
Annales Univ. Sci. Budapest., Sect. Comp. 41 (2013) 57–71

ON SEMANTIC DESCRIPTIONS OF

SOFTWARE SYSTEMS

László Kozma, György Orbán

(Budapest, Hungary)

Dedicated to Professors Zoltán Daróczy and Imre Kátai
on the occasion of their 75th birthday

Communicated by Zoltán Horváth

(Received May 30, 2013; accepted September 28, 2013)

Abstract. Formal methods are essential for giving precise descriptions
of software systems. In our paper we analysed some approaches to con-
ventional semantics and to action semantics. As a result we suggest to use
action semantics for describing semantic properties of software systems
including programming and MDE languages.

1. Introduction

Formal methods are essential for giving precise descriptions of software sys-
tems including those systems that implement them. For instance, to formally
verify a valid implementation of a programming language amounts to giving
formal semantics for the languages. There are three groups of users with dif-
ferent point of view who want to use semantic descriptions of programming

Key words and phrases: Conventional semantics of programming languages, Action seman-
tics, Semantic functions, Algebraic specification of abstract data types.
1998 CR Categories and Descriptors: D.3.1 [Formal Definitions and Theory]: Semantics.

https://doi.org/10.71352/ac.41.057

https://doi.org/10.71352/ac.41.057

58 L. Kozma and Gy. Orbán

languages. The denotational semantics is suggested for the language designers;
for purposes of compiler builders the operational semantics is a good choice; and
for the programmers the axiomatic semantics is suggested. The denotational
semantics defines the meanings of the programs by mathematical objects that
represent the effect of executing the program. Using denotational approach
we would like to know what a program does without any details how the given
program is executed. Oppositely the operational approach concentrates on how
a program is executed. Using axiomatic semantics of programs we can prove
that the given program is correct with respect to its specifications. We can
distinguish partial correctness (correct every time when it terminates) and to-
tal correctness (terminates and correct every times) of programs [7, 13], etc.
Action semantics is useful not only for describing semantics of programming
languages including documenting design decisions and setting standards for im-
plementation but for expressing semantic properties of modelling languages as
well. Although the action notation looks informal its meaning is formalized in
terms of algebraic specifications and transition systems. The action semantics
is a combination of denotational, operational and algebraic semantics in spite
of this they are quite different from these mentioned conventional semantics.
We will summarise the advantages and the drawbacks of different semantic
methods. During the analysing process we use a simple kernel programming
language WK and its extensions WE. This languages are very close to the lan-
guage While [7] and the language Pelican [14]. The abstract syntax of the
language WK is given in BNF form as follows.

n ::= 0 | 1 | n0 | n1.
a ::= n | x | a1 ”+” a2 | a1 ”*” a2 | a1 ”-” a2.
b ::= true | false | a1 ”=” a2 | a1 ”≤” a2 | ”¬”b | b1 ”∧” b2
S ::= x”:=”a | skip | S1 ”;” S2 | ”if” b ”then” S1 ”else” S2 | ”while” b
”do” S.

Where n ranges over binary numbers Num;
x ranges over variables Var;
a ranges over arithmetic expressions Aexp;
b ranges over Boolean expressions Bexp;
S ranges over statements Stm.

The Num, Var, Aexp, Bexp, Stm denote syntactic categories and n, x, a, b,
S denote meta-variables those will be used to range over the associated syntactic
category. Abstract syntax provides an appropriate interface between concrete
syntax and semantics. It is usually obtained simply by ignoring those details of
parse tree structure which have no semantic significance. While the syntax of
programming languages describe the grammatical structure of programs, then
the semantics expresses the meaning of grammatically correct programs using

On semantic descriptions of software systems 59

semantic domains (entities) associated with each syntactic categories respec-
tively. The semantics of a programming language can be captured by a semantic
function that maps the abstract syntax of each program to the semantic entity
representing its behaviour.

In this section we define the semantics of arithmetic and Boolean expressions
and the semantic descriptions of statements are discussed in the next sections.

The semantics of arithmetic expressions can be defined by the following
semantic functions: semantic function N : Num → Z determining the number
represented by a binary number; semantic function A: Aexp → (State → Z)
that is the value of an expression can be determined by a semantic function
A which has two arguments the syntactic construct and the state represented
by a function State = Var → Z. The definition of State means that to each
variable the state will associate its current value.

The values of Boolean expressions are truth values, their meanings can be
defined by a function B : Bexp → (State → T), where T = {tt, ff} that is T
consists of the truth values tt (for true) and ff (for false).

The detailed descriptions of semantic functions N, A, B can be found in [7].
The rest of this paper analyses the denotational and operational semantics
in Section 2. Section 3 discusses some problems of algebraic specifications
of abstract data types, Section 4 analysis the action semantics and Section 5
concludes.

2. Analyses of two conventional semantic methods

2.1. Denotational Semantics

One of the most important features of denotational semantics is that seman-
tic functions are defined compositionally. This means that there is a semantic
clause for each of the basic elements of the syntactic category and for each
composite element in the syntactic category there is a semantic clause defined
in terms of the semantic function applied to the immediate constituents of
the composite element. In this sense the semantic functions A and B defined
in the previous section are examples of denotational definitions. The denota-
tional semantics defines the meanings of the programs by mathematical objects
that represent the effect of executing the program. The effect of executing a
statement S is to change the state. As an example in the case of direct style
semantics the meaning of statement S can be defined by the partial function

Sds : Stm → (State ↪→ State)

60 L. Kozma and Gy. Orbán

As an example the denotational definition of statement while b do S is as
follows:

Sds |[”while” b ”do” S]| = FIX F

where F g = cond(B |[b]|,g ◦ Sds|[S]|, id), F is continuous function in the sense
of Scott and Strachey [8],

cond : (State→T)× (State↪→State)× (State↪→State) → (State↪→ State)

cond(p, g1, g2)s =

{
g1 if p s = tt

g2 if p s = ff

FIX: ((State ↪→ State)→ (State ↪→ State))→ ((State ↪→ State)) defines
the least fixed point of F where the set (State ↪→ State) with a partial order
� is a chain complete partial order set [8]. Function FIX is a good example for
some kinds of function composition. The detailed definition of this semantic
function can be found in [7].

Denitational semantics is very good for purposes of static program analysis
including for instance, constant propagation which is an analysis that deter-
mines whether an expression always evaluates to a constant value and if so
determines that value. The detection of sign analysis is another example. In
this case the sign of expressions is determined which is very useful information
for code optimization process. During dependency analysis the idea is to regard
some of the variables as input variables and others as output variables. Using
this analysis we can determine whether or not the final values of the output
variables only depend on the initial values of the input variables. A very useful
dependency analysis method can be found in [7].

One of the most important drawbacks of denotational semantics is that the
addition of new constructs to a described language can require reformulation of
the already given description. If we extend our kernel language WK with new
constructs where exceptions can be raised and handled we have to change direct
style descriptions to a continuation style semantics where the continuations
describe the effect of executing the remainder of the program. This requires
the reformulation of the direct style description. The new semantic domain
Cont = State ↪→ State has to be introduced, which is a partial function from
state to state.

Let’s extend our language WK with blocks declaring local variables and
procedures and denote the resulted language WE, where the new constructs
are:

S ::= {rules od WK} | ”begin” DvDpS ”end” | ”call” p
Dv ::= ”var” x”:=”a; Dv | ∈
Dp ::= ”proc” p ”is” S; Dp | ∈

where Dv and Dp are meta-variables ranging over the syntactic categoriesDecv
of variable declarations and Decp of procedure declarations, respectively, and

On semantic descriptions of software systems 61

p is a meta-variable ranging over the syntactic category Pname of procedure
names. Describing semantics of language WK states in State have been used to
associate values with variables. In case of language WE we shall replace states
with stores that maps locations to values and with variable environments that
map variables to locations.

Loc = Z
Envv = Var → Loc
Store = Loc {next} → Z

where ’next’ is a special token used to denote next free location. The detailed
descriptions of denotational semantic clauses for language WE using location
can be found in[7].

This example demonstrates another drawback of denotational semantics
namely introducing new language constructs the semantic functions map syn-
tactic phrases into newer and newer primitive mathematical values, structured
objects, and such higher-order functions. On the contrary action semantics
uses three kinds of first-order entities as denotations: action, data and yielders
(discussed in the next sections). Finally the semantic descriptions of concurrent
and parallel programs are almost impossible task in the case of denotational se-
mantics according to their characters of expressing meaning of programs using
input-output relations.

