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Károly Lajkó (Debrecen, Hungary)
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Abstract. Here we deal with a special characterization problem of a
conditionally specified absolutely continuous bivariate distribution by the
help of a functional equation satisfied almost everywhere on its domain for
the unknown density functions. We consider the case of conditionals of
the same type (in other words, in the same location-scale families) with
specified moments (we have linear regressions and conditional standard
deviations).

1. Introduction

Let (X,Y ) be an absolutely continuous bivariate random vector, whose
joint, marginal and conditional density functions are denoted by f(X,Y ), fX ,
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fY , fX|Y , fY |X respectively. Note that these functions are not uniquely deter-
mined, only almost everywhere. One can write f(X,Y ) in two different ways
and obtain the equation

(1.1) fX|Y (x, y)fY (y) = fY |X(x, y)fX(x)

valid for almost every (x, y) ∈ R2. This can be considered as a functional
equation for the marginal and conditional density functions. Assuming that
the conditional densities admit some properties (important from the point of
view of probability theory), the solutions can be given.

Probably Narumi was the first who studied some related questions in [7].
Later in [1] Arnold, Castillo and Sarabia showed how solutions of functional
equations can be used in characterizing joint distributions by certain properties
of conditional distributions.

In this paper we will suppose that the conditional density functions have
the form

fX|Y (x, y) = g1

(
x− a(y)

c(y)

)
1

c(y)
,(1.2)

fY |X(x, y) = g2

(
y − b(x)

d(x)

)
1

d(x)
(1.3)

for given functions a, b and for given positive functions c, d, where g1, g2
are unknown functions (necessarily densities). Equation (1.2) means that the
conditional distributions of the coordinate X with respect to the condition
Y = y are of the same type, i.e., they belong to the same location-scale family
for all y.

Then we can deduce from (1.1) a functional equation

(1.4) g1

(
x− a(y)

c(y)

)
1

c(y)
fY (y) = g2

(
y − b(x)

d(x)

)
1

d(x)
fX(x),

where g1, g2, fY , fX are unknown densities.

2. Types of distributions and location-scale families

Two distribution functions F and H are of the same type if for some
a ∈ R, c > 0

(2.1) F (x) = H

(
x− a

c

)
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for all x ∈ R, see, e.g., Resnick [8, Section 0.3]. Clearly, this is an equivalence
relation between distribution functions, and hence establishes a partition of the
set of distribution functions. For instance, the normal distributions form such
an equivalence class. These equivalence classes may also be called location-scale
families, since the equivalence class of the distribution function H consists
all of the distribution functions F given in (2.1) letting run the location
parameter a ∈ R and the scaling parameter c > 0. If X and Z are
random variables with distribution functions F and H, respectively, given
in (2.1), then X and cZ + a have the same distribution. These equivalence
classes are closed with respect to the topology of weak convergence, see the so
called convergence of types theorem, e.g., Resnick [8, Proposition 0.2]. Another
interesting feature is that a distribution is stable if and only if its location-scale
family is closed with respect to the convolution.

If F is an absolutely continuous distribution function with density f and
(2.1) holds with a distribution function H with some a ∈ R, c > 0, then H
is also absolutely continuous with some density h and

f(x) = h

(
x− a

c

)
1

c
.

Now let (X,Y ) be an absolutely continuous bivariate random vector such
that (1.2) holds. Suppose that, in addition, E(|X|) < ∞. Then the regression
curve of X with respect to Y has the form

y 
→ E(X | Y = y) = c(y)E(Z1) + a(y),

where Z1 is a random variable with density g1. If, in addition, E(|X|2) < ∞,
then the conditional standard deviation of X with respect to Y is given by

y 
→
√
Var(X | Y = y) = c(y)

√
Var(Z1),

since the conditional variance of X with respect to Y is

Var(X | Y = y) = E[(X − E(X | Y = y))2 | Y = y] = c(y)2 E[(Z1 − E(Z1))
2] =

= c(y)2Var(Z1).

