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Abstract. Some sufficient conditions are given under which a solution of
a stochastic differential equation is unbounded as t → ∞.

1. Introduction

The asymptotic behavior of solutions of one-dimensional autonomous stochas-
tic differential equations

(1) dζ(t) = g (ζ(t)) dt+ σ (ζ(t)) dw(t), t ≥ 0,

is considered in [1], [2], and [3]–[6] as t → ∞. Here w is a standard Wiener
process, g and σ are positive continuous functions defined on the set R =
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= (−∞,∞) and such that a unique and continuous solution ζ of equation (1)
exists.

The same problem was later considered in [7]–[9] for a more general stochas-
tic differential equation

(2) dη(t) = g (η(t))ϕ(t)dt+ σ (η(t)) θ(t)dw(t), t ≥ 0,

where g and σ are continuous positive functions, ϕ and θ are continuous func-
tions. Some sufficient conditions are obtained in [7]–[9] under which the exact
order of growth of a solution η is determined almost surely (a.s.) by a solution
μ of the corresponding ordinary differential equation

dμ(t) = g (μ(t))ϕ(t)dt, t ≥ 0.

Moreover, the asymptotic equivalence of two solutions of stochastic differ-
ential equations with time-depended coefficients and that of the solutions of
the corresponding ordinary differential equations are considered in [7]–[9]. One
of the basic assumptions in [7]–[9] is that

(3) lim
t→∞ η(t) =∞ a.s.

Unboundedness of solutions of stochastic differential equations is one of the
important topics in studies of the asymptotic behavior of stochastic differential
equations solutions. General results for the unboundedness of solutions for an
autonomous stochastic differential equation can be found, for example, in [1].

In this paper, we provide some sufficient conditions for the unboundedness
of a solution of a stochastic differential equation with time-depended coefficient
in the general case and those for the case that considered in [7]–[9].

2. Assumptions and the main results

2.1. Unbounded solutions of a stochastic differential equation with
time dependent drift and diffusion coefficients

Consider the following stochastic differential equation

(4) dξ(t) = a (t, ξ(t)) dt+ σ (t, ξ(t)) dw(t), t ≥ 0;

ξ(0) ≡ ξ0,
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where w is a standard Wiener process, ξ0 is a nonrandom positive constant,
ξ is a solution of equation (4), a and σ are continuous functions defined for
t ∈ [0, +∞) and x ∈ (−∞; +∞). We denote by C (C+) the class of all
continuous (and positive) functions and by C1 (C1

+) the class of all continuously
differentiable (and positive) functions.

Theorem 1. Let a ∈ C and σ ∈ C+ be such that equation (4) has a continuous
solution ξ. Assume further that the function σ is such that

lim
x→∞

x∫
0

dy

σ(t, y)
=∞

and the derivatives σ′t and σ′x exist. Put

g̃(t, x) = −
x∫

0

σ′t(t, y)
σ2(t, y)

dy +
a (t, x)

σ(t, x)
− 1

2
σ′x(t, x).

Then

lim
t→∞ η(t) =∞ a.s.

if at least one of the following two conditions hold:

(5) lim inf
T→∞

1√
2T ln lnT

T∫
0

u(t) dt > 1, u(t) = inf
x∈R

[g̃(t, x)] ,

or

(6)

0∫
−∞

e−2v(x) dx = +∞ and

∞∫
0

e−2v(x) dx < +∞,

where

v(x) =

x∫
0

inf
t>0

[g̃(t, z)] dz.

Proof. Put
γ(t) = f(t, ξ(t)), t > 0.

Then
ξ(t) = f−1(t, γ(t)),
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where

f(t, x) =

x∫
0

dy

σ(t, y)
,

and f−1 is the inverse function for f with respect to the argument x.

Using the Itô formula for equation (4) (see, for example, Theorem 4, §3,
in [1]), we obtain:

dγ(t) = [f ′t(t, ξ(t)) + f ′x(t, ξ(t))a(t, ξ(t)) +
1

2
f ′′xx(t, ξ(t))σ

2(t, ξ(t))] dt+

+ f ′x(t, ξ(t))σ (t, ξ(t)) dw(t) =

= [f ′t(t, f
−1(t, γ(t))) + f ′x(t, f

−1(t, γ(t)))a(t, f−1(t, γ(t)))+

+
1

2
f ′′xx(t, f

−1(t, γ(t)))σ2(t, f−1(t, γ(t)))] dt+

+ f ′x(t, f
−1(t, γ(t)))σ

(
t, f−1(t, γ(t))

)
dw(t),

where

f ′x(t, x) =
1

σ(t, x)
, f ′t(t, x) = −

x∫
0

σ′t(t, y)

σ(t, y)
dy,

f ′′xx(t, x) = − σ′(t, x)
σ2(t, x)

.

Thus, the process γ is a solution of the stochastic differential equation

dγ(t) = ã(t, γ(t))dt+ dw(t), t ≥ 0,

where

ã(t, x) = −
x∫

0

σ′t(t, y)
σ2(t, y)

dy +
a (t, x)

σ(t, x)
− 1

2
σ′x(t, x).