2.2. Operational Semantics

The operational semantics are based on abstract machines. They use the
notion of configurations denoted by <S, s> or simple s, where <S, s> repre-
sents that the statement S is to be executed from the state s and s represents
a terminal configuration called in another way final sate. In the case of oper-
ational semantics we define the meaning of a program by a transition relation
which will then describe how the execution takes place. The difference between
the natural semantics and the structural operational semantics (SOS) amounts
to different ways of specifying the transition relation. In natural semantics we
are concerned with the relationship between the initial and the final state of an
execution. In this case a transition is expressed by <S, s> → s’. This means
that the execution of S from s will terminate and the resulting state will be s’.
The meaning of statements can be expressed by a partial function from state
to state:
Sns: Stm → (State ↪→ State) and this means that for every statement S we
have a partial function Sns ∈ State ↪→ State given by

Sns [S]s

{
s′ if <S, s> → s’

undef othervise

The purpose of natural semantics is to express how the overall results of exe-
cution can be obtained. This type of semantics is called as big step operational

62 L. Kozma and Gy. Orbán

semantics [7]. The semantic description of parallel constructs is impossible in
this case.

The structural operational semantics is small step semantics. In this case
the transition relation has the forms:

<S, s> ⇒ <S’, s’> or
<S, s> ⇒ s’

The transition <S, s> ⇒ <S’, s’> means that the execution of S from s is not
completed and the configuration <S’,s’> expresses the remaining computation
that is in structural operational semantics the focus is on the individual steps
of the execution. The transition <S,s> ⇒ s’ expresses that the execution of S
from s has terminated and the final state is s’. The semantic function
Ssos: Stm → (State ↪→) State is given by

Ssos|[S]|s
{
s′ if <S, s> ⇒* s’

undef othervise

where the transition relation <S, s> ⇒* s’ denotes that there is finite num-
ber of steps from the configuration <S, s> to terminal configuration s’. This
transition relation can be defined in a similar manner in case of programming
language While [7].

The expressive power of structural operation semantics is greater than the
natural one. The structural approach can be extended to express semantics of
modular language constructs.

The operational semantics of a programming language is useful when im-
plementing it that is when one creates a compiler from the given programming
language to a target language. The semantic functions can be used for proving
correctness of a compiler. In [7] we can find a very good example for illus-
trating how to translate programming language While into a simple assembly
language and the correctness of the implementation is proved as well. The mod-
ular structural operational semantics (MSOS) developed by P. D. Moses can
be used as a framework for expressing semantic properties of component-based
systems. MSOS is a simple, but very useful variant of structural approach.
The MSOS uses so-called basic abstract constructs, they have fixed, language-
independent abstract syntax and semantics and their syntax and semantics can
be specified by formally. The set of basic abstract constructs is open-ended,
that is new constructs may be added whenever the previous constructs are
found to be insufficiently expressive [19]. One of the most important draw-
backs of operational semantics is that the semantic functions Sns and Ssos are
not defined compositionally. They associate mathematical objects with each
statement as well, but they can’t be constructed by tools of composition. So the
operational semantics do not scale up well to specifying the intended classes of
implementations of larger programming languages used for industrial purposes.

On semantic descriptions of software systems 63

3. Semantic problems of abstract data types

Abstract data types are very important during the design a software sys-
tems based on object-oriented paradigm [9, 10, 11, 5, 6, 15, 16, 17, 13]. The
specification of a data type is a high level description of the data structure
and of each operation of that data type. The semantics of an operation can be
described by algebraic equations, by pre- and post-conditions, or by body of
procedures given in a high level programming language. Abstract specifications
of data types are very important not only in program design but in verification
as well. The correctness of an implementation of an abstract data type should
be proved and this verification is possible. Let us see the following circular
list example where the abstract data type and its implementation are given by
algebraic specifications.

clist = ({clist, elem, bool}, {create, insert, del, value, isempty, right, join})
syntax semantics
create: → clist del(create) = create
insert: clist x elem → clist del(insert(c,i))=c
del: clist → clist value(create) =UNDEF
value: clist → elem ∪ {UNDEF} value(insert(c,i))=i
isempty: clist → bool isempty(create) = true
right: clist → clist isempty(insert(c,i)) = false
join: clist x clist → clist right(create) = create

right(insert(create,i)) = insert(create,i)
right(insert(insert(c,i),j)) =
insert(right(insert(c,j)),i)
join(c, create) = c
join(c,insert(c1,i)) = insert(join(c,c1),i)

