7 ceey

s f(Ory, ), fn(aruan;am))
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and
En(gvg,(ﬁa g) :(Cn(olaalawll; 01), ey Cn(o—ra Qpy Wir; ar); f(a—la alaWQ)a
fn(alvalaw2§al)a ceey f(a’l"17a’l"17w2)7 fn(am»arlaw%ah))'
Lemma 3.1. Suppose that the numbers aq,...,q, are algebraically indepen-
dent d that mi 1. Then th babilit
ent over Q, an a mln(1r<nju<1TU] lgjll<11r 0']) > 5 en the probability
measures

ef 1
Pr,(A) def Tmeas{t €[0,7]: FE (a tit,a;a) € A}, Ae B(CrT),

and, for a fived wy € €2,

_ er 1
Pr,(A) = Tmeas{t €[0,T]: F, (o +it,a,wy;a) € A}, A€ B(C™),

both converge weakly to the same probability measure P, on (C"+2m B(Cr+2m))
as T — oo.

Jj = 1l,...,r, and fu(s,q;;a;),
> % Therefore, the function
) = (a o, w; a) is continuous.

Proof. The series defining (,(s,a;;a;),
j = 1,...,7r1, converge absolutely for o
n 8 = C™T?"1 given by the formula h, (

Moreover,

hn((pfit peP),((m+a)™ :meNy),....,(m+a,) % :me NO)) =
= Fu(o +it, a; a).

Thus, we have that Pr, = Qrh,', where Qr is the measure of Lemma 2.1.
This, the continuity of h,,, Lemma 2.1 and Theorem 5.1 of [1] show that Pr,
converges weakly to P, = mgh, ! as T — oc.

Similar arguments give that the measure ]5T7n converges weakly to m H?L; !
as T' — oo, where the function hy, : Q — C7 12 is related to h,, by the equality
hn(w) = hp(wwp). The invariance of the Haar measure my with respect to

translates by points from € leads to the equality meL;I = mgh,'. The
lemma is proved. [ ]
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4. Approximation in the mean

Let, for j=1,...,7rp and 0 > 1,

aa Am—a;)/4;,]
LD DR
77;511;(1'7"10(1 qj)
and N (m)
—~ —~ A(m—a: L jwalm
f(s,qj,wa;a;) = Z (m aj);rql';j .
m=1
mEa,j( mod q]-)
Define
F(g7ga g) :(C(Ula 15 a1)7 et C(O-T7O‘T'; aT)? f(ahal)? f(al’ al;al)? sty
f(8T17a7“1)7 f(aruam;am))a
and
E(ga C:%i)v g) :(C(Uh a1, W11;5 a1)7 SRR C(o-TvO‘Tawl’r'; a?')a f(a\halan)a

f(&1,&1,td2;al), .- '7f(&7‘17&7"1?w2)? f(a\h’ahvw?;aﬁ))'
a) by I (0’ Q; a) and F(O’ a,w; u) by

In this section, we approximate F'(c, a;
te by 0 = 0r+2r, “the Euclidean metric on

F,(0,0,w;a) in the mean. Deno

(Cr+2r1

Lemma 4.1. Suppose that min( min o;, min 3j) > % Then
1<<r 2 1<i<n

T
1
lim limsup?/g(ﬂ(g+ t,asa), F(

Nn—00 T_yno

HQ

+it, a; a))dt = 0.

Proof. The lemma follows from one-dimensional results obtained in [4], Lem-
ma 6 and equality (13), and from the definition of p. |

Lemma 4.2. Suppose that the numbers aq,...,q, are algebraically indepen-

dent over Q, and that min(1r<m£1 Ojs 1£n1<n O'J) > % Then, for almost all
SIST SIS

w e Q,
. T
lim lim sup T / o(E(0 +it,aw; a), F(0 +it,aw; a))dt = 0.

Nn—00 T_yn~o
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Proof. The algebraic independence of the numbers aq, ..., a, implies their
transcendence. Therefore, the lemma is a consequence of similar one-dimen-
sional equalities given in [4], Lemma 7 and equality (14), and of the fact that
the Haar measure mp is the product of the Haar measures on (215, B(Q1;)),
j=1,...,r, and (Q2,B(Q2)). [ ]

5. Proof of Theorem 1.3

We start with the following statement.