Clearly, the regression curve and the conditional standard deviation are linear
functions of the condition if and only if the functions a and c are linear. We
will restrict ourselves to this case.
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3. Linear regressions and conditional standard deviations

Consider the case when the functions a, b c and d are linear functions of
the form

a (y) = m1y+c1, b (x) = m2x+c2, c (y) = λ1 (y + a1) , d (x) = λ2 (x+ a2) .

Let
E1 = {x ∈ R |x+ a2 > 0} , E2 = {y ∈ R |y + a1 > 0} ,

D = E1 × E2 ⊂ R2 and

H1 = {x ∈ R |λ1x+m1 > 0} , H2 = {y ∈ R |λ2y +m2 > 0} .
From (1.4) we get equation

(3.1)

g1

(
x−m1y − c1
λ1 (y + a1)

)
1

λ1 (y + a1)
fY (y) =

= g2

(
y −m2x− c2
λ2 (x+ a2)

)
1

λ2 (x+ a2)
fX (x)

for almost all (x, y) ∈ D, where the measurable unknown functions g1 : H1 →
→ R, g2 : H2 → R, fX : E1 → R, fY : E2 → R are non-negative, such that they
are positive on some Lebesgue measurable sets of positive Lebesgue measure.

Here m1,m2, c1, c2, a1, a2 ∈ R, λ1, λ2 ∈ R+ (R+ is the set of positive
real numbers) are constants with the conditions K1 := m1a1 − c1 − a2 � 0,
K2 := m2a2 − c2 − a1 � 0.

In this paper we consider the case, when K2
1 +K2

2 	= 0.

Equation (3.1) is equivalent with the following one:

g1

(
1

λ1

(
x+ a2 +K1

y + a1
−m1

))
fY (y)

λ1 (y + a1)
=

= g2

(
1

λ2

(
y + a1 +K2

x+ a2
−m2

))
fX (x)

λ2 (x+ a2)

for almost all (x, y) ∈ D and with the substitutions x+ a2 → x, y+ a1 → y we
get equation

g1

(
1

λ1

(
x+K1

y
−m1

))
1

λ1y
fY (y − a1) =

= g2

(
1

λ2

(
y +K2

x
−m2

))
1

λ2x
fX (x− a2)

for almost all (x, y) ∈ R2
+.
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We note that since

1

λ1

(
x+K1

y
−m1

)
= t ⇔ 0 <

x+K1

y
= λ1t+m1 =⇒ λ1t+m1 > 0,

the support of g1 indeed equals to H1. Similarly, by

1

λ2

(
y +K2

x
−m2

)
= s ⇔ 0 <

y +K2

x
= λ2t+m2 =⇒ λ2t+m2 > 0,

we get, that the support of g2 equals to H2.

Hence we can state the following.

Lemma 1. The functions g1 : H1 → R, g2 : H2 → R, fY : E2 → R,
fX : E1 → R satisfy functional equation (3.1) for almost all (x, y) ∈ D if
and only if the functions ḡ1, ḡ2, f̄1, f̄2 : R+ → R defined by

ḡ1 (t) = g1

(
1

λ1
(t−m1)

)
, ḡ2 (t) = g2

(
1

λ2
(t−m2)

)
,

f̄1 (y) = fY (y − a1) , f̄2 (x) = fX (x− a2)

satisfy functional equation

(3.2) ḡ1

(
x+K1

y

)
f̄1 (y) = ḡ2

(
y +K2

x

)
f̄2 (x)

λ1

λ2

y

x

for almost all (x, y) ∈ R2
+.

In order to determine the solutions of (3.2) (and so (3.1)) we will use the
following general result (see [5]).

