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Abstract. It is proved that a certain composite function involving several
Dirichlet L-functions satisfies a hybrid universality property, that is, a
combination of usual universality and certain Diophantine inequalities. A
joint version for several composite functions is also obtained.

1. Introduction and statement of results

It is well known that the distribution of the values of the Riemann zeta-
function ζ(s), s = σ + it, is very mysterious and fascinating. More than one
hundred years ago, H. Bohr obtained in [3] that the function ζ(s), in the region
1 < σ < 1 + δ with arbitrary δ > 0, takes every non-zero value infinitely many
times. A little later, jointly with R. Courant, he proved in [4] that, for every
σ, 1

2 < σ ≤ 1, the set

(1) {ζ(σ + it) : t ∈ R}
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is dense in C. The extension of the Bohr-Courant result to the space Ck,
k ∈ N, was done by S. M. Voronin [23] in 1970s. He obtained that, for every
σ, 1

2 < σ < 1, the set{(
ζ(σ + it), ζ ′(σ + it), . . . , ζ(k−1)(σ + it)

)
: t ∈ R

}
is dense in Ck. Voronin did not stop there. He developed his method further
and found an infinite-dimensional version of the Bohr-Courant theorem on the
denseness of the set (1), by proving in [24] a very interesting theorem on the
approximation of analytic functions by shifts ζ(s+iτ), τ ∈ R. Now this theorem
is called the Voronin universality theorem. We will state an improved version
of the Voronin theorem. Let D = {s ∈ C : 1

2 < σ < 1}. Denote by K the
class of compact subsets of the strip D with connected complements, and let
H0(K), K ∈ K, stand for the class of continuous non-vanishing functions on
K which are analytic in the interior of K. Also let meas{A} be the Lebesgue
measure of a measurable set A ⊂ R. Then the modern version of the Voronin
theorem has the following form (see, for example, [8, 22]):

Theorem 1. Let K ∈ K and f(s) ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− f(s)| < ε

}
> 0.

Theorem 1 asserts that the set of shifts ζ(s + iτ) approximating a given
analytic function is infinite and has a positive lower density.

Theorem 1 attracted attention of many mathematicians; it was general-
ized to other zeta and L-functions, and the problem of its effectivization was
investigated. See [8, 9, 13, 14, 15, 22] for references and results.

Voronin also succeeded in generalizing Theorem 1 to a collection of Dirichlet
L-functions L(s, χ). In [25], in a non-explicit form, he proved a joint univer-
sality theorem on a simultaneous approximation to a collection of analytic
functions by shifts L(s+ iτ, χ1), . . . , L(s+ iτ, χr). We state a modern version
of this theorem (see [11]):

Theorem 2. Let χ1, . . . , χr be pairwise non-equivalent Dirichlet characters.
For j = 1, . . . , r, let Kj ∈ K and fj(s) ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤r
sup
s∈Kj

|L(s+ iτ, χj)− fj(s)| < ε

}
> 0.

B. Bagchi in [1] and [2] obtained, independently of [25], a similar joint
universality theorem for distinct Dirichlet characters χ1, . . . , χr modulo q.
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S. M. Gonek in his thesis [6] proposed a new version of the joint universality
for Dirichlet L-functions. Denote by ‖u‖ the distance from u to the nearest
integer. The following theorem of Gonek connects the Kronecker theorem in
the theory of Diophantine approximation with Voronin’s theorem on joint uni-
versality.

Theorem 3. Let q ∈ N, and let K be a simply connected compact subset of
the strip D. To each prime p | q, we attach a real number θp with 0 ≤ θp < 1,
and to each Dirichlet character χ(mod q), we attach a function fχ(s) which is
continuous on K and analytic in the interior of K. Then, for every ε > 0,
there exists a number τ ∈ R such that

max
s∈K

∣∣∣L(s+ iτ, χ)− efχ(s)
∣∣∣ < ε, for all χ(mod q),

and ∥∥∥∥−τ log p

2π
− θp

∥∥∥∥ < ε, for all p | q.

This theorem was improved by J. Kaczorowski and M. Kulas [7]. They
proved the following hybrid joint universality theorem.