Now Theorem 1 follows from Theorem 2, §16 in [1]. �

Remark 2. It is known that equation (4) has a unique continuous solution if
coefficients a and σ are continuous and such that

(i) for any T ∈ (0;∞), there exists a constant K = K(T ) such that

|a (t, x)|2 + |σ (t, x)|2 ≤ K2
(
1 + |x|2

)
;

for t ∈ [0; T ] and x ∈ (−∞; +∞);

(ii) for all C, T ∈ (0;∞), there exists a constant L = L(C, T ) such that

|a (t, x)− a (t, y)|+ |σ (t, x)− σ (t, y)| ≤ L |x− y|
for t ∈ [0; T ] and (x, y) ∈ (−C; +C)× (−C; +C).
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2.2. Unbounded solutions if a(t, x) = g(x)ϕ(t) and
σ(t, x) = σ(x)θ(t)

Consider a solution η = (η(t), t ≥ 0) of stochastic differential equation (2).
We assume that ϕ ∈ C, θ ∈ C, g ∈ C+, and σ ∈ C+ are such that equation (2)
has a continuous solution η.

Denote

(7) B(x) =

x∫
0

dy

σ(y)
.

We further assume that

(8) lim
x→∞B(x) =∞.

Theorem 3. Let g ∈ C+, σ ∈ C1
+, ϕ ∈ C, θ ∈ C1

+ be such that equation (2)
has a continuous solution η. If the function

g̃1(t, x) = − θ′(t)
θ2(t)

B(x) +
g (x)ϕ(t)

σ(x)θ(t)
− 1

2
σ′(x)θ(t)

satisfies at least one of the conditions (5) or (6) of Theorem 1, where g̃(t, x) =
g̃1(t, x), and (8) holds, then

lim
t→∞ η(t) =∞ a.s.

Proof. Denote γ(t) = f(t, η(t)), where

f(t, x) =
1

θ(t)

x∫
0

dy

σ(y)
=

1

θ(t)
B(x)

and where the function B is defined by (7). Since B is a strictly increasing
function and condition (8) holds, B−1(θ(t)x) is the inverse for f with respect
to the argument x. This, in particular, means that

f(t, f−1(t, x)) = x and f−1(t, f(t, x)) = x.

Thus,

f(t, x) =
1

θ(t)
B(x)

and

f(t, f−1(t, x)) = f(t, B−1(θ(t)x)) =
1

θ(t)
B(B−1(θ(t)x)) =

1

θ(t)
xθ(t) = x.
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On the other hand

f−1(t, f(t, x)) = B−1

(
1

θ(t)
θ(t)B(x)

)
= B−1 (B(x)) = x.

Hence η(t) = f−1(t, γ(t)) with γ(t) = f(t, η(t)). Using the Itô formula we
obtain:

dγ(t) = [f ′t(t, η(t)) + f ′x(t, η(t))g (η(t))ϕ(t) +
1

2
f ′′xx(t, η(t))σ

2(η(t))θ2(t)]dt+

+ f ′x(t, η(t))σ (η(t)) θ(t)dw(t).

Since

f ′x(t, x) =
1

σ(x)θ(t)
, f ′t(t, x) = − θ′(t)

θ2(t)

x∫
0

dy

σ(y)
,

f ′′xx(t, x) = − σ′(x)
σ2(x)θ(t)

,

we conclude that

dγ(t) = g̃(t, γ(t))dt+ dw(t), t ≥ 0,

where

(9) g̃(t, x) = − θ′(t)
θ2(t)

x∫
0

dy

σ(y)
+

g (x)ϕ(t)

σ(x)θ(t)
− 1

2
σ′(x)θ(t).

Now Theorem 3 follows from Theorem 1. �

2.3. Examples

Below there are some useful results for constructing examples where condi-
tion (5) holds but (6) does not hold or vice versa.

Lemma 4. Assume that

a1) θ is an increasing function for t > 0;

a2) there exists x0 ≥ 0 such that σ′(x0) ≥ 0;

a3)

lim inf
T→∞

1√
2T log log T

T∫
0

ϕ(t)

θ(t)
dt ≤ σ(x0)

g(x0)
.

Then condition (5) does not hold.
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Proof. Since

u(t) = inf
x∈R

g̃(t, x) ≤ g̃(t, x0) ≤ g(x0)

σ(x0)
· ϕ(t)
θ(t)

,

condition (5) does not hold, indeed. �

Lemma 5. Assume that

b1) θ(t) = θ0 for t > 0;

b2) σ′(x) ≤ 0 for x ∈ R;

b3) λ0 = inf
x∈R

g(x)

σ(x)
> 0 and

lim inf
T→∞

1√
2T log log T

T∫
0

ϕ(t) dt >
θ0
λ0

.

Then condition (5) holds.