Let us consider the functional equation

(3.3) f1(x)f2(y) = p1 (G1(x, y)) p2 (G2(x, y))h(x, y)

with unknown functions f1 : X → C, f2 : Y → C, p1 : U → C, p2 : V → C and
given functions G1, G2 and h satisfied for almost all pairs (x, y) ∈ X×Y (with
respect to the plane Lebesgue measure), where X,Y, U, V ⊂ R are nonvoid
open intervals, h is nowhere zero on X × Y , the mapping (x, y) 
→ G(x, y) :=
:= (G1(x, y), G2(x, y)) is a C1-diffeomorphism of X×Y onto U×V with inverse
(u, v) 
→ F (u, v) := (F1(u, v), F2(u, v)), and all the partial derivatives

∂G1

∂x
(x, y) ,

∂G1

∂y
(x, y) ,

∂G2

∂x
(x, y) ,

∂G2

∂y
(x, y)

and
∂F1

∂u
(u, v) ,

∂F1

∂v
(u, v) ,

∂F2

∂u
(u, v) ,

∂F2

∂v
(u, v)

vanish nowhere on their domain.
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Let us observe that substituting u = G1(x, y) and v = G2(x, y), we obtain
the functional equation

(3.4) f1 (F1(u, v)) f2 (F2(u, v)) = p1(u)p2(v)h (F1(u, v), F2(u, v))

satisfied for almost all (u, v) ∈ U ×V ; indeed, if (3.3) is satisfied for all (x, y) ∈
∈ X × Y \N , where N ⊂ X × Y has plane measure zero, then (3.4) is satisfied
for all (u, v) ∈ U × V \M , where M = G(N) and M has plane measure zero
because G is a diffeomorphism.

Theorem 1. Suppose that the measurable functions f1, f2, p1, p2 satisfy the
functional equation (3.3) almost everywhere. Then either one of the functions
f1 and f2 and one of the functions p1 and p2 are zero almost everywhere or all
of them are almost everywhere nonzero.

Using this theorem to equation (3.2) we can state the following.

Theorem 2. Let ḡ1, ḡ2, f̄1, f̄2 : R+ → R be nonnegative measurable functions
satisfying (3.2) for almost all (x, y) ∈ R2

+, such that they are positive on some
Lebesgue measurable subsets of R+ of positive Lebesgue measure. Then ḡ1, ḡ2,
f̄1, f̄2 are positive almost everywhere on R+.

Proof. Let us write xy −K1 instead of x in (3.2), hence we get equation

(3.5) ḡ1 (x) f̄1 (y) = ḡ2

(
y +K2

xy −K1

)
f̄2 (xy −K1)

λ1

λ2

y

xy −K1

for almost all x, y > 0, xy > K1.

The assumptions of Theorem 1 are satisfied, for the mapping

(x, y)→ G(x, y) := (G1(x, y), G2(x, y)) =

(
y +K2

xy −K1
, xy −K1

)
we have non-vanishing partial derivatives

∂G1

∂x
= − (y +K2) y

(xy −K1)
2 	= 0,

∂G1

∂y
= − K1 +K2x

(xy −K1)
2 	= 0

∂G2

∂x
= y 	= 0,

∂G2

∂y
= x 	= 0.

The inverse of this mapping is

(u, v)→ F (x, y) := (F1(u, v), F2(u, v)) =

(
v +K1

uv −K2
, uv −K2

)
,

u, v > 0, uv > K2
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and the partial derivatives don’t vanish:

∂F1

∂u
= − (v +K1) v

(uv −K2)
2 	= 0,

∂F1

∂v
= − K2 +K1u

(uv −K2)
2 	= 0

∂F2

∂u
= v 	= 0,

∂F2

∂v
= u 	= 0.

We can easily check, that all assumptions of Theorem 1 are satisfied and further
none of the functions are almost everywhere zero, then all the functions are
almost everywhere nonzero. Thus the nonnegativity of functions implies that
ḡ1, ḡ2, f̄1, f̄2 are almost everywhere positive. �

Using Theorem 2 and a general result of A. Járai [3] we can prove the
following result.

Theorem 3. Let ḡ1, ḡ2, f̄1, f̄2 : R+ → R be nonnegative measurable functions,
satisfying (3.2) for almost all (x, y) ∈ R2

+ such that they are positive on some
Lebesgue measurable subsets of R+ of positive measure. Then there exist unique

continuous functions g̃1, g̃2, f̃1, f̃2 : R+ → R+ such that g̃1 = ḡ1, g̃2 = ḡ2,

f̃1 = f̄1 and f̃2 = f̄2 almost everywhere on R+, and if ḡ1, ḡ2, f̄1, f̄2 are replaced

by g̃1, g̃2, f̃1, f̃2, respectively, then equation (3.2) is satisfied everywhere on R2
+.

Proof. Theorem 2 shows that functions ḡ1, ḡ2, f̄1, f̄2 are positive almost
everywhere on R+.

First we prove that there exists a unique continuous function g̃1 which is
equal to ḡ1 almost everywhere on R+ and replacing ḡ1 by g̃1, equation (3.2) is
satisfied almost everywhere.

With the substitution t = x+K1

y we get from (3.2) the equation

(3.6) ḡ1 (t) =
ḡ2

(
y+K2

ty−K1

)
f̄2 (ty −K1)

λ1

ty−K1

λ2f̄1 (y)
1
y

which is satisfied for almost all (t, y) ∈ Δ, where Δ = {(t, y) |t, y > 0, ty > K1}.
By Fubini’s Theorem it follows that there exists T ′ ⊆ R+ of full measure such
that for all t ∈ T ′ equation (3.6) is satisfied for almost every y ∈ Δt, where

Δt = {y ∈ R+| (t, y) ∈ Δ} .

Let us define the functions g1, g2, g3, h in the following way:

g1 (t, y) =
y +K2

ty −K1
, g2 (t, y) = ty −K1,

g3 (t, y) = y, h (t, y, z1, z2, z3) =
z1z2
z3

,
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and let us now apply a theorem of Járai (see [3] Theorem 3) to (3.6) with the
following casting:

ḡ1 (t) = f (t) , ḡ2 (t) = f1 (t) ,
λ1f̄2 (t)

t
= f2 (t) ,

λ2f̄1 (t)

t
= f3 (t)

Z = Zi = R+, T = Y = Xi = R+, (i = 1, 2, 3) .

One can easily verify that all assumptions of Járai’s Theorem are satisfied,
thus we get that there exists a unique continuous function g̃1 : R+ → R which
is almost everywhere equal to ḡ1 on R+ and g̃1, ḡ2, f̄1, f̄2 satisfy equation (3.2)
almost everywhere, which is equivalent to the equation

g̃1

(
x+K1

y

)
f̄1 (y) = ḡ2

(
y +K2

x

)
f̄2 (x)

λ1

λ2

y

x

for almost all (x, y) ∈ R2
+. Furthermore, g̃1 is positive for almost all x ∈ R+.

By a similar argument we can prove the same for the function ḡ2, f̄1 and
f̄2, i.e. there exist continuous functions g̃2 : R+ → R, f̃1 : R+ → R and
f̃2 : R+ → R which are almost everywhere equal to ḡ2, f̄1 and f̄2 on R+,
respectively, and the functional equation

(3.7) g̃1

(
x+K1

y

)
f̃1 (y) = g̃2

(
y +K2

x

)
f̃2 (x)

λ1

λ2

y

x

is satisfied almost everywhere on R2
+.

Both side of (3.7) define continuous functions on R2
+, which are equal to

each other on a dense subset of R2
+, therefore we obtain that (3.7) is satisfied

everywhere on R2
+.

One can show that if the nonnegative continuous functions g̃1, g̃2, f̃1, f̃2 :
: R+ → R satisfy functional equation (3.7) for all (x, y) ∈ R2

+, such that they
are positive almost everywhere on R+, then they are positive everywhere on
R+. �

4. Solutions of functional equations (3.7) and (3.1),
characterizations

We can take the logarithm of equation (3.7) and we get that continuous

functions G̃1, G̃2, F̃1, F̃2 defined by

G̃1 (t) = ln g̃1 (t) , G̃2 (t) = ln g̃2 (t) , F̃1 (t) = ln
f̃1 (t)

λ1t
, F̃2 (t) = ln

f̃2 (t)

λ2t
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satisfy functional equation

(4.1) G̃1

(
x+K1

y

)
+ F̃1 (y) = G̃2

(
y +K2

x

)
+ F̃2 (x)

everywhere on R2
+.

First we prove the following

Lemma 2. If the continuous functions G̃1, G̃2, F̃1, F̃2 : R+ → R satisfy func-
tional equation (4.1) for all (x, y) ∈ R2

+, then they are differentiable infinitely
many times on R+.

Proof. With the substitution t = x+K1

y , we get from (4.1) the equation

(4.2) G̃1(t) = G̃2

(
y +K2

ty −K1

)
+ F̃2 (ty −K1)− F̃1 (y) , (t, y) ∈ D,

where D =
{
(t, y) ∈ R2

+|t, y ∈ R+, t · y > K1

}
.

Let [a, b] ⊂ R+ be arbitrary and choose the interval [c, d] ⊂ R+ arbitrary
such that [a, b]× [c, d] ⊂ D holds.

Integrating (4.2) with respect to y on [c, d] we get

(d− c)G̃1(t) =

d∫
c

G̃2

(
y +K2

ty −K1

)
dy +

d∫
c

F̃2 (ty −K1) dy −
d∫

c

F̃1 (y) dy.

We use the substitutions

g1 (t, y) =
y +K2

ty −K1
= u, g2 (t, y) = ty −K1 = u

in the first and in the second integral, respectively.

It is easy to see that function y → g1(t, y) is decreasing and function y →
→ g2(t, y) is increasing.

Thus these equations can be solved uniquely for y if t ∈ [a, b].

y = −K1u+K2

1− tu
= γ1 (t, u) , y =

K1 + u

t
= γ2 (t, u)

(Here tu 	= 1. y+K2

ty−K1
= u implies that ty+tK2

ty−K1
= tu. Assuming that tu = 1, we

get ty+tK2

ty−K1
= 1 ⇐⇒ K2t +K1 = 0, but this is impossible because of t ∈ R+,

K1, K2 � 0, K2
1 +K2

2 	= 0.)

γ1 and γ2 are infinitely many times differentiable functions of t and u.
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Performing the substitutions, we have

G̃1(t) =
1

d− c

⎡⎢⎢⎣
c+K2
ct−K1∫

d+K2
dt−K1

G̃2 (u)D2γ1 (t, u) du+

dt−K1∫
ct−K1

F̃2 (u)D2γ2 (t, u) dt− C

⎤⎥⎥⎦ ,

where C =
∫ d

c
F̃1 (y) dy.

The functions G̃2, F̃2 are at least continuous. Hence, by repeated appli-
cations of the theorem concerning the differentiation of parametric integrals
(see e.g. [2]) the right-hand side is differentiable infinitely many times on [a, b].

Since [a, b] is an arbitrary interval of R+, we have that G̃1 is differentiable
infinitely many times on R+.

The differentiability of G̃2 can be obtained similarly.

By the help of equation (4.1) one can easily deduce that F̃1 and F̃2 are also
differentiable infinitely many times on R+. �

Now, using Lemma 2.1.6. from [6], that is differentiate equation (4.1) twice

we get that the functions G̃1 and G̃2 satisfy the differential equations

tG̃′′1 (t) + G̃′1 (t) =
γ

(K2t+K1)
2 (t ∈ R+)

and

sG̃′′2 (s) + G̃′2 (s) =
γ

(K1s+K2)
2 (s ∈ R+)

with some constant γ. Solving these differential equations we get the solutions
for equation (4.1) and hence for equations (3.7), (3.2) and finally for (3.1), so
we can state the following.