Lemma 5.1. Suppose that the numbers aq,...,q, are algebraically indepen-

dent over Q, and that min(1r<m£1 oj, 1£m<n 0']) > % Then the probability
IST IR

measures

Py r(A) = 1{t €[0,7]: E(g +it,a;a) € A}, AeB(Crtmy,
and

Pir(A) 1{15 €[0.T): F(o+it,awia) € A}, A€ BC2),

converge weakly to the same probability measure Py on (CTT2m1 B(CT+2m)) as
T — o0.

Proof. For the proof of the lemma, it suffices to pass from the measures
Pr,, and PTn to the measures P; r and P1 T rebpectlvely Let 6 be a ran-
dom variable defined on a certain probability space (Q, B( ), P) and uniformly
distributed on [0, 1]. Define

Xpn(9) =(Xrma(01), ... X1 (00), X71(61), X701 (G1), - - -
X1, G )s X1, (G2,)) = B, (0 +i0T, 0 a).

Then, denoting by L, the convergence in distribution, we have, in view of

Lemma 3.1, that, for min( min o;, min ;) > 1,
1<G<r 2 1<

—00 =

(5.1) Xra(o) 5 X, (0),

where

X, (0) = (Xp1(01), s X (00), X1(51), X1 (G1)5 -+ s Xy (Gry) X, (G))
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is the C™*2"1-valued random element with the distribution P,, and P, is the
limit measure in Lemma 3.1.

It is not difficult to see that the family of probability measures {P, : n €
€ N} is tight. Indeed, the series for (, (s, a;; a) and f,(s,a;;a;) are convergent
absolutely for o > % Therefore, we have that, for o; > % and 7; > %,

2 - |am"2u2(maa')
lim —/lcn oj it agap)Pdt = 0 P I T AT o

P o (m+aj)20'1

oo

Z |amj|

)2

= (m+ ;)20
and

o —~ 2,2

(@ m—a;)/0;.41*va (M)
Thj};{)?/Ucn gj +Zt Oéj,a])| dt = 7; JmQJEj - S

mzaj(mod qj)

— a 12
< A(m—a;)/q;.
m=1 m /
nzzaj(mod qJ)

formeN,j=1,...,r,and j=1,...,71, respectively. Now, denoting

[e'S) ‘amj| 1/2
R;j = Rj(0;) = (Z m+ a; 2a]>
and

m2a']

@ 2\

= S o~ A(m—a;)/q;,j

R; = R;(0;) = ( > f”) 7
m=1

m=a;( mod q;)

we obtain that

(5.2) limsup — /|Cn oj +it,a 5 a5)|dt < Rj(oj), j=1,...,r

T— 00

and

1 N S .
(5.3) limsupf/|fn(aj+zt7aj;aj)\dt<Rj(aj), j=1,...,1r.

T—o0
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Let € be an arbitrary positive number, and M; = R;(3r)"te™ !, j =1,...,r,
M; = qu(3r1)_15_1, M, = Rj(37")_15_1, j=1,...,r1. Then we deduce from
(5.2) and (5.3) that

li;nsupp((ﬂj X (o) > My) \ @i+ | X5 >
—0o0

> Mij A (3j 1 [X7n,i(65)] > May)) <

r
< ZlimsupP(|XT7n,j(aj)| > Mj)‘F

j=1 T—o0
T1 71
+ ) limsupP(|Xr;(0;)| > Myj) + > limsupP(| X1, ;(5;)] > Ma;)
Ji—1 T—00 j=1 T—o0
- . 1 ,
Zsuphmsup— |Gn (o +it, a5 a;)|dt

S neN T—oo M;

~ O\q

T1
1 ~ Lo~
+§ limsup — [ |f(o; + it, @;)|dt
j=1 T— o0 Mlj 4

(5.4)
T

T1
1 o
+ E sup limsup —=— | |fn(0; + it, Q;0;)|dt < e.
j=1 neN T—oo 2j d

This and (5.1) show that, for all n € N,
P((3 « [ Xnj(0)| > M) A(EFj « 1X;(65)] > M) A3« 1X0,;(55)] > Maj) <e.
Let
r o o 1/2
2 2 2
M (oYY 0
j=1 j=1 j=1