Theorem 4. Let χ1, . . . , χr be pairwise non-equivalent Dirichlet characters
and K ∈ K. For j = 1, . . . , r, let fj(s) ∈ H0(K). Then, for every sequence
{θp}p≤z of real numbers indexed by primes up to z and for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

1≤j≤r
max
s∈K

|L(s+ iτ, χj)− fj(s)| < ε,

max
p≤z

∥∥∥∥τ log p2π
− θp

∥∥∥∥ < ε

}
> 0.

	L. Pańkowski in [21] replaced the sequence { log p
2π }p≤z in Theorem 4 by an

arbitrary sequence {αj}1≤j≤m of real numbers linearly independent over the
field of rational numbers Q.

It is to be noted that, applying hybrid universality theorems, we can show
new universality results and also new zero-distribution results on various zeta
and multiple zeta-functions (see Nakamura and Pańkowski [18], [19], [20]).

In [11], universality theorems for F (L(s, χ1), . . . , L(s, χr)) for some classes
of operators F were obtained. Denote by H(D) the space of analytic functions
on D equipped with the topology of uniform convergence on compacta, and let

S = {g ∈ H(D) : g−1(s) ∈ H(D) or g(s) ≡ 0}.
Moreover, let H(K), K ∈ K, be the class of continuous functions on K which
are analytic in the interior of K. Then the following theorem is one of the
results from [11].
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Theorem 5. Suppose that χ1, . . . , χn are pairwise non-equivalent Dirichlet
characters, and that F : Hr(D) → H(D) is a continuous operator such that,
for every open set G ∈ H(D), the set (F−1G) ∩ Sr is non-empty. Let K ∈ K
and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] :

: sup
s∈K

|F (L(s+ iτ, χ1), . . . , L(s+ iτ, χr))− f(s)| < ε

}
> 0.

This type of universality theorem for composite functions was first treated
in [10] in the case of the Riemann zeta-function; see also [12] and [5].

For the proof of Theorem 5, a probabilistic method based on limit theorems
for weakly convergent probabilistic measures in the space of analytic functions
is applied. However, this method does not work for the proof of hybrid joint
universality theorems. Therefore, to obtain some hybrid version of Theorem 5,
we have to search for a different way. In the present paper we propose the
following generalization of the Pańkowski theorem [21].

Let β1 > 0, . . . , βr > 0, and β = min
1≤j≤r

βj . We say that the operator

F : Hr(D) → H(D) belongs to the Lipschitz class Lip(β1, . . . , βr) if the
following hypotheses are satisfied:

1◦ For each polynomial p = p(s), and any K ∈ K, there exists an element
(g1, . . . , gr) ∈ F−1{p} ⊂ Hr(D) such that gj(s) 	= 0 on K, j = 1, . . . , r;

2◦ For any K ∈ K, there exist a positive constant c, and a set K̂ ∈ K such
that

sup
s∈K

|F (g11(s), . . . , g1r(s))−F (g21(s), . . . , g2r(s))| ≤ c sup
1≤j≤r

sup
s∈K̂

|g1j(s)−g2j(s)|βj

for all (gh1, . . . ghr) ∈ Hr(D), h = 1, 2.

Theorem 6. Suppose that χ1, . . . , χr are pairwise non-equivalent Dirichlet
characters, and that F ∈ Lip(β1, . . . , βr). Let K ∈ K and f(s) ∈ H(K).
Moreover, let {αj : j = 1, . . . ,m} be any sequence of real numbers linearly
independent over Q and {θj : j = 1, . . . ,m} be any sequence of real numbers.
Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|F (L(s+ iτ, χ1), . . . , L(s+ iτ, χr))− f(s)| < ε,

max
1≤j≤m

‖ταj − θj‖ <
(ε
2

) 1
β

}
> 0.
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Theorem 6 admits a generalization to the “joint” case. Let n ∈ N\{1}, and
Fl : H

r(D)→ H(D), 1 ≤ l ≤ n. We say that the operator Fr,n = (F1, . . . , Fn) :
: Hr(D)→ Hn(D) is in the class Lipn(β1, . . . , βr), β1 > 0, . . . , βr > 0, if:

1◦ For all polynomials p1(s), . . . , pn(s), and any K ∈ K, there exists an
element (g1, . . . , gr) ∈ F−1

r,n{p1, . . . , pn} ⊂ Hr(D) such that gj(s) 	= 0 on K,
j = 1, . . . , r;

2◦ For any K1, . . . ,Kn ∈ K, there exist a positive constant c, and a set
K̂ ∈ K such that

sup
1≤l≤n

sup
s∈Kl

|Fl(g11(s), . . . , g1r(s))− Fl(g21(s), . . . , g2r(s))| ≤

≤ c sup
1≤j≤r

sup
s∈K̂

|g1j(s)− g2j(s)|βj

for all (gh1, . . . ghr) ∈ Hr(D), h = 1, 2.

Theorem 7. Suppose that χ1, . . . , χr are pairwise non-equivalent Dirichlet
characters, and that Fr,n = (F1, . . . , Fn) ∈ Lipn(β1, . . . , βr). For l = 1, . . . , n,
let Kl ∈ K and fl(s) ∈ H(Kl). Moreover, let αj and θj be the same as in
Theorem 6. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤l≤n
sup
s∈Kl

|Fl(L(s+ iτ, χ1), . . . , L(s+ iτ, χr))−

−fl(s)| < ε, max
1≤j≤m

‖ταj − θj‖ <
(ε
2

) 1
β

}
> 0.

2. Proof of Theorems 6 and 7

We deduce Theorem 6 directly from Theorem 1.1 of [21] and the definition
of the class Lip(β1, . . . , βr).

Proof of Theorem 6. We may assume that ε is sufficiently small. By the
Mergelyan theorem on the approximation of analytic functions by polynomials
([16] [17], see also [26]), we see that there exists a polynomial p = p(s) such
that

(2) sup
s∈K

|f(s)− p(s)| < ε

2
.

Let K̂ ∈ K be the set corresponding to K in hypothesis 2◦ of the class
Lip(β1, . . . , βr). By hypothesis 1

◦ of the class Lip(β1, . . . , βr), there exists an
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element (g1, . . . , gr) ∈ F−1{p} ⊂ Hr(D) such that gj(s) 	= 0 on K̂, j = 1, . . . , r.
Let A(g1, . . . , gr) be the set of all τ ∈ R satisfying

sup
1≤j≤r

sup
s∈K̂

|L(s+ iτ, χj)− gj(s)| < c
− 1

β

1

(ε
2

) 1
β

and

max
1≤j≤m

‖ταj − θj‖ < c
− 1

β

1

(ε
2

) 1
β

,

where c1 = max(1, c). Theorem 1.1 of Pańkowski [21] assures the existence of
such a τ ; in fact, his theorem asserts

lim inf
T→∞

1

T
meas{A(g1, . . . , gr)} > 0.(3)

By hypothesis 2◦ of the class Lip(β1, . . . , βr), for τ satisfying the above in-
equalities, we have

sup
s∈K

|F (L(s+ iτ, χ1), . . . , L(s+ iτ, χr))− p(s)|

≤ c sup
1≤j≤r

sup
s∈K̂

|L(s+ iτ, χj)− gj(s)|βj ≤ c c
− β

β

1

(ε
2

) β
β ≤ ε

2
.(4)

From (3) and (4) it follows that

(5)

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] :

: sup
s∈K

|F (L(s+ iτ, χ1), . . . , L(s+ iτ, χr))− p(s)| < ε

2
,

max
1≤j≤m

‖ταj − θj‖ <
(ε
2

) 1
β

}
> 0.

However, taking into account (2), we find that{
τ ∈ [0, T ] : sup

s∈K
|F (L(s+ iτ, χ1), . . . , L(s+ iτ, χr))− p(s)| < ε

2
,

max
1≤j≤m

‖ταj − θj‖ <
(ε
2

) 1
β

}
⊂

⊂
{
τ ∈ [0, T ] : sup

s∈K
|F (L(s+ iτ, χ1), . . . , L(s+ iτ, χr))− f(s)| < ε,

max
1≤j≤m

‖ταj − θj‖ <
(ε
2

) 1
β

}
.