where c, c1 ∈ clist, i, j ∈ elem.
The abstract type circular list is very similar to the type stack, but the oper-
ations right and join introduce additional complexity by allowing the users to
rotate the list of stored elements and to join two lists into one. Using the right
operation makes it possible to access to both ends of the list.
The implementation of the abstract data type circular list is given by data type
array, the well-known data type nat with operations + and and data type bool.
array = (V,F), where V = {array, nat, elem}, F = { emptya, assign, read, shiftL,

shiftR }
syntax
emptya: → array //create any empty array
assing: array x nat x elem→ array //put an empty array to a given position
read: array x nat → elem ∪ {undef} //read an element from a given position
shiftL: array → array //the array is shifted left by one step
shiftR: array → array //the array is shifted right by one step

64 L. Kozma and Gy. Orbán

semantics
read(empty, a) = undef
shiftL (emptya) = emptya
shiftR (emptya) = emptya
read (assign(a,i,e),j) = if i=j then e else read(a,j)
shiftL (assign(a,i,e)) = if i = zero then shiftL (a) else assign (shiftL(a),i-1,e)
shiftR (assign(a,i,e)) = assign(shiftR(a),i+1,e)

where a ∈ array, i ∈ nat, e ∈ elem.

We will represent the abstract data type clist by a concrete type array, a nat
and a bool. The representation function ϕ is defined by:
clist = ϕ(array, nat).
The operations of the abstract data type clist can be implemented as follows:
create = ϕ(emptya, zero)
insert(ϕ(a,n),e) = ϕ(assign(a,n,e),n+1)
del(ϕ(a,n)) = if n = zero then ϕ(emptya,zero) else ϕ(a,n-1)
value(ϕ(a,n)) = if n = zero then undef else read(a, n-1)
right(ϕ(a,n)) = if n = zero then ϕ(emptya, zero)

else ϕ(assign(shiftR(a),zero, read(a, n-1)),n)
isempty(ϕ(a,n)) = if n = zero then true else false
join(ϕ(a,i),ϕ(b,j)) = if j = zero then ϕ(a,i)

else join(ϕ(assign(a,i,read(b,zero)),i+1),ϕ(shiftL(b),j-1))
A proof of correctness of this above implementation consists of showing that
all of the clist axioms are satisfied. For instance we have to prove the following
lemma.

Lemma 3.1. For every e ∈ elem the axiom right(insert(create, e)) = in-
sert(create, e) is satisfied substituting the implemented versions of operations
create, insert and right in it.

Proof. First we use the implementation equations of operations create, insert
and right, then we apply semantic axioms of array. Finally using the implemen-
tation equations of operations insert and create again, we can get the result.
right(insert(create, e)) = right(insert(ϕ(emptya, zero), e) =
= right(ϕ(assign(emptya, zero, e), 1)) = if 1 = zero then ...
else ϕ(assign(shiftR(emptya), zero, read(assign(emptya, zero, e), zero)), 1) =
= ϕ(assign(emptya, zero, e), 1) = insert(ϕ(emptya, zero), e) =
= insert(create, e). �

During the proving process we can use clauses of an implementation, the
semantic axioms of the concrete data types and structural induction method,
but we can’t use the semantic axioms of abstract data types. The representation
function ϕ has very important role from point of view of correctness. The
whole proving process fails if the representation function is incorrect. We have

On semantic descriptions of software systems 65

to check whether the function is correct or not in the sense that each c ∈ clist
there exists at least one a ∈ array and n ∈ nat so that c = ϕ(a, n). We can
prove the following lemma in case our example.

Lemma 3.2. The abstract data type clist is correctly represented by function ϕ.

Proof. We have to prove that for every c ∈ clist there exists at least one a
∈ array and n ∈ nat so that c = ϕ(a, n). Using the results 3.3 Lemma it is
enough to prove that c = create and c = insert(c’, e) are represented well are
proved by induction on the structure of clist.

1. step. Let us see the case when c = create. Consulting the
implementation of clist we have create = ϕ(emptya, zero) so emptya
is a good array and zero is a good pointer.
2. step. Suppose there exist a good representation for c’ that
is an array a’ and a pointer n’. According to the implementation
of operation insert we have insert(ϕ(a,n), e) = ϕ(assign(a, n, e), n+1),
so c = insert(c’, e) = insert(ϕ(a’, n’), e) = ϕ(assign(a’, n’, e), n’+1).
This gives the results: the array assign(a’, n’, e) and pointer n’+1
are good representation of c ∈ clist.

The proof can now be completed by using the results of 3.3 Lemma. �

Lemma 3.3. For every c ∈ clist, c = create or there exists a c’ ∈ clist and e’
∈ elem such that c = insert(c’, e’).

This lemma was proved by Guttag, Horowitz and Musser [11].
From point of view of software design it is very important feature of alge-
braic specification of abstract data types that the inheritance relations can be
expressed which are very important during design phase of software systems
[3, 13].

4. Action semantics

The action semantics is a combination of denotational, operational and al-
gebraic semantics. The action semantics follows the tradition of denotational
semantics in the sense that the syntactic entities are mapped compositionally
by semantic functions into semantic domains (semantic entities) that act as the
denotations of the syntactic objects. The main differences are the following.
The semantic functions of denotational semantics map syntactic phrases into
several primitive and higher order mathematical objects, the action seman-
tics uses three kinds of first-order entities as denotations: actions, data and
yielders. Actions are dynamic (computational) entities. An action represents
information processing behaviour and reflects the gradual step-wise nature of

66 L. Kozma and Gy. Orbán

computation. They are mathematical entities in the sense that they are ab-
stract and formally-defined entities, analogous to abstract machines in the same
way of operational semantics. In contrast, items of data essentially static enti-
ties, representing pieces of information. Data consists of mathematical values,
such as integers, Boolean values, and abstract cells representing memory loca-
tions similarly in denotational semantics. A yielder represents an unevaluated
item of data, whose value depends on the current information embodying the
state of computation that is yielders are entities - depending on the current
storage and environment - that can be evaluated to yield data. In action se-
mantics, we specify semantic functions by semantic equations. Each equation
defines the semantics of a particular phrase in terms of the semantics of its
components that is the semantic functions are defined compositionally. For
instance, the semantic functions of kernel language WK are execute , evaluate
, the operation-result of , the value of . First we give the semantic functions
of expressions and then of statements. The semantic functions of expressions
are as follows.

evaluate :: Expression → action [giving a value].
evaluate N:n = give the value of n.
evaluate x:Identifier = give the value bound to x or give the
number stored in the cell bound to x
evaluate |[a1:Expression O:Operator a2:Expression]| =
(evaluate a1 and evaluate a2) then give the operation-result of O.

the operation-result of :: Operator → yielder [of a value] [using the given value2]
the operation-result of ”+” = the sum of (the given number#1,
the given number#2).

...
the operation-result of ”=” = the given vale#1 is the given value#2
the operation-result of ”∧” = both of (the given truth-value#1,
the given truth-value#2)

...
the value of :: Numeral → number.

the value of n:Numeral = number & decimal n.

In action semantics it is usual to specify the functionality of each semantic
function. For instance, evaluate :: Expression → action [giving a value]
asserts that for every abstract syntax tree E for an expression, the semantic
entity evaluate E is an action which when performed gives a value.

Each semantic equation defines the result of applying a particular semantic
function to any abstract syntax tree whose root node has the indicated form,
in terms of applying (perhaps different) semantic functions to the branches of
the node. We use notations |[...]| informally as separating syntactic symbols
from semantic symbols only in the left hand side of a semantic equation. We
do not write |[E]| and |[S]| on the right hand side of a semantic equation, since
E and S by themselves already stand for tree.

On semantic descriptions of software systems 67

The semantic functions of statement for the language WK is the e following:
execute :: Statements → action [completing | diverging | storing].
execute |[x:Identifier ”=” a:Expression]|= (give the cell bound to x and evaluate
a) then store the given number #2 in the given cell #1.
execute <S1:Statement ”;” S2:Statement> = execute S1 and then execute S2.
execute |[”if” b:Expression ”then” S1: Statement ”else” S2 : Statement]| =

evaluate b then

⎧⎪⎨
⎪⎩
check the given truth− value and then execute S1

or

check not the given truth− value and then execute S2

execute |[”while” b:Expression ”do” S:Statement]| = unfolding

evaluate b then

⎧⎪⎨
⎪⎩
check the given truth− value and then execute Sand then unfold

or

check not the given truth− value and then complete.

The semantic entities are actions, data and yielders.

The properties of actions are performance, non-determinism, information
classification, facets and combinators.

The performance of an action directly represents information processing
behaviour and reflects the gradual step-wise nature of computation. A perfor-
mance can be part of an enclosing action: completes, escapes, fails or diverges
corresponding to normal termination, to exceptional termination, to abortion
or to non-termination, respectively.

An action may be non-deterministic. Non-determinism represents imple-
mentation dependence, where the behaviour of a given program may vary be-
tween different implementations or between different instants of time on the
same implementation.

The information processed by an action performance can be classified
according to how far it tends to be propagated:
transient : tuples of data, corresponding to intermediate results
scoped : bindings of tokens to data, corresponding to symbol tables
stable: data stored in cells, corresponding to the values assigned to variables
permanent : data communicated between distributed actions

The different kinds of information give rise to so-called facets of actions, focus-
ing on the processing of at most one kind of information at a time:

the basic facet, processing independently of information
the functional facet, processing transient information
the declarative facet, processing scoped information
the imperative facet, processing stable information, action reserve or
unreserved cells of storage and change the data stored in cells
the communicative facet, processing permanent information, action
send and/or receive messages

68 L. Kozma and Gy. Orbán

We can use primitives for specifying actions including action combinators,
which operate on sub actions.

The semantic entity data can include different mathematical objects, such as
numbers, truth-values, characters, strings, lists, maps and sets. It can include
computational entities as well, such as tokens, cells, some compound entities
with data components including messages and contracts. It is very important
property of action semantics that new kinds of data can be introduced ad-
hoc, for representing special pieces of information. This property increases the
expressive power of action semantics while the low number of semantic entities
makes it easy to use this semantics.

The semantic entities yielders can be evaluated to yield data during action
performance. Compound yielders can be formed by the application of data
operations to yielders. The data yielded by evaluating a compound yielder
are the result of applying the operation to the data yielded by evaluating the
operands.

A very good introduction to action semantics can be found in [18]. Ac-
tion semantics uses abstract contracts similar to MSOS and the set of basic
abstract constructs is open-ended in this case as well. When further language
constructs are added to a given language, the action semantics of each old lan-
guage constructs remains well-formed and meaningful that is addition of new
constructs to a described language can’t require reformulation of the already
given description.

The action semantics can be used not only for describing semantic prop-
erties of programming languages, but it is suitable for describing semantics of
languages in Model Driven Engineering (MDE) as well. Languages in MDE
are generally defined by metamodels, which specify the structural aspects of
models but do not capture their dynamic semantics. The computational mean-
ings (the dynamic semantics) of modelling constructs can be described well
by action semantics as it allows modular semantic specifications and provides
an intuitive textual notation at the same time. G. Stuurman and I. Kurtev
developed a compiler for translating models in MDE to action tree and a sim-
ulator for executing these action trees. The advantage of these tools is in the
fact that in this way the models become executable and their behaviour can
be studied at the early modelling phase [4]. In [20] a method is presented of
Meta Object Facility (MOF 2.0) to include action semantics for supporting
behavioural modelling. A new approach is presented in [1] for automatically
generating test cases from UML state machine. Achieving this aim they give
UML a formal semantics by developing a new and non-trivial mapping from
UML state machines to an object-oriented version of action systems.

In the MDE environment there are two kinds of semantic languages. The
first kind is an Action Semantics Language (ASL) with a whole new platform-
independent syntax. The second kind is when an existing programming lan-

On semantic descriptions of software systems 69

guage is used as an ASL but in that case it can lead to platform dependencies.
There are many Action Semantic Languages to describe more precisely the
software systems at a higher abstraction level but there is a lack of a for-
mal standardized ASL. Many different types of Action Semantic Languages
were created by different vendors like the Object Action Language (OAL) by
MentorGraphics for xtUML or Kennedy Carter declares xUML and provides
Intelligent UML (iUML). Action languages can be used also to specify mapping
rules to generate a Platform Specific Model (PSM) from a Platform Indepen-
dent Model (PIM). An Action Semantics Language can be built based on OCL
like in OCL4X[12] with the support of actions with side effects.

5. Conclusions

The definition of semantics of programming and recently MDE languages is
crucial for understanding and using these languages. In our paper we analysed
some approaches to conventional semantics and to action semantics as well. We
suggest to use action semantics for describing semantic properties of software
systems including programming and MDE languages as well. Action semantics
framework support creating specifications given in a natural language-like nota-
tion and uses concepts familiar to programmers. There are further approaches
to express semantics of MDE languages. For instance, in [2] authors presented
semantic descriptions for automatic transformation of UML statechart diagram
into its equivalent finite state automata and a method is given to generate reg-
ular grammar for the generated finite state automata. Using this grammar you
can generate various test cases to verify UML statechart diagram with respect
to its various test conditions.

References

[1] Aichering, B.K., H. Brandl, E. Jöbstl and W. Krenn, UML in Ac-
tion: A Two–Layered Interpretation for testing, ACM SIGSOFT Software
Engineering Notes, Vol. 36, No. 1, January 2011, pp. 1–8.

[2] Arora, D., B. Hazela and V. Saxena, Semantics for UML Model
Transformation and Generation of Regular Grammar, ACM SIGSOFT
Software Engineering Notes, Vol. 37, No. 3, May 2012.

70 L. Kozma and Gy. Orbán

[3] Parisi–Precise, F. and A. Pierantonio, An algebraic theory of class
specification, ACM Trans, On Soft., Eng., and Meth., Vol. 3, No., 2, 1994,
pp. 166–199.

[4] Stuurman, G. and I. Kurtev, Action semantics for defining dynamic se-
mantics of modelling languages, in: BM–FA’11: Proc. of the Third Work-
shop on Behavioural Modelling, June 2011, pp. 64–71.

[5] Ehrig, E. and B. Mahr, Fundamentals of Algebraic Specification 1,
Equations and Initial Semantics, Springer Verlag, 1985., ISBN 3–540–
13718–1.

[6] Ehrig, H and B. Mahr, Fundamentals of Algebraic Specification 2,
Module Specifications and Constraints, Springer Verlag, 1990., ISBN
3–540–51799–5.

[7] Nielson, H.R. and F. Nielson, Semantics with Applications, A Formal
Introduction, John Wiley & Sons, 1992.

[8] Stoy, J.E., Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Theory, MIT Press, 1977.

[9] Guttag, J.V., E. Horowitz and D.R. Musser, The Design of Data
Type Specifications, Research report, University of Southern California
Maria del Rey Information Sciences Institute, November, 1976.

[10] Guttag, J.V., E. Horowitz and D.R. Musser, Abstract data types
and software validation, Comm. ACM, Vol. 21(12), (1978), 1048–1064.

[11] Guttag, J.V., E. Horowitz and D.R. Musser, The design of data
type specifications, In: Current Trend sin Programming Methodology, R.
T. Yeh, Ed., Prentice–Hall, Englewood Cliffs, N. J. 1978. pp. 60–79.

[12] Ke Jiang, Lei Zhang, and Shigeru Miyake, 2007. OCL4X: An Ac-
tion Semantics Language for UML Model Execution, In: Proceedings of
the 31st Annual International Computer Software and Applications Con-
ference, Volume 01 (COMPSAC ’07), Vol. 1. IEEE Computer Society,
Washington, DC, USA, 633–636. 2007.

[13] Kozma, L. and L. Varga, A Szoftvertechnológia Elméleti kérdései,
ELTE Eötvös Kiadó, 2006, ISBN 963–463–648–9 (in Hungarian).

[14] Slonneger, K. and B.K. Kurtz, Formal Syntax and Semantics of
Programming Languages:A Laboratory Based Approach, Addison–Wesley,
1994.

[15] Varga, L., On the verification of abstract data types, Acta Cybernetica,
Tom. 6, Fasc. 1, Szeged, 1983., 7–12.

[16] Varga, L., T́ıpusspecifikációk helyességének vizsgálata, Alkalmazott
matematikai Lapok, 13 (1987–88), 57–68.

[17] Kozma, L., Proving the correctness of implementations of shared data
abstractions, Lecture Notes in Computer Science (LNCS), 137 (1982),
227–241.

On semantic descriptions of software systems 71

[18] Mosses, P.D., A Tutorial on Action Semantics, FME’94.

[19] Mosses, P.D., Component-Based Semantics, SAVCBS’09, In: Proc.
of the 8th International Workshop on Specification and Verification of
Component–Based Systems, 2009.

[20] Paige, R.F., D.S. Kolosov and F.A.C. Polack, An action semantics
for MOF 2.0, SAC’06, In: Proc. of the 2006 ACM Symposium on Applied
Computing, April, 2006, pp. 1304–1305.

L. Kozma and Gy. Orbán
Faculty of Informatics
Eötvös Loránd University
Pázmány P. sétány 1/C.
H-1117 Budapest
Hungary
kozma@ludens.elte.hu

o.gyorgy@gmail.com