Theorem 4. If the measurable functions g1, g2, fX , fY satisfy equation (3.1)
in case K1 > 0, K2 > 0 for almost all (x, y) ∈ D, then

g1 (x) = exp (d1)

(
K2

K1
(λ1x+m1)

)p1
(
K2

K1
(λ1x+m1) + 1

)q

(a.a. x ∈ H1) ,

g2 (x) = exp (d2)

(
K1

K2
(λ2x+m2)

)p2
(
K1

K2
(λ2x+m2) + 1

)q

(a.a. x ∈ H2) ,

fY (y) = exp (d3)
λ1

Kp1+q
2

(y + a1)
p1+q+1

(
y + a1
K2

+ 1

)p2

(a.a. y ∈ E2) ,

fX (x) = exp (d4)
λ2

Kp2+q
1

(x+ a2)
p2+q+1

(
x+ a2
K1

+ 1

)p1

(a.a. x ∈ E1) ,
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where pi, q, dj ∈ R (i = 1, 2; j = 1, 2, 3, 4) are arbitrary constants with d1+d3 =
= d2 + d4.

These functions are densities if and only if −1 < p1 < 0, −1 < p2 <
< 0, −2 − min{p1, p2} < q < −2 − p1 − p2, and d1, d2, d3 and d4 are
appropriate norming constants. Consequently, in this case the marginals and
the conditional distributions of the absolutely continuous random vector (X,Y )
are beta distributions of the second kind, and the joint density function has the
form

f(X,Y )(x, y) =
1

K

(
x+ a2
K1

+ 1

)p1
(
y + a1
K2

+ 1

)p1
(
x+ a2
K1

+
y + a1
K2

+ 1

)q

for almost all (x, y) ∈ D, where

K = K1K2B(p1 + 1,−q − p1 − 1)B(p1 + q − 2,−q − p1 − p2 − 2)

(here B is the beta function).

Theorem 5. If the measurable functions g1, g2, fX , fY satisfy equation (3.1)
in case K1 = 0, K2 > 0 for almost all (x, y) ∈ D, then

g1 (x) = A1 (λ1x+m1)
−b1 exp

{
a

K2 (λ1x+m1)

}
(a.a. x ∈ H1) ,

g2 (x) = A2 (λ2x+m2)
b2 exp

{
a (λ2x+m2)

K2

}
(a.a. x ∈ H2) ,

fY (y) = λ1A3 (y + a1)
1−b1 (y + a1 +K2)

b2 (a.a. y ∈ E2) ,

fX (x) = λ2A4 (x+ a2)
b2−b1+1

exp

{ −a

x+ a2

}
(a.a. x ∈ E1) ,

where a, b1, b2, Ai ∈ R, i = 1, 2, 3, 4 are arbitrary constants with A1A3 = A2A4.

Theorem 6. If the measurable functions g1, g2, fX , fY satisfy equation (3.1)
in case K1 > 0, K2 = 0 for almost all (x, y) ∈ D, then

g1 (x) = A1 (λ1x+m1)
b2 exp

{
a (λ1x+m1)

K1

}
(a.a. x ∈ H1) ,

g2 (x) = A2 (λ2x+m2)
−b1 exp

{
a

K1 (λ2x+m2)

}
(a.a. x ∈ H2) ,

fY (y) = λ1A3 (y + a1)
b2−b1+1

exp

{ −a

y + a1

}
(a.a. y ∈ E2) ,

fX (x) = λ2A4 (x+ a2)
1−b1 (x+ a2 +K1)

b2 (a.a. x ∈ E1) ,

where a, b1, b2, Ai ∈ R, i = 1, 2, 3, 4 are arbitrary constants with A1A3 = A2A4.
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Remark. The functions in Theorem 5 (and in Theorem 6) can not be density
functions simultaneously, so we have no solution for the original probability
problem in case K1 = 0, K2 > 0 (and in case K1 > 0, K2 = 0).
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