Combining this with (5) we obtain the theorem. �



On hybrid universality 91

Remark. Clearly, if β ≤ 1, the inequality

max
1≤j≤m

‖ταj − θj‖ <
(ε
2

) 1
β

in Theorem 6 for small ε can be replaced by

max
1≤j≤m

‖ταj − θj‖ < ε.

Proof of Theorem 7. The argument is similar to the proof of Theorem 6.
By the Mergelyan theorem, there exist polynomials p1 = p1(s), . . . , pn = pn(s)
such that

(6) sup
1≤l≤n

sup
s∈Kl

|fl(s)− pl(s)| < ε

2
.

Let K̂ ∈ K be the set corresponding to the sets K1, . . . ,Kn in hypothesis 2◦

of the class Lipn(β1, . . . , βr). Then, in view of hypothesis 1◦ of the class
Lipn(β1, . . . , βr), there exists an element (g1, . . . , gr) ∈ F−1

n,r{p1, . . . , pn} ⊂
⊂ Hr(D) such that gj(s) 	= 0 on K̂, j = 1, . . . , r.

Let A(g1, . . . , gr) be the same as in the proof of Theorem 6. For τ ∈
∈ A(g1, . . . , gr), from hypothesis 2◦ of the class Lipn(β1, . . . , βr) we have

sup
1≤l≤n

sup
s∈Kl

|Fl(L(s+ iτ, χ1), . . . , L(s+ iτ, χr))− pl(s)| ≤

≤ c sup
1≤j≤r

sup
s∈K̂

|L(s+ iτ, χj)− gj(s)|βj <
ε

2
.(7)

Combining (3) and (7) we have

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤l≤n
sup
s∈Kl

|Fl(L(s+ iτ, χ1), . . . , L(s+ iτ, χr))−

−pl(s)| < ε

2
, max
1≤j≤m

‖ταj − θj‖ <
(ε
2

) 1
β

}
> 0.

From this and (6) the theorem follows. �

3. Examples

(I) An example for Theorem 6 : For (g1, . . . , gr) ∈ Hr(D), let

F (g1, . . . , gr) = c1g
(k1)
1 + · · ·+ crg

(kr)
r ,
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where c1, . . . , cr ∈ C \ {0}, k1, . . . , kr ∈ N and g(k) denotes the k-th derivative
of g ∈ H(D). We prove F ∈ Lip(1, . . . , 1).

We take an arbitrary polynomial

p(s) = ans
n + · · ·+ a1s+ a0

and an arbitrary K ∈ K. Then, taking

g1(s) =
ans

n+k1

c1(n+ 1)(n+ 2) · · · (n+ k1)
+ · · ·+ a1s

1+k1

c1(k1 + 1)!
+

a0s
k1

c1k1!
+ C,

where C ∈ C is chosen to be |C| large enough so that g1(s) 	= 0 for s ∈ K, and
g2(s) = · · · = gr(s) ≡ 1, we have that (g1, . . . , gr) ∈ Hr(D),

F (g1, . . . , gr) = p(s),

and gj(s) 	= 0 on K, j = 1, . . . , r. Therefore, hypothesis 1◦ of the class
Lip(β1, . . . , βr) is satisfied.

Now for K ∈ K, let K ⊂ G ⊂ K̂ where G is an open set and K̂ ∈ K, and L
be a simple closed contour lying in K̂ \ G and enclosing the set K. Then the
Cauchy integral formula, for all (gk1, . . . , gkr) ∈ Hr(D), k = 1, 2, and s ∈ K,
yields

|F (g11(s), . . . , g1r(s))− F (g21(s), . . . , g2r(s))| =

=

∣∣∣∣∣∣
r∑

j=1

cj
kj !

2πi

∫
L

g1j(z)− g2j(z)

(z − s)kj+1
dz

∣∣∣∣∣∣ ≤
≤

r∑
j=1

|cj |Cj sup
s∈L

|g1j(s)− g2j(s)| ≤
r∑

j=1

|cj |Cj sup
s∈K̂

|g1j(s)− g2j(s)| ≤

≤ c sup
1≤j≤r

sup
s∈K̂

|g1j(s)− g2j(s)|,

where c = rmax1≤j≤r(|cj |Cj), and Cj is a positive constant, j = 1, . . . , r.
Thus, hypothesis 2◦ of the class Lip(β1, . . . , βr) is also satisfied with β1 =
= · · · = βr = 1. Therefore, F ∈ Lip(1, . . . , 1), and for the function

F (L(s, χ1), . . . , L(s, χr)) = c1L(s, χ1)
(k1) + · · ·+ crL(s, χr)

(kr)

the assertion of Theorem 6 is true.