Define the set K. = {z € C**?" : (2,0) < M}. Then K. is a compact subset

of C"2" and, by (4) P(X,,(¢0) € K.) > 1 —¢ for all n € N, or equivalently,

P,(K.) > 1—c¢ for all n € N. This means that the family {P,, : n € N} is tight.
Hence, by the Prokhorov theorem, Theorem 6.1 of [1], it is relatively compact.
Therefore, there exists a subsequence {P,,} C {P,} such that P,, converges
weakly to a certain probability measure P; on (C"271 B(C"21)) as k — oo,
that is

(5.5) X, (o) 25 Py

=" k—o
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Define the C"*?"-valued random element X (o) = F(o 4i0T,a;a). Then,

using Lemma 4.1, we find that, for every ¢ > 0,

lim limsupP(p (XT( ), XTn( ))=e)=0.

Nn—0o0 T_yno

This, (5.1), (5.5) and Theorem 4.2 of [1] give the relation

(5.6) Xp(9) Tj Py,

and we have that P, r converges weakly to P as T' — oco. Moreover, (5.6)
shows that the measure P; is independent of the sequence {P,, }. Hence,

X, (o) 2 Py

= n—oo

Similar arguments applied for the C™+27-valued random elements )N(T,n (0) =
= F, (0 +ifT, o, w; a) and XT(g) = F(0 +ifT, o, w; a) together with Lemma 4.2
and (6) show that the measure 1—:’1,T also converges weakly to P, as T" — oo.

Proof of Theorem 1.3. First we identify the limit measure P; in Lemma 5.1.
For this, we apply the ergodicity of the one-parameter group {¢p; : t € R}, where

@t(g, ) = ((m4+a)™:meNy),...,(m+a,)"" :m € Ny),

IR

(p—it:peP))w, weq,
of measurable measure preserving transformations on  [3], Lemma 7.
We fix a continuity set A of the measure P; in Lemma 5.1. Then, by
Theorem 2.1 of [1] and Lemma 5.1, we have that

1
(5.7) lim —meas{t € [0,T]: F(o +it,a,w;a) € A} = P(A).
T—oo T = 2=

Let the random variable £ be defined on (£, B(€2), my) by the formula

1 if F(o,a,w;
w-{} 1z

0 otherwise.

e

) € 4,

Then the expectation

(5.8) ES =mp(weQ: F(o,a,w;ia) € A) = Pp(A),
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where Pp is the distribution of F'. The ergodicity of the group {¢; : t € R}
implies that of thew random process {(¢¢(w,@)). Therefore, by the Birkhoff-

Khintchine theorem. see, for example, [2], we obtain that, for almost all w € €,

(5.9) i 7 [ €Ceu(ws )t = B

However, the definitions of ¢ and ¢; show that

7 [ it e = fmeast < 0.7): B¢

IIQ

+it, o, w; a) € A}
This together with (5.8) and (5.9) leads, for almost all w € €2, to

1
lim Tmeab{t €[0,T): F(o+it,,w;a) € A} = Pp(A).

T— 00
Hence, find that Pi(A) = Pg(A) for all continuity sets A of P;. Hence, P
coincides with Pp.
It remains to pass from Pj 1 to Pr. Define the function h : C"+2 — C" ™
by the formula
h(Zh ey Rpy R115R125 -+ - 5 Rl ZT-2) = (2’1, ey Ry R115 R12 - e ey Zrl,ZTQ).

Then h is a continuous function, and Pr = PLTh’l. This, the weak conver-
gence of P, 1 to Pp and Theorem 5.1 of [1] show that the measure Pr converges
weakly to Pph~1 as T — oco. Moreover, for A € B(Cr*7e),

Pph™'(A) = myh ' (weQ:F(o,a,w E) €A =

= mH(WGQ ( 1,@1,&]1,&1) ..,C(ar,ar,wlr;ar),f(Gl,&l,wg)

(o
)a . '7f(armam?‘*)?)f(ahvamvw?;arl)) € A) =
(

= mH(i} € (C 01, 1, W11; al)a e .7C(0'7-,(17«,0J11; CL,«),

= : C
f(51,a1,w2;al

g(alaa17w2;a1)7~ 3 (UT17a713w27a7'1)) EA) =
= my(we:((g,a,w;a) € A) = P(A).
Thus, the measure Pr converges weakly to P; as T' — oo. The theorem is

proved. |
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