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Abstract. The notion of simultaneous number systems was introduced
by Kátai et al. in [1]. In this paper simultaneous number systems construc-
tions are investigated in the lattice of Eisenstein integers. We show that
except for 8 trivial cases for each Eisenstein integer η1 there is an Eisenstein
integer η2 and some appropriate digit set D such that (η1, η2, D) forms a
simultaneous number system.

1. Introduction

The Eisenstein integers (sometimes also called Eulerian integers) are com-

plex numbers of the form η = a + bω where a, b ∈ Z and ω = −1+i
√
3

2 =
= exp(2πi/3) is a cube root of unity. They form a triangular lattice Λε in
the complex plane, or in a different view, they form a commutative ring of the
algebraic integers in the third cyclotomic field. Equivalently, we can consider
the Eisenstein integers as linear operators of the form

(1.1) Mε =Mε(a, b) =

(
a −b
b a− b

)
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acting on Z2, where a, b ∈ Z. It is known that the norm of η is N(a + bω) =
= a2−ab+b2. The group of units in the ring of Eisenstein integers is the cyclic
group formed by the complex sixth roots of unity.

Let Λ be a lattice in Rn, M : Λ → Λ be a linear operator such that
det(M) 	= 0, and let D be a finite subset of Λ containing 0.

Definition 1.1. The triple (Λ,M,D) is called a generalized number system
(GNS) if every element x of Λ has a unique, finite representation of the form

x =

l∑
i=0

M idi

where di ∈ D and l ∈ N, dl 	= 0.

Clearly, Λ is a finitely generated free abelian group with addition. If two
elements of Λ are in the same coset of the factor group Λ/MΛ then they are
said to be congruent modulo M .

Theorem 1.1 ([2]). If (Λ,M,D) is a number system then

(1) D must be a complete residue system modulo M ,

(2) M must be expansive and

(3) det(I −M) 	= ±1.
If a system fulfills these conditions then it is a radix system and the operator

M is called a radix base.

Let φ : Λ → Λ, x
φ→ M−1(x − d) for the unique d ∈ D satisfying x ≡ d

(mod M). Since M−1 is contractive and D is finite, there exists a norm ‖.‖
on Rn and a constant C ∈ R such that the orbit of every x ∈ Λ eventually
enters the finite set {x ∈ Λ : ‖x‖ < C} for the repeated application of φ.
This means that the sequence (path) x, φ(x), φ2(x), . . . is eventually periodic
for all x ∈ Λ. If a points p ∈ Λ is periodic then ‖p‖ ≤ L = Kr/(1− r), where
r = ‖M−1‖ = sup‖x‖≤1 ‖M−1x‖ < 1 and K = maxd∈D ‖d‖ (see [3]). Let us
denote the set of periodic elements by P. The paths of all periodic elements
constitute a finite number of disjoint cycles Ci. Then, the number system
property is equivalent to P = {0}, or with the situation that the system has
only one cycle C1 = {0→ 0}.

In this paper we consider special block diagonal systems (Z2 ⊗ Z2,
M1 ⊕M2, D), where M1 and M2 are Eisenstein operators, dj = (vT ||vT )T ∈
∈ D (v ∈ Z2), ⊗,⊕ and || denote the direct product, the direct sum, and the
concatenation respectively, furthermore vT (transpose of v) denotes a row vec-
tor. These 4-dimensional systems can be considered as simultaneous systems
of the Eisenstein integers. We emphasize that in our case the digits are in the
subspace W = {(x, y, x, y)T : x, y ∈ Z} ≤ Z4.
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Lemma 1.1. The only possible radix bases of simultaneous Eisenstein number
systems are

MA(a, b) =

⎛⎝Mε 0 0
0 a+ 1 −b
0 b a− b+ 1

⎞⎠ ,MB(a, b) =

⎛⎝Mε 0 0
0 a −b− 1
0 b+ 1 a− b− 1

⎞⎠ ,

MC(a, b) =

⎛⎝Mε 0 0
0 a+ 1 −b− 1
0 b+ 1 a− b

⎞⎠ ,

where a, b ∈ Z and Mε was defined in (1.1).

Proof. The lemma is a direct consequence of [4, Theorem 3.2]. �

The first operator is called an A-type, the second one a B-type and the
third one a C-type base.

Lemma 1.2. Let M be the operator of type A,B or C. If ‖Mε‖2 > 4+ 5
2

√
2+

+ 1
2

√
98 + 72

√
2 (≈ 14.6) then there is always some digit set D for which the

system (Z4,M,D) is a simultaneous Eisenstein number system.

Proof. The proof goes exactly in the same way as was shown in [5, Theo-
rem 3.1]. �

There are at least two possibilities for digit set constructions in Lemma 1.2.

1. If D1 and D2 are adjoint digit sets (containing elements from the funda-
mental set of the appropriate adjoint lattice) belonging to the blocks of
M (to M1 and to M2, resp.) then D = ∪d∈D2

(D1 +M1d) is suitable [5].

2. D is dense in W , i.e. it consists of elements with the smallest norm from
each congruent class [6].

Lemma 1.2 shows that for all operators M having “big enough norm” there
are suitable digit sets D for which the systems (Z4,M,D) are simultaneous
Eisenstein number systems. This paper deals with the remaining cases:

• examining the number system property using dense digit sets,

• constructing appropriate digit sets algorithmically, when necessary, or

• proving the non-existence of such sets.

Since ‖M−1‖2 < 1 always holds (except a few obvious cases) therefore in the
following the norm ‖.‖ means the 2-norm.
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2. The searching methods

In order to decide the number system property of a given radix system in
general two methods can be considered: the method of Brunotte [7, 8], or the
variants of the covering methods [3, 2, 7]. However, for simultaneous systems
a much faster algorithm is known.

Lemma 2.1. Let M =
(

M1 0
0 M2

)
be the operator of type A,B or C. For

a given simultaneous Eisenstein system (Z4,M,D) with dense digit set D let
K = max{‖d‖ : d ∈ D}, K∗ = max{‖d‖ : d = (x, y)T , (x, y, x, y)T ∈ D},
r = ‖M−1‖, ri = ‖M−1

i ‖, L = K r
1−r , Li = K∗ ri

1−ri
(i = 1, 2) and let

κ =
‖M−1

1 ‖ · ‖M−1
2 ‖ · (L2 +K∗)

1− ‖M−1
1 ‖ = K∗ r1r2

(1− r1)(1− r2)
= L1L2/K

∗ .

If (1) κ < 1 and all the elements of W ∩ L \ {0} are non-periodic or (2) κ ≥ 1
all the elements v = (x, y, z, w)T (v 	= 0) for which

(2.1) ‖v‖ ≤ L, ‖(x, y)T − (z, w)T ‖ < κ

are non-periodic then (Z4,M,D) is a simultaneous number system.

Proof. The proof is analogous to [9, Lemma 3.4]. �

If the application of Lemma 2.1 shows that the system (Z4,M,D) is not a
number system then the simultaneous GNS construction algorithm [9] can be
used. The algorithm has 3 different possible outcomes. It terminates

• either with an output that the construction is not possible at all (in which
case the witness γ ∈ W shows that any digit β ∈ W congruent with γ
would constitute a loop in the system), or

• with an appropriate digit set (in which case the two dimensional pro-
jection S = {(x, y)T } of the digit set D = {(x, y, x, y)T : x, y ∈ Z} is
drawn), or

• with a remark of an unsuccessfully construction attempt.

3. The results of the computations

Figure 1 shows the GNS computation results for various operator types. All
computations were performed on a laptop with Intel Core i5-2520M, 2.5GHz
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(a) Type-A cases (b) Type-B cases (c) Type-C cases

Figure 1: Computation results of simultaneous Eisenstein number system
analysis. A point (a, b) in the figure means the appropriate M(a, b) basis.
The diagonal-cross points denote the non-radix bases. The circles denote the
bases for which simultaneous number systems can be constructed. The boxed
points means the bases for which suitable digit sets can not be constructed at
all.

CPU, 8MB RAM, programmed in Maple. We note that the points without any
marks denote the bases for which the dense digit sets are suitable, i.e. these
systems are Eisenstein number systems.

3.1. Type-A Cases

First we can observe that the dynamics of the systems
(
Z4,MA(a, b), D

)
and(

Z4,MA(a−b,−b), D
)
are exactly the same. Hence, it is enough to examine the

cases b ≥ 0. Figure 2 and Figure 3 (a)–(b) show the cases when the digit sets
with the appropriate operators form simultaneous Eisenstein number systems.
The marked points (x, y) ∈ S in the pictures denote that the vecor (x, y, x, y)T

belongs to the appropriate digit set. Table 1 contains the radix systems which
can not be simultaneous Eisenstein number systems for any digit set D. The
table contains the γ residue class representants as well.

3.2. Type-B Cases

Figure 3 (c)–(l), Figure 4 and Figure 5 (a)–(h) show the GNS computation
results, i.e. the cases when the digit sets with the appropriate operators form
simultaneous Eisenstein number systems. Observe that there are some opera-
tors for which the same digit set satisfies the number system property at the

same time. This is not a coincidence. For the operator M =
(

M1 0
0 M2

)
let us
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(a) MA(−3, 1) (b) MA(−2, 1) (c) MA(−2, 2)

(d) MA(−1, 2) (e) MA(0, 2) (f) MA(0, 3)

(g) MA(1, 2) (h) MA(1, 3) (i) MA(2, 2)

(j) MA(2, 3) (k) MA(2, 4) (l) MA(3, 1)

Figure 2: Digit sets of simultaneous Eisenstein number systems.
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(a) MA(3, 3) (b) MA(4, 2) (c) MB(−4,−3)

(d) MB(−3,−3) (e)
MB(−3,−2),MC(−2, 1)

(f) MB(−3,−1),MB(3, 0)

(g) MB(−3, 0) (h) MB(−2,−4),MB(2, 3) (i) MB(−2,−3)

(j) MB(−2,−2) (k) MB(−2,−1) (l) MB(−2, 0)

Figure 3: Digit sets of simultaneous Eisenstein number systems.
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(a) MB(−2, 1),MB(2,−2) (b) MB(−2, 2) (c) MB(−1,−3)

(d) MB(−1, 1) (e) MB(−1, 2) (f) MB(0,−3)

(g) MB(0, 2) (h) MB(1,−3) (i) MB(1,−2)

(j) MB(1, 2) (k) MB(1, 3) (l) MB(2,−1)

Figure 4: Digit sets of simultaneous Eisenstein number systems.
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(a) MB(2, 2) (b) MB(2, 4),MB(−2,−5) (c) MB(3,−1)

(d) MB(3, 1) (e) MB(3, 2) (f) MB(3, 3)

(g) MB(4, 0) (h) MB(4, 1) (i) MC(−4,−3)

(j) MC(−4,−2) (k) MC(−4,−1) (l) MC(−3,−5)

Figure 5: Digit sets of simultaneous Eisenstein number systems.
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(a) MC(−3,−3) (b) MC(−3,−2) (c) MC(−3,−1)

(d) MC(−3, 0) (e) MC(−2,−3) (f) MC(−2, 0)

(g) MC(−1, 1) (h) MC(−1, 2) (i) MC(0,−3)

(j) MC(0, 2) (k) MC(0, 3) (l) MC(1,−3)

Figure 6: Digit sets of simultaneous Eisenstein number systems.
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(a) MC(1,−2) (b) MC(1, 2) (c) MC(1, 3)

(d) MC(2,−1) (e) MC(2, 0) (f) MC(2, 1)

(g) MC(2, 2) (h) MC(2, 3) (i) MC(2, 4)

(j) MC(3,−1) (k) MC(3, 0) (l) MC(3, 1)

Figure 7: Digit sets of simultaneous Eisenstein number systems.
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Base γ Base γ
MA(2, 0) (2, 2, 2, 2)T MA(2, 1) (1, 2, 1, 2)T

(2, 0, 2, 0)T (1,−1, 1,−1)T
(2,−2, 2,−2)T (−1, 1,−1, 1)T
(0, 2, 0, 2)T (2, 1, 2, 1)T

(0,−2, 0,−2)T (−2,−1,−2,−1)T
(−2, 0,−2, 0)T (−1,−2,−1,−2)T
(−2, 2,−2, 2)T MB(2, 1) (−1,−2,−1,−2)T

(−2,−2,−2,−2)T (−2,−1,−2,−1)T
MA(3, 2) (−4, 2,−4, 2)T (1,−1, 1,−1)T

(4,−2, 4,−2)T (−1, 1,−1, 1)T
MA(3, 0) (−6,−6,−6,−6)T MC(0,−2) (1, 2, 1, 2)T

(−6, 0,−6, 0)T (2, 1, 2, 1)T

(0,−6, 0,−6)T (1,−1, 1,−1)T
(−1, 1,−1, 1)T

Table 1: Radix bases for which there does not exist any digit set constituting
an Eisenstein GNS. The γ values represents the cosets for which the elements
produce loops in the system.

interchange the blocks and let us denote the result byM∗, i.e. M∗ =
(

M2 0
0 M1

)
.

Then the following can easily be proved:

• MB(a, a) = −M∗
B(a, a),

• MB(a, 2a) = −M∗
B(a, 2a),

• MB(a,−a) = −M∗
B(a,−a).

Table 1 contains the only B-type radix system which can not be simultaneous
Eisenstein number system for any digit set D.

3.3. Type-C Cases

Figure 5 (i)–(l) and Figures 6−7 show the cases when the digit sets with the
appropriate operators form simultaneous Eisenstein number systems. Again,
Table 1 shows the only C-type radix system which can not be simultaneous
Eisenstein number systems for any digit set D. We can observe that MB(2, 1)
is Z-similar to MC(0,−2) which explains their similar behaviour.
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4. Summary

In this paper we proved the following

Theorem 4.1. For every Eisenstein integer η1 = a1 + b1ω except −1, 0, 1, ω,
1 + ω, −ω, −1− ω, and 1− ω there is some Eisenstein integer η2 = a2 + b2ω
such that the system (η1, η2, D) is a simultaneous number system for some digit
set D.
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