Proof. For x ∈ R,

g̃(t, x) =
g(x)

σ(x)
· ϕ(t)

θ0
− 1

2
σ′(x)θ0 ≥ g(x)

σ(x)
· ϕ(t)

θ0

whence u(t) ≥ λ0

θ0
ϕ(t) and (5) follows. �

Next we provide an example of the same kind as in Lemma 5 but with a
non-constant function θ.

Example 6. Let g(x) = σ(x) = e−x, x ∈ (−∞; +∞) and ϕ(t) = 1
2 + cos t and

θ(t) = 1
t+1 for t ≥ 0. Then

g̃(t, x) = ex +
1

2
e−x 1

t+ 1
+ (t+ 1)

(
1

2
+ cos t

)
− 1.

Then

u(t) = inf
x∈R

(
ex +

1

2
e−x 1

t+ 1
+ (t+ 1)

(
1

2
+ cos t

)
− 1

)
=

=

√
2

t+ 1
+ (t+ 1)

(
1

2
+ cos t

)
− 1.
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Since

lim inf
T→∞

1√
2T ln lnT

T∫
0

u(t) dt =

= lim inf
T→∞

1√
2T ln lnT

T∫
0

(√
2

t+ 1
+ (t+ 1)

(
1

2
+ cos t

)
− 1

)
dt =

= lim inf
T→∞

2
√
2(T + 1)− 2

√
2 + T 2

4 − T
(
1
2 − sinT

)
+ sinT + cosT − 1√

2T ln lnT
=

= +∞,

we conclude that (5) holds. Note finally that v(x) = inft>0 g̃(t, x) = −∞
and (6) does not apply.

Lemma 7. Let

c1) the function θ is non-decreasing in t > 0;

c2) the derivative θ′(t) is uniformly bounded in t > 0;

c3)
σ(x)

x
→ 0 and

g(x)

σ(x)
→ 0 as x → −∞;

c4)

0∫
−∞

dy

σ(y)
< ∞.

Then the first condition in (6) holds.

Proof. It is clear that, for x < 0,

g̃(t, x) ≤ supt>0 θ
′(t)

θ2(0)

0∫
−∞

dy

σ(y)
+

ϕ(t)

θ(0)
· g(x)
σ(x)

− 1

2
σ′(x)θ(0),

whence

v(x) ≤
x∫

0

(
c1 + c2

g(z)

σ(z)
− c3σ

′(z)
)

dz =

= x

⎛⎝c1 +
c2
x

x∫
0

g(z)

σ(z)
dz − c3

σ(x)− σ(0)

x

⎞⎠



Unbounded solutions of stochastic differential equations 33

with

c1 =
supt>0 θ

′(t)
θ2(0)

0∫
−∞

dy

σ(y)
, c2 =

1

θ(0)
inf
t>0

ϕ(t), c3 =
θ(0)

2
.

Since c1 > 0, the expression in brackets is positive for large |x|, that is e−2v(x) ≥
≥ e−αx for large |x| and some α > 0. This implies the first condition in (6). �

Lemma 8. Let

d1) θ(t) is a non-decreasing bounded function for t > 0;

d2) the derivative θ′ is a bounded function for t > 0;

d3) σ is a regularly varying function at ∞ of an index 0 < ρ < 1;

d4)
g(x)

x
→ 0 as x → ∞.

Then the second condition in (6) holds.

Proof. It is clear that, for x > 0,

g̃(t, x) ≥ − supt>0 θ
′(t)

θ2(0)

x∫
0

dy

σ(y)
+
inft>0 ϕ(t)

supt>0 θ(t)
· g(x)
σ(x)

− 1

2
σ′(x) sup

t>0
θ(t).

Therefore, with

c1 =
supt>0 θ

′(t)
θ2(0)

, c2 =
inft>0 ϕ(t)

θ(0)
, c3 =

supt>0 θ(t)

2
,

we have

g̃(t, x) ≥ c1

x∫
0

dy

σ(y)
+ c2

g(x)

σ(x)
− c3σ

′(x).

By Karamata’s theorem, as x → ∞,

g(x)

σ(x)
= o

⎛⎝ x∫
0

dy

σ(y)

⎞⎠ , σ′(x) = o

⎛⎝ x∫
0

dy

σ(y)

⎞⎠ .

Without loss of generality we may assume that

g̃(t, x) ≥ α

x∫
0

dy

σ(y)
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for all x > 0 and some α > 0. Then

v(x) ≥ α

x∫
0

⎛⎝ z∫
0

dy

σ(y)

⎞⎠ dz

for all x > 0. The asymptotics of the inner integral on the right hand side is

given by
z

σ(z)
as z → ∞ by Karamata’s theorem, thus the asymptotics of the

whole right hand side is
x2

σ(x)
as x → ∞. Therefore the second condition in (6)

follows from

∞∫
0

e−δx2/σ(x) dx < ∞ for all δ > 0. �

Combining Lemmas 4–8 we obtain various cases where only one of condi-
tions (5)–(6) holds.
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