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Abstract. We extend a result of E. Kasparek characterizing continuous
affine transformations without fixed points f : X → X having invariant
straight line to the case when X is an arbitrary real topological linear
space.

In this note X always denotes a real topological linear space and f : X → X
a continuous affine transformation having no fixed point. In our considerations
an important role is played by transformation g : X → X given by the formula

(1) g(x) = f(x)− f(0)− x, x ∈ X.

Note that g is a linear function transforming X into itself. We characterize
transformations f in the class of functions having an invariant straight line.
Our main result extends an analogous theorem obtained by Erwin Kasparek
[1] who has proved it in the case X = Rn. As usual for each nonnegative integer
n by fn we mean the n− th iterate of f , i.e., f0(x) = x, fn+1(x) = f(fn(x)).
In a similar way, in the case if f is invertible we may define the n− th iterates
for arbitrary integer n. Moreover symbol Z stands for the set of all integers.
We start with some basic remarks.

Remark 1. If l ⊂ X is a straight line and f(l) ⊂ l then f(l) = l.
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Proof. Assume that f(l) has exactly one point z ∈ l. In particular, f(z) = z,
which is not the case. Therefore f(l) contain at least two different point u and
v. Let u = f(x), v = f(y), x 	= y, x, y ∈ l. Now, affinity of f implies that

λu+ (1− λ)v = f(λx+ (1− λ)y) ∈ l,

which together with our assumption f(l) ⊂ l proves that f(l) = l. �

Remark 2. If f has an invariant straight line l then the restriction f to l,
i.e., function f |l is invertible.

Proof. If x, y ∈ l, x 	= y and f(x) = f(y) = z then z ∈ l and taking λ ∈ R
such that z = λx+ (1− λ)y we get

f(z) = f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y) = z,

a contradiction. �

In the reminder we use the following lemma.

Lemma 3. If l is an invariant straight line of f then f |l is a translation, i.e.,
there exists a v ∈ X \ {0} such that for each x ∈ l we have

(2) f(x) = x+ v.

Proof. For every x ∈ l the points f(x), f2(x) also belong to l. Thus there
exists a function ϕ : l → R \ {0} such that

(3) ϕ(x)[f(x)− x] = f2(x)− f(x), x ∈ l.

We shall show that for each x ∈ l we have ϕ(x) = 1. Firstly, we observe that
ϕ(x) 	= −1. If fact, the condition ϕ(x) = −1 implies that f2(x) = x and
consequently,

f

(
x+ f(x)

2

)
=

f(x) + f2(x)

2
=

f(x) + x

2
,

which means that f has a fixed-point, a contradition. Let’s rewrite (3) to the
following form

f(x) =
ϕ(x)

1 + ϕ(x)
x+

1

1 + ϕ(x)
f2(x).

It follows from affinity of f that

f2(x) =
ϕ(x)

1 + ϕ(x)
f(x) +

1

1 + ϕ(x)
f3(x),
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which is equivalent to the following condition

ϕ(x)[f2(x)− f(x)] = f3(x)− f2(x).

Hence and by (3) we infer that

ϕ(x) = ϕ(f(x)),

and, consequently,

(4) ϕ(fn(x)) = ϕ(x),

for all integer n. By virtue of (3) and (4) we obtain

ϕ(x)k+1(f(x)− x) = fk+2(x)− fk+1(x), k ∈ Z,

whence

(5)

n∑
k=0

ϕ(x)k+1(f(x)− x) = fn+2(x)− f(x), n ∈ Z.

Assume now that ϕ(x) 	= 1. Then (5) has a form

(6) ϕ(x)
1− ϕ(x)n+1

1− ϕ(x)
(f(x)− x) = fn+2(x)− f(x).

If |ϕ(x)| < 1, then we tend with n to infinity, and if |ϕ(x)| > 1, we tend with
n to minus infinity. In both cases the sequence fn(x) is convergent. It is easy
to see that its limit point has to be a fixed-point of f . This shows that

ϕ(x) = 1, x ∈ l.

According to (3) we get

(7) f(x)− x = fk+1(x)− fk(x), x ∈ l, k ∈ Z.

Let us fix x, y ∈ l. Chose an integer k and λ ∈ R such that

y = λfk(x) + (1− λ)fk+1(x).

Then
f(y) = λfk+1(x) + (1− λ)fk+2(x),

and using also (7)

f(y)− y = λ(fk+1(x)− fk(x)) + (1− λ)(fk+2(x)− fk+1(x))

= λ(f(x)− x) + (1− λ)(f(x)− x) = f(x)− x.
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Setting v := f(y)− y we obtain v 	= 0 and

f(x) = x+ v, x ∈ l.

This ends the proof of Lemma 3. �

Lemma 4. If f has an invariant straight line and g is defined by (1) then
f(0) = u+ v, where u ∈ Im g, v ∈ ker g \ {0}.
Proof. Let l be an invariant straight line of f . On account of Lemma 3

f(x) = x+ v, x ∈ l,

where v is a fixed nonzero vector of X. For each x ∈ l we have x + v ∈ l.
Therefore f(x) = x + v and f(x + v) = x + v + v, whence f(x + v) − f(0) −
(f(x)− f(0)) = v, x ∈ l. By linearity of f − f(0) on X we get

f(v)− f(0) = v.

Finally, g(v) = 0, which means that v ∈ ker g. Setting u := f(0) − v and
taking an x ∈ l we get

g(−x) = −g(x) = −f(x) + x+ f(0) = −v + f(0) = u,

whence u ∈ Im g, and the proof of Lemma 4 is complete. �

Lemma 5. If f(0) = u+ v, where u ∈ Im g and v ∈ ker g \ {0} then f has an
invariant straight line.

Proof. By our assumptions

(8) f(v)− v − f(0) = 0

and −u ∈ Im g. Let x1 ∈ X be such that

(9) f(x1)− x1 − f(0) = −u.

Let us put
H := {x ∈ X; f(x) = x+ v}.

According to (9) we get

f(x1) = x1 + f(0)− u = x1 + v,

whence x1 ∈ H. Moreover, by the linearity of f − f(0) and (8) we get

f(x1 + v) = f(x1 + v)− f(0) + f(0) = f(x1)− f(0) + f(v) =

= x1 + v − f(0) + v + f(0) = x1 + v + v,
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whence x1 + v ∈ H. Therefore H contains at least two different points. Let
l be the straight line generated by this points. For an arbitrary w ∈ l there
exists a λ ∈ R such that w = λx1 + (1− λ)(x1 + v). Then

f(w) = f(λx1 + (1− λ)(x1 + v)) = λf(x1) + (1− λ)f(x1 + v) =

= λ(x1 + v) + (1− λ)(x1 + 2v) = x1 + (2− λ)v =

= (λ− 1)x1 + (2− λ)(x1 + v).

This means that f(l) ⊂ l and now our assertion follows from Remark 1. �

From Lemmas 4 and 5 the following theorem easy follows.

Theorem 6. Transformation f has an invariant straight line if and only if
there exist a u ∈ Im g and v ∈ ker g \ {0} such that f(0) = u+ v.

Corollary 7. Transformation f has an invariant straight line if and only if
g(f(0)) ∈ Im g2.

Proof. If f has an invariant straight line then on account of Lemma 2 f(0) =
u+ v, where u ∈ Im g and v ∈ ker g \ {0}. Therefore g(f(0)) = g(u) ∈ Im g2.
On the other hand, if g(f(0)) ∈ Im g2 then there exists a w ∈ X such that
g(f(0)) = g(g(w)). Therefore g(f(0)− g(w)) = 0, and hence f(0)− g(w) = v,
where v ∈ ker g. To end the proof it is enough to show that v 	= 0. Suppose
v = 0. Then f(0) = g(w) and according to (1)

−g(w) = g(−w) = f(−w) + w − f(0),

or equivalently,

f(−w) = −w,

a contradiction. �

Corollary 8. If g transforms X onto X and g2 = g then f has an invariant
straight line.

Proof. It follows from our assumptions that

X = ker g ⊕ Im g.

Thus f(0) = v + u, where v ∈ ker g and u ∈ Im g. Moreover v 	= 0 because
otherwise f would have a fixed point. Now, it is enough to apply Theorem 6.
�
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