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Abstract. We shall give some intriguing applications of the theory of
circulants—the circulant matrices—and that of linear recurrence sequences
(LRS). The applications of the former in §2 ranges from a simple derivation
of the Blahut theorem to the energy levels of hydrogen atoms in circular
hydrocarbons, where the Blahut theorem is to the effect that the Hamming
weight of a code is equal to the rank of the associated Fourier matrix. The
latter in §3 is connected to the understanding of an LFSR (linear feedback
shift register) as an LRS, and culminates to a corollary asserting that
the linear complexity of the periodically repeated sequence is equal to the
rank of the DFT matrix, revealing the relationship between Blahut’s and
Massey’s formulations. At the end of §3 we give a proof of Blahut’s theorem
by Massey’s theorem. We also mention other relevance of circulants to the
hydrocarbons and class numbers of cyclotomic fields in §4. This constitutes
a companion paper to [8] and deals with more concrete cases.

1. Introduction and statement of results

Let F be a field of charF = p such that its extension field E contains an
N -th root ζ = ζN of 1, where p � N . This is the case because for p = 0, E = C

Key words and phrases: Circulant matrices, linear recurrence sequence,linear feedback shift
register,Blahut’s and Massey’s formulation.
2010 Mathematics Subject Classification: Primary 11B37, 11H71. Secondary 94H15.

https://doi.org/10.71352/ac.40.363

https://doi.org/10.71352/ac.40.363


364 L. Jiang, S. Kanemitsu and H. Kitajima

and ζ = e2πi
1
N , and for p > 0, by the theory of finite fields, there exists an

extension E containing ζ.

In this paper we confine either to finite fields F = Fq = GF(q) with q = pm

elements, with p a prime and m a positive integer, or to commutative rings R
(not necessarily integral domains as furnished by the example of the residue
class ring modulo a composite) and assume that their extension field (or ring)
E contains a primitive root of unity. By abuse of language we refer to them as
a field F whose extension E contains a primitive N -th root ζ of unity.

Let a = (a0, · · · , aN−1) ∈ FN be a sequence of N terms (or a periodic
sequence of period N). Then the discrete Fourier transform (sometimes Finite
Fourier Transform) DFT(a) is given by â = DFT(a) = (â0, · · · , âN−1) ∈ EN ,
where âj is defined by

(1.1) âj =

N−1∑
k=0

akζ
−jk, 0 ≤ j ≤ N − 1,

where we mean by ζ−1 the conjugate of ζ i.e. ζN−1.

The inverse transform is

(1.2) ak =
1

N

N−1∑
j=0

âjζ
kj , 0 ≤ k ≤ N − 1.

We say that ζ generates a DFT(a) of length N . For DFT, cf. e.g. [2], [4],
[9], [13], etc. and references therein.

The circulant matrix formed from DFT(a) is called the DFT matrix M(â)
of a:

(1.3) M(â) =

⎛⎜⎜⎝
â0 â1 · · · âN−1

â1 â2 · · · â0
· · ·

âN−1 â0 · · · âN−2

⎞⎟⎟⎠ .

In §2 we shall derive the following Blahut theorem as an immediate conse-
quence of the fundamental theorem in the theory of circulants (cf. [5]). Let
w(a) denote the number of non-zero terms of the code-word a, which is an im-
portant quantity in error-correcting codes and is referred to as the Hamming
weight.

Theorem 1.1. (Blahut) The Hamming weight of a is the rank of the DFT
matrix M(a).

Further in §3, we shall elucidate hitherto somewhat ambiguous treatment
of LFSR from the point of view of linear recurrence sequences and deduce
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Massey’s version (Theorem 3.1) of the Blahut theorem in a lucid way. As a
bonus, we obtain a new result, Corollary 3.1 as a combination of Blahut’s and
Massey’s theorems.

Toward the end, we shall also mention codes arising from topological ma-
trices associated with hydrocarbons and a relation of circulants to the class
number problem.

2. Circulant matrices and the Blahut theorem

In [3, Chapter 1] we applied the theory of circulant matrices to calculating
the energy levels of molecular orbitals of cyclo-polyenes (cyclic hydrocarbons)
e.g. the benzene. The following is an extract from [5].

Definition 2.1. For γ = (c1, . . . , cN ) ∈ CN , we call

C = circ γ = circ (c1, . . . , cN ) =

⎛⎜⎜⎝
c1 c2 · · · cN
cN c1 · · · cN−1

. . . . . . . . . . . . . . . . . . .
c2 c3 · · · c1

⎞⎟⎟⎠
a circulant matrix (or a circulant). Also, putting

π =

⎛⎜⎜⎜⎝
e′2
e′3
...
e′1

⎞⎟⎟⎟⎠
we call it the shift forward matrix (which plays a fundamental role in the
theory of circulant matrices), where e′k = (δk,1, · · · , δk,n) with δk,� denoting the
Kronekcer symbol, are fundamental unit vectors (π is for push). Using this, we
conclude that C = c1 + c2π + · · ·+ cNπN−1. Viewing this as a polynomial, we
call

(2.1) pγ(z) = c1 + c2z + · · · + cNzN−1

a representor of C.

Note that n× n circulant matrices are matrix representations of the group
ring over C or GF(q) as the case may be, of the underlying cyclic group ([14]).
E.g., {π, π2, I} is the matrix representation of the group ring C[<r>], where

(2.2) π =

⎛⎝0 1 0
0 0 1
1 0 0

⎞⎠ .

and r =

(
1 2 3
2 3 1

)
is the rotation by π

3 .
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Letting ζ = ζN be a primitive N -th root of 1, we define the Fourier matrix
F by means of its conjugate transpose F ∗:

(2.3) F ∗ =
1√
N

(
ζ(i−1)(j−1)

)
=

1√
N

⎛⎜⎜⎝
1 1 · · · 1
1 ζ · · · ζN−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 ζN−1 · · · ζ(N−1)(N−1)

⎞⎟⎟⎠ .

Theorem 2.1. ([5, Theorem 3.2.2, p. 72]) Any circulant matrix C can be
diagonalized as

(2.4) C = F ∗ΛF

by the Fourier matrix F , where

(2.5) Λ = ΛC =

⎛⎜⎜⎝
pγ(1) 0 · · · 0
0 pγ(ζ) · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 · · · 0 pγ

(
ζN−1

)
⎞⎟⎟⎠ .

Thus, in particular, the eigenvalues of C are pγ(1), pγ(ζ), . . ., pγ(ζ
n−1).

Corollary 2.1. ([5, (3.2.14), p. 75])

(2.6) detC = det(circ γ) =

N−1∏
j=0

pγ(ζ
j),

where pγ(z) is the representor of circ γ defined by (2.1).

Proof of Theorem 2.1 follows verbatim to that of Theorem 3.2.2 in [5] since
it is a consequence of Theorem 3.2.1 asserting the diagonalization of π:

(2.7) π = F ∗ΩF,

where

(2.8) Ω = ΩC =

⎛⎜⎜⎝
1 0 · · · 0
0 ζ · · · 0
. . . . . . . . . . . . . . . . . . .
0 · · · 0 ζN−1

⎞⎟⎟⎠ .

From (2.8), (2.4) follows as in [5, (3.2.2)]:

C = circγ = pγ(π) = pγ(F
∗ΩF ) = F ∗pγ(Ω)F = F ∗ΛF,(2.9)

where we note a typo in [5] in which Ω is written as π.
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Proof of Theorem 1.1. We apply Theorem 2.1 with cj = âj−1. Then the
representor in (2.1) is

(2.10) pγ(ζ
j−1) = â1 + â2ζ

j−1 + · · · + âNζ(j−1)(N−1),

which is aj−1 by (1.2). Hence the rank of M(a) is the number of non-zero
components in a, i.e. w(a), completing the proof. �

Cf. another proof using results of Massey in §3.

Corollary 2.1 has been extensively used. E.g. in [12], the determinant
det((a, a+ h, · · · , a+ (N − 1)h) has been evaluated, which turns out to be [5,
Exercise 4, p. 80]. Another example appears with regard to the determinant
expression for the class number of imaginary quadratic fields (cf. §5 below).

3. Shift-register synthesis

In [11], the Blahut theorem over a commutative ring (with a primitive root
of 1) is stated in terms of the length of shortest linear feedback shift register
(LFSR), which in turn is the linear complexity of the relevant sequence. In
that paper, the Fourier matrix (2.3) appears as the Vandermonde matrix Mζ

([11, (5)]).

An LFSR R of length L (an L-stage LFSR) is a cascade of L unit delay
cells–stages–whose contents are to combine linearly to form the input into the
first stage. The output of the LFSR is to be taken from the last stage and the
initial contents s0, s1, · · · , sL−1 of the L stages are to coincide with the first
L output digits and the remaining output digits are uniquely assigned by the
recurrence

(3.1) sj +

L∑
i=1

cisj−i = 0, j = L,L+ 1, · · · ,

where cj ’s are feedback coefficients which lie in a fixed field as with the outputs
sj ’s. With these coefficients, we form the connection polynomial C(X) in the
indeterminate X of the LFSR by

(3.2) C(X) =

L∑
j=0

cjX
j .

An LFSR R is said to generate a finite sequence s = {s0, s1, · · · , sN−1}
if the first N output digits of R for some initial loading coincides with s. If
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L ≥ N , then R generates s, while if L < N , then R generates s if and only
(3.1) holds for j = L,L+1, · · · , N −1. Let S(X) be the Huffman X-transform
([11, (16)])

(3.3) S(X) =

∞∑
j=0

sjX
j ,

which is therefore a generating power series of the periodically repeated se-
quence s∞ = s, s, · · · .

Let s = (s0, · · · , sN−1) ∈ FN . We recall the definition of the linear com-
plexity of s∞ (cf. [16]). It is the smallest non-negative integer L such that (3.1)
holds true, whence in the terminology of LFRS, it is the length of the shortest
LFSR ([10]). For this notion, cf. e.g. [16], [17].

A fundamental result is the following ([10, Corollary to Theorem 4]). Let
R denote a commutative ring in which there is a primitive N -th root of 1.

Lemma 3.1. If the Huffman transform of the sequence s is of the form S(X) =

= P (X)
C(X) , where P,C ∈ R are relatively prime polynomials with C(0) = 1, then

C(X) is the connection polynomial of the shortest LFRS that generates s and
its length is max{degC(X), degP (X) + 1}.

Theorem 3.1. (Massey’s version of the Blahut theorem) If ζ generates a DFT
(s = DFT(a)) of length N in R, then the linear complexity of the periodically
repeated sequence s∞ is equal to the Hamming weight w(a) of a.

Corollary 3.1. If ζ generates a DFT (s = DFT(a)) of length N in R, then
the linear complexity of the periodically repeated sequence s∞ is equal to the
rank of the DFT matrix M(a) of a defined by (1.3).

In the sequel we shall introduce some basics of linear recurrence sequences
whose main result is the expression of the solutions according to Theorem 3.2
below.

A sequence s = {sn} is said to be a linear recurrence sequence of order L
if it satisfies the recurrence (3.1), where cj ’s are coefficients. Therefore the se-
quence is uniquely determined by the initial terms {s0, · · · , sL−1}. We suppose
that c0 = 1 and cL �= 0. The former is a normalization while the latter is a
natural restriction not incorporated in [11]. For otherwise, in (3.1) the highest
term would be cL−1, which could be named by cL. This restriction removes
the maximum condition in Massey’s version of the linear complexity since the
degP < L. Let S(X) denote the generating power series (3.3) for s.
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Theorem 3.2. Suppose the connection polynomial (3.2) decomposes as

(3.4) C(X) =

L∑
j=0

cjX
j =

q∏
i=1

(1 − ωiX)
σi ,

where ωi’s are distinct and
∑q

i=1 σi = L. Then

1. All the solutions to the recurrence equation (3.1) form an s-dimensional
subspace V of the vector space CL and its basis {ωi}’s can be extended to a
basis of CL and the elements of V are given as in (3.5).

2. s = {sn} is a linear recurrence sequence if and only if its generating power

series is a rational function: S(X) = P (X)
C(X) , where P (X) is a polynomial of

degree < L.

3. There exist unique polynomials fi(z) ∈ C(si, ci, ωi)[z] of degree < σi (1 ≤
≤ i ≤ s) such that

(3.5) sj =

q∑
j=1

fi(j)ω
j
i (j = 0, 1, · · · ).

Proof. We shall prove 2 and 3. Suppose (3.1) holds. Then

(3.6) C(z)S(z) =
L−1∑
j=0

(
j∑

i=0

cisj−i

)
zj +

∞∑
j=L

(
sj +

L−1∑
i=0

cisj−i

)
zj ,

so that the only first summand remains, which is a polynomial, say P (z), whose
degree < L. Hence the assertion follows.
Conversely, if C(z)S(z) = P (z) holds for a polynomial whose degree < L, then
in the expansion of C(z)S(z), all the terms with zm, m ≥ L must vanish, which
means we have (3.1), and the converse is also true.

Regarding the expression, we appeal to the partial fraction expansion (3.13)
in the form

(3.7) S(z) =

q∑
i=1

σi∑
j=1

bi,j
1

(1 − βiz)
j
.

Then by the binomial expansion,

(3.8) S(z) =

q∑
i=1

σi∑
j=1

bi,j

∞∑
m=0

(
−j

m

)
(βiz)

m
.
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Then applying the identity
(−j
m

)
=

(
m+j−1

m

)
and changing the order of

summation, we transform (3.8) into

(3.9) S(z) =

∞∑
m=0

q∑
i=1

σi∑
j=1

bi,j

(
m+ j − 1

m

)
βi

mzm.

Comparing the coefficients, we immediately deduce (3.5), completing the
proof. �

Another proof of Theorem 3.2, 1. Assuming the existence of the inverse
operator as in the case of Laplace transforms, we may argue as follows, in which
we omit the identity operator symbol. We think of the solutions of (3.10) as
the result operated the inverse operator on 0, i.e. we find {yn} such that

(3.10) 0 = (E − α)yn = yn+1 − αyn.

This gives rise to yn = a0α
n, a geometric sequence.

In the case of a double root, we make a small trick: We express the 2nd
order linear recurrence

(3.11) 0 = (E − α)
2
yn = yn+1 − yn = yn+2 − 2αyn+1 + α2yn

as (zn = yn+1 − yn)
zn+1 = αzn,

whence zn = a0α
n. Hence yn+1 = αyn + aoα

n and inductively, we deduce that

(3.12) yn = y0α
n + a0nα

n.

Hence we find a basis {αn, nαn}.
We may now go on inductively until we reach the algebraic multiplicity of

the root α. This complete the proof. �

The following theorem provides us with the partial fraction expansion.

Theorem 3.3. If the denominator C(z) of the rational function S(z) = P (z)
C(z)

is given by (3.4), then

(3.13) S(z) =

q∑
i=1

σi−j∑
j=0

ak,σk−j
1

(z − βi)
σi−j

,

where the coefficients are given by

ai,σi−j =
1

j!
lim
z→βi

dj

dzj
((z − βi)

σi R(z)) .(3.14)
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Thus it follows that the shortest LFSR synthesis problem amounts to finding
the partial fraction expansion of the generating power series.

To illustrate this principle, we prove Theorem 3.1 by Theorem 3.3. To this
end, we need the following

Lemma 3.2. Let ξ denote a primitive N -th root of 1. Then for each fixed
i, 0 ≤ i ≤ N − 1

(3.15)

N−1∏
j=0
j 
=i

(ξi − ξj) = Nξi(N−1) = Nξ−i

and as a consequence, we have

(3.16)
∏

0≤i,j≤N−1
j 
=i

(ξi − ξj) = (−1)
N−1

NN .

Proof. It is known that all the N -th roots of 1 are powers of ξ, so that

(3.17) XN − 1 =

N−1∏
j=0

(X − ξi).

Differentiating (3.17), we obtain

(3.18) NXN−1 =

N−1∑
i=0

N−1∏
j=0
j 
=i

(X − ξj).

Substituting X = ξi with fixed i gives (3.15).

To prove (3.16), we multiply (3.15) to obtain

(3.19)
∏

0≤i,j≤N−1
j 
=i

(ξi − ξj) = NN

⎛⎝N−1∏
j=0

ξj

⎞⎠N

.

By comparing the constant term of (3.17), we obtain

(3.20)

N−1∏
j=0

ξj = (−1)
N−1

.

Substituting (3.20) in (3.19) completes the proof of (3.16), completing the
proof. �
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Proof of Theorem 3.1. We use the notation of Massey so that the typos
can be noticed easily. For s = DFT(a) we write B = DFT(b), where B =
(B[0], · · · , B[N − 1]) and b = (b[0], · · · , b[N − