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Abstract. In this note, we prove that an additive function which differ-
entiates any of a function from a rather rich list of so-called elementary
functions, in some sense, is real derivation. Furthermore, we discuss the
partially exceptional case of power functions and open problems will also
be formulated.

1. Introduction

Derivations play an important role in several areas of mathematics. In our
setting, we deal only with real derivations (in the following, we call these func-
tions, simply, derivations) and we define them as the solutions of the following
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system of functional equations, that is, a derivation is a function d : R → R
(the set of all real numbers) for which the functional equations

(1.1) d(x+ y) = d(x) + d(y) (x, y ∈ R)

and

(1.2) d(xy) = xd(y) + yd(x) (x, y ∈ R)

hold simultaneously for all x, y ∈ R. The solutions of (1.1) are called additive
functions and, somewhat surprisingly, it is true that there is non-zero additive
function d that fulfils (1.2), too. (See e.g. Kuczma [8].) We mention here just
one application of this fact. (For the details see Aczél–Daróczy [1].) In 1970,
Daróczy and Kátai [4] proved that every nonnegative information function f
coincides with the Shannon information function S defined by

S(x) = −x log2 x− (1− x) log2(1− x) (x ∈ [0, 1], 0 log2 0 = 0)

at the rational points of the closed interval [0, 1], and if, in addition, f is
bounded above then f = S on [0, 1]. This result, which is very important from
the point of view of the characterizations of the Shannon entropy, supported
the conjecture that every nonnegative information function coincides with S on
the entire interval [0, 1]. However, seven years later, it was proved in Daróczy–
Maksa [5], that f(x) ≥ S(x) for all nonnegative information functions f and
for all x ∈ [0, 1], but there exists nonnegative information function f0 which is
different from S, namely, if d is a non-zero derivation then f0 defined by

f0(x) =

{
S(x) + d(x)2

x(1−x) , if 0 < x < 1,

0, if x ∈ {0, 1}
is such a function.

In this paper, we deal with the following problem. Suppose that the function
d : R → R satisfies equation (1.1). What has to be supposed additionally on d to
obtain that it is a derivation. There are several known answers to this question
in the literature (see among others Kurepa [9], [10], Nishiyama–Horinouchi [11],
Boros–Erdei [2], Boros–Gselmann [3], Gselmann [7]). In this note, we intend
to contribute to these results.

2. Preliminary results

In this section, firstly we collect some known results related to our problem.
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Theorem 2.1. Let I ⊂ R be an interval of positive length and ϕ : I → R be a
differentiable function. Suppose that d : R → R satisfies (1.1) and

(2.1) d(ϕ(x)) = ϕ′(x)d(x) (x ∈ I).

Then d is a derivation in any of the following cases.

(i) Kurepa [9]: ϕ(x) = x2, x ∈ R,

(ii) Kurepa [10]: ϕ(x) = x−1, 0 	= x ∈ R,

(iii) Nishiyama–Horinouchi [11] and Boros–Gselmann [3]: ϕ(x) = xa,
0 < x ∈ R, where a ∈ Q \ {0, 1} is fixed (Q denotes the set of all ra-
tional numbers),

(iv) Boros–Erdei [2]: ϕ(x) =
√
1− x2, −1 < x < 1.

Furthermore, any derivation d satisfies (2.1) in all of the above cases.

In what follows, by algebraic and transcendental number we always mean
algebraic and transcendental real number over Q, respectively. Furthermore
we say that the additive function d differentiates the differentiable function
ϕ : I → R, if (2.1) holds for all x ∈ I. Our aim is to extend the above list
of differentiable functions ϕ so that equations (1.1) and (2.1) should imply
that d is a derivation. To do this we use some basic properties of derivations
summarizing in the following lemma (see e.g. [8], pp. 346–352).

Lemma 2.1. The following statemants are true.

(i) If d is a derivation then d(α) = 0 for all algebraic α ∈ R.

(ii) If t ∈ R is transcendental and s ∈ R then there exists a derivation d such
that d(t) = s.

(iii) If d is a derivation and it is bounded above or below on a set of positive
Lebesgue measure then d is identically zero.

An other tool of our investigations will be the following lemma which is an
immediate consequence of Lemma 7. in [7] with n = 2,m = 1, and κ = 2.

Lemma 2.2. If d : R → R satisfies (1.1) and there exist a measurable set
A ⊂ R of positive Lebesgue measure and K ∈ R such that

|d(x2)− 2xd(x)| ≤ K (x ∈ A)

then the function x → d(x) − d(1)x, x ∈ R is a derivation. If, in addition,
d(1) = 0 or K = 0 then d is a derivation itself.
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3. Main results

A part of our results are contained in the following

Theorem 3.1. Suppose that the additive function d : R → R differentiates any
of the following functions (i.e. (1.1) and (2.1) hold with ϕ)

(i) ϕ(x) = ax, x ∈ R, (0 < a 	= 1),

(ii) ϕ(x) = cosx, 0 < x < π,

(iii) ϕ(x) = sinx, −π
2 < x < π

2 ,

(iv) ϕ(x) = tanx, −π
2 < x < π

2 ,

(v) ϕ(x) = cotx, 0 < x < π,

(vi) ϕ(x) = coshx, 0 < x ∈ R,

(vii) ϕ(x) = sinhx, x ∈ R,

(viii) ϕ(x) = tanhx, x ∈ R,

(ix) ϕ(x) = cothx, 0 < x ∈ R.

Then d is a derivation.

Proof. Case (i). In this case, d(ax) = ax ln a d(x) for all x ∈ R. Therefore

d(a2x) = a2x ln a d(2x) = 2axax ln a d(x) = 2axd(ax) (x ∈ R).

Thus d(x2) = 2xd(x) holds for all 0 < x ∈ R, and so Lemma 2.2. implies that
d is a derivation.

Case (ii). In this case, d(cosx) = − sinx d(x) for all 0 < x < π. Therefore
d(cos 2x) = − sin 2x d(2x) for all 0 < x < π

2 . Thus, by well-known trigonomet-
ric identities, we have that

d(2 cos2 x− 1) = −4 sinx cosx d(x) = 4 cosxd(cosx)
(
0 < x <

π

2

)
whence

(3.1) d(2x2 − 1) = 4xd(x) (0 < x < 1)

follows. With the substitution x = 1
2 , (3.1) implies that d(1) = 0 (since d

is additive). Thus, again by (3.1), we get that d(x2) = 2xd(x) holds for all
0 < x < 1, and so Lemma 2.2. implies again that d is a derivation.

Case (iii). In this case, d(sinx) = cosx d(x) for all −π
2 < x < π

2 . Therefore
d(sin(x− π

2 )) = cos(x− π
2 ) d(x− π

2 ) for all 0 < x < π, that is,

d(cosx) = − sinx d(x) + d
(π
2

)
sinx (0 < x < π)



On additive functions 129

and so, as in the proof of (ii), we obtain that

d(2 cos2 x− 1) = 4 cosx d(cosx)− d(π) sinx cosx
(
0 < x <

π

2

)
.

Hence

(3.2) d(2x2 − 1) = 4xd(x)− d(π)x
√
1− x2 (0 < x < 1)

follows. The substitutions x = 3
5 and x = 4

5 show that 43d(1)−12d(π) = 0 and
57d(1) − 12d(π) = 0, respectively. Therefore d(1) = d(π) = 0 and, by (3.2),
Lemma 2.2. implies that d is a derivation.

Case (iv). In this case,

(3.3) d(tanx) =
1

cos2 x
d(x)

(
−π

2
< x <

π

2

)
.

Therefore

d
(
tan

(
x+

π

2

))
=

1

cos2(x+ π
2 )

d
(
x+

π

2

)
(−π < x < 0),

that is,

d(cotx) = − 1

sin2 x
d(x)− d

(π
2

) 1

sin2 x
(−π < x < 0).

This and (3.3) imply that

sin2 x d(cotx) = −d(x)−d
(π
2

)
= − cos2 x d(tanx)−d

(π
2

) (
−π

2
< x < 0

)
,

that is,

(3.4) −d
(π
2

)
= d(tanx) cos2 x+ d(cotx) sin2 x

(
0 < x <

π

2

)
.

The substitution x = π
4 shows that −d(π2 ) = d(1). Applying trigonometric

identities and taking into consideration that the image of the interval ]0, π
2 [

under the tangent function is the set of all positive real numbers, (3.4) implies
that

d(1) = d(x)
1

1 + x2
+ d

(
1

x

)
x2

1 + x2
(x > 0),

whence

(3.5) d

(
1

x

)
= d(1)

1 + x2

x2
− 1

x2
d(x) (x > 0)
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follows. By using the additivity of d, an idea from Kurepa [10], and (3.5), for
all x > 0, we get that

d(1)
1 + x2(x+ 1)2

x2(x+ 1)2
− 1

x2(x+ 1)2
d(x(x+ 1)) = d

(
1

x(x+ 1)

)
=

= d

(
1

x

)
− d

(
1

x+ 1

)
=

= d(1)
1 + x2

x2
− 1

x2
d(x)− d(1)

x2 + 2x+ 2

(x+ 1)2
+

1

(x+ 1)2
(d(x) + d(1)).

After an easy calculation and some rearrangements, we obtain that

d(x2)− 2xd(x) = d(1)(x4 + 2x3 − 2x) (x > 0).

With x = 1, we have that d(1) = 0 and so Lemma 2.2. can be applied again to
get that d is a derivation.

Case (v). In this case,

(3.6) d(cotx) = − 1

sin2 x
d(x) (0 < x < π).

Thus

d
(
cot

(
x+

π

2

))
= − 1

sin2(x+ π
2 )

d
(
x+

π

2

) (
−π

2
< x <

π

2

)
,

therefore

d(tanx) =
1

cos2 x
d(x) + d

(π
2

) 1

cos2 x

(
−π

2
< x <

π

2

)
.

On the other hand, with the substitution x = π
2 , (3.6) implies that d(

π
2 ) = 0,

hence the equation above implies (3.3), and our statement follows from the
Case (iv).

Case (vi). In this case, d(coshx) = sinhx d(x) for all 0 < x ∈ R. Therefore
d(cosh 2x) = sinh 2x d(2x) for all 0 < x ∈ R. Thus, by well-known identities,
we have that

d(2 cosh2 x− 1) = 4 sinhx coshx d(x) = 4 coshx d(coshx) (0 < x ∈ R)

whence

(3.7) 2d(x2)− d(1) = 4xd(x) (1 < x)
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follows. With the substitution x = 2, (3.7) implies that d(1) = 0. Thus, again
by (3.7), we get that d(x2) = 2xd(x) holds for all 1 < x, and so Lemma 2.2.
yields that d is a derivation.

Case (vii). In this case,

(3.8) d(sinhx) = coshx d(x) (x ∈ R).

Let x, y ∈ R and write x + y in (3.8) instead of x. Using the identities of the
hyperbolic sine and the hyperbolic cosine functions, the additivity of d, and
(3.8) again, we get that

d(sinhx cosh y) + d(sinh y coshx) =

= coshx d(x) cosh y + coshx cosh y d(y) + d(x+ y) sinhx sinh y =

= d(sinhx) cosh y + d(sinh y) coshx+ d(x+ y) sinhx sinh y.

Repeating this computation with −y instead of y and adding the equation so
obtained to the above one, side by side, we have that

(3.9) d(sinhx cosh y) = d(sinhx) cosh y + d(y) sinhx sinh y (x, y ∈ R).

With the substitution x = arsinh 1 = ln(1 +
√
2), this implies that

d(cosh y) = d(1) cosh y + d(y) sinh y (y ∈ R).

Thus, it follows from (3.9) that

d(sinhx cosh y) = d(sinhx) cosh y + d(cosh y) sinhx− d(1) sinhx cosh y

holds for all x, y ∈ R. Taking into consideration the ranges of the functions
involved in the equation above, we obtain that

(3.10) d(xy) = d(x)y + d(y)x− d(1)xy (x ∈ R, 1 ≤ y ∈ R).

Now we show that d(1) = 0. Indeed, (3.8) implies that, for all x ∈ R,
d(sinh 2x) = cosh 2x d(2x), hence

d(2 sinhx coshx) = 2(2 cosh2 x− 1) d(x) = 2
2 cosh2 x− 1

coshx
d(sinhx)

which implies that

d(x
√
1 + x2) =

2x2 + 1√
1 + x2

d(x) (x ∈ R).

Finally, with the substitution x = 3
4 , we obtain that d(1) = 0. Thus, it follows

from (3.10) that d(x2) = 2xd(x) holds for all 1 < x, and so Lemma 2.2. yields
again that d is a derivation.
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Case (viii). In this case,

d(tanhx) =
1

cosh2 x
d(x) (x ∈ R),

that is,

d

(
ex − e−x

ex + e−x

)
=

4

(ex + e−x)2
d(x) (x ∈ R).