(II) An example for Theorem 7 : Suppose that n ≤ r, and

Fl(g1, . . . , gr) = clg
(kl)
l ,
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where cl ∈ C \ {0}, kl ∈ N, l = 1, . . . , n. Define

Fn,r = (F1, . . . , Fn) : Hr(D)→ Hn(D),

and we check the hypotheses of the class Lipn(1, . . . , 1) for Fn,r.

Let K ∈ K, and let p1 = p1(s) be an arbitrary polynomial. Analogously to
the first example, we solve the equation

F1(g11, . . . , g1r) = p1

and find g11(s) ∈ H(D) such that g11(s) 	= 0 on K. For j = 2, . . . , r, the
function g1j(s) ∈ H(D) can be arbitrary, but g1j(s) 	= 0 on K. Similarly, from
the equation

F2(g21, . . . , g2r) = p2

with arbitrary polynomial p2 = p2(s), we find g22(s) ∈ H(D) and g22(s) 	= 0
on K. Moreover, we take g21(s) = g11(s), and, for j = 3, . . . , r, the function
g2j(s) ∈ H(D) is arbitrary such that g2j(s) 	= 0 on K. Proceeding with this
process, we obtain (g11, g22, . . . , grr) ∈ F−1

n,r{p1, . . . , pn} ⊂ Hr(D) such that
gjj(s) 	= 0 on K, j = 1, . . . , n, where gjj(s) = gnj(s) for j = n+1, . . . , r. Thus
hypothesis 1◦ of the class Lipn(β1, . . . , βr) is satisfied.

For Kl ∈ K, 1 ≤ l ≤ n, let Kl ⊂ Gl ⊂ K̃l where Gl is an open set and
K̃l ∈ K, and let Ll be a simple closed contour lying in K̃l \Gl and enclosing the
set Kl. Then, for any fixed l and all (gh1, . . . , ghr) ∈ Hr(D), h = 1, 2, s ∈ Kl,
in view of the Cauchy integral formula,

|Fl (g11(s), . . . , g1r(s))− Fl (g21(s), . . . , g2r(s))| =

=

∣∣∣∣∣∣cl kl!2πi

∫
Ll

g1l(z)− g2l(z)

(z − s)kl+1
dz

∣∣∣∣∣∣ ≤
≤ |cl|Cl sup

s∈Ll

|g1l(s)− g2l(s)| ≤ |cl|Cl sup
s∈K̃l

|g1l(s)− g2l(s)| ≤

≤ c sup
1≤j≤r

sup
s∈K̃l

|g1j(s)− g2j(s)|,

(8)

where c = max
1≤l≤n

(|cl|Cl), and Cl is a positive constant, l = 1, . . . , n. Let K̂ ∈ K
such that

n∪
l=1

K̃l ⊂ K̂.
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Then we obtain from (8) that

sup
1≤l≤n

sup
s∈Kl

|Fl (g11(s), . . . , g1r(s))− Fl (g21(s), . . . , g2r(s))| ≤

≤ c sup
1≤j≤r

sup
s∈K̂

|g1j(s)− g2j(s)|.

Thus we conclude that Fn,r ∈ Lipn(1, . . . , 1). Therefore, for Fn,r, a hybrid
joint universality theorem (Theorem 7) can be applied. For example, if χ1, χ2

and χ3 are pairwise non-equivalent Dirichlet characters, K1,K2,K3 ∈ K and
f1(s) ∈ H(K1), f2(s) ∈ H(K2) and f3(s) ∈ H(K3), then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K1

|L(5)(s+ iτ, χ1)− f1(s)| < ε,

sup
s∈K2

|L(8)(s+ iτ, χ2)− f2(s)| < ε, sup
s∈K3

, |L(10)(s+ iτ, χ3)− f3(s)| < ε,

max
1≤j≤m

‖ταj − θj‖ < ε

}
> 0.
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