Substitute here x by ln
√
x, (x > 0) to get that

(3.11) d

(
x− 1

x+ 1

)
=

2x

(x+ 1)2
d(lnx) (0 < x ∈ R.

Define the function p by

(3.12) p(x) = xd(lnx) (0 < x ∈ R.

Then, because of the additivity of d, we have that

(3.13) p(xy) = xp(y) + yp(x) (0 < x, 0 < y).

Particularly,

(3.14) p(x2) = 2xp(x) and p

(
1

x

)
= − 1

x2
p(x) (0 < x, 0 < y).

On the other hand, for all x > 0, we obtain that

d(1) = d

(
x+ 1

x+ 1

)
= d

(
x

x+ 1

)
+ d

(
1

x+ 1

)
.

Therefore it follows from (3.11) and (3.12) that

(3.15) p(x) =
(x+ 1)2

2

(
d(1)− 2d

(
1

x+ 1

))
(0 < x ∈ R).

This and (3.14) imply that

(x2 + 1)2

2

(
d(1)− 2d

(
1

x2 + 1

))
= x(x+ 1)2

(
d(1)− 2d

(
1

x+ 1

))
holds for all x > 0. Let here x = 2. Then an easy calculation shows that
d(1) = 0. Hence, it follows from (3.15) that

(3.16) p(x) = −(x+ 1)2d

(
1

x+ 1

)
(0 < x ∈ R.
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In what follows, we show that

(3.17) p(x) = p(x+ 1) (0 < x ∈ R).

Indeed, by (3.16) and the additivity of d, for all x > 0, we have that

p(x2 + 3x+ 1) = −(x+ 1)2(x+ 2)2d
(

1
x+1 − 1

x+2

)
= (x+ 2)2p(x)− (x+ 1)2p(x+ 1).

Replacing here x by 1
x , we get that

p
(

x2+3x+1
x2

)
= (2x+1)2

x2 p
(
1
x

)− (x+1)2

x2 p
(
x+1
x

)
.

holds for all x > 0. Taking into consideration (3.13) and (3.14), after an
elementary calculation, it turns out from the above equation that

p(x2 + 3x+ 1) =
3x2 + 5x+ 1

x
p(x)− (x+ 1)2

x2
p(x+ 1) (x > 0).

Comparison of the values of p(x2 + 3x+ 1) finally leads to the equality p(x) =
= p(x + 1), (0 < x 	= 1.) Since d(1) = 0, (3.16) implies that p(x) = p(x + 1),
(0 < x). To finish the proof of this case, let 1 < x ∈ R. Then (3.17) and (3.16)
imply that

p(x) = p(x− 1) = −x2d

(
1

x

)
. (x > 1)

Hence, by (3.14), we obtain that − 1
x2 p(x) = p

(
1
x

)
= − 1

x2 d(x), that is, p(x) =
= d(x) for all 0 < x < 1. Therefore, again by (3.14), d(x2) = p(x2) = 2xp(x) =
= 2xd(x) for all 0 < x < 1, and it follows from Lemma 2.2. that d is a
derivation.

Case (ix). In this case,

d(cothx) = − 1

sinh2 x
d(x) (0 < x ∈ R).

Well-known identities imply that

d

(
1

tanh 2x

)
= − 1

2 sinh2 x cosh2 x
d(x) =

1

2 cosh2 x
d

(
1

tanhx

)
,

that is,

d

(
1 + tanh2 x

2 tanhx

)
=
1− tanh2 x

2
d

(
1

tanhx

)
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holds for all 0 < x. Therefore d
(

1+x2

x

)
= (1− x2)d

(
1
x

)
, if 0 < x < 1, i.e.,

(3.18) d(x) = −x2d

(
1

x

)
(0 < x < 1).

The substitution x = 1
2 and the additivity of d show that d(1) = 0 and if we

replace x in (3.18) by 1
x , (x > 1) we obtain that

d(x) = −x2d

(
1

x

)
(x > 0).

In what follows, we use this equality, the additivity of d, and an idea from
Kurepa [10] to get, for all x > 0, that

− 1

x2(x+ 1)2
d(x(x+ 1)) = d

(
1

x(x+ 1)

)
=

= d

(
1

x

)
− d

(
1

x+ 1

)
= − 1

x2
d(x) +

1

(x+ 1)2
d(x+ 1) = − 2x+ 1

x2(x+ 1)2
d(x),

whence d(x2) = 2xd(x), (x > 0) follows, and Lemma 2.2. completes the proof
also in this case. �

With the help of the following simple observation, we can extend the list
involved in the theorem we have just proved.

Lemma 3.1. Let d : R → R be a function, ϕ : I → R be a differentiable
function with nowhere zero derivative and ψ = ϕ−1. Suppose that (1.1) and
(2.1), that is,

d(x+ y) = d(x) + d(y) (x, y ∈ R), and

d(ϕ(x)) = ϕ′(x)d(x) (x ∈ I)

imply that d is a derivation. Then (1.1) and

(3.19) d(ψ(x)) = ψ′(x)d(x) (x ∈ ϕ(I)).

imply the same.

Proof. Let t ∈ I and x = ϕ(t) in (3.19). Then we get that

d(t) = ψ′(ϕ(t))d(ϕ(t)) =
1

ϕ′(t)
d(ϕ(t))

whence (2.1) follows with t instead of x. �
As a consequence of the previous lemma and Theorem 3.1., we also can

conclude the following

Corollary 3.1. Let 0 < a 	= 1 be a fixed real number and suppose that the
additive function d : R → R differentiates any of the following functions (i.e.
(1.1) and (2.1) hold with ϕ)
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(i) ϕ(x) = loga x, 0 < x ∈ R,

(ii) ϕ(x) = arccosx, −1 < x < 1,

(iii) ϕ(x) = arcsinx, −1 < x < 1,

(iv) ϕ(x) = arctanx, x ∈ R,

(v) ϕ(x) = arccotx, x ∈ R,

(vi) ϕ(x) = arcoshx, 1 < x ∈ R,

(vii) ϕ(x) = arsinhx, x ∈ R,

(viii) ϕ(x) = artanhx, −1 < x < 1,

(ix) ϕ(x) = arcothx, 1 < x ∈ R.

Then d is a derivation.

4. Remarks and problems

Remark 4.1. The power functions x → xa are missing from the list of The-
orem 3.1. and also from the list of Corollary 3.1. On the other hand, by the
results of Nishiyama-Horinouchi[11] and Boros-Gselmann[3], we know that, if
a ∈ Q \ {0, 1}, then an additive function d : R → R is a derivation if, and only
if,

(4.1) d(xa) = axa−1d(x) (0 < x),

that is, d differentiates the power function x → xa, (x > 0). We are not able
to prove similar statement for irrational exponent a. It may have some inter-
est however that for every irrational algebraic exponent a there is a derivation
d which does not differentiate the power function x → xa, (x > 0). Indeed,
if a is an irrational algebraic number then, by the Gelfond-Schneider theo-
rem (Gelfond[6], Schneider[12]) 2a is transcendental. Taking into consideration
Lemma 2.1. (ii) and (i), there exists a derivation d such that d(2a) = 1. Since
d(2) = 0, equation (4.1) is not satisfied by d at the point x = 2.

Remark 4.2. We are not able to prove the reversal of our statements in any
case listed in Theorem 3.1. or Corollary 3.1. Therefore we formulate the
following open problems.

Problem 4.1. Prove or disprove that the derivations differentiate the function
ϕ listed in Theorem 3.1 or Corollary 3.1., or at least

Problem 4.2. Prove or disprove that there exists non-zero derivation d such
that d(ex) = exd(x) holds for all x ∈ R !
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Warszawa–Kraków–Katowice, 1985.

[9] Kurepa, S., The Cauchy functional equation and scalar product in vector
spaces, Glasnik Mat.-Fiz. Astronom., (2) 19 (1964), 23–26.

[10] Kurepa, S., Remarks on the Cauchy functional equation, Publ. Inst.
Math. (Beograd), 5(19) (1965), 85–88.

[11] Nishiyama, A. and S. Horinouchi, On a system of functional equa-
tions, Aequationes Math., 1 (1968), 1–5.

[12] Schneider, Th., Transzenderzuntersuchungen periodischer Funktionen:
I Transzendenz von Potenzen; II Transzendenzeigenschaften ellipticher
Funktionen, Journal reine Angew. Math., 172 (1934), 65–74.

Gy. Maksa
Institute of Mathematics
University of Debrecen
Egyetem tér 1.
Debrecen
Hungary
maksa@science.unideb.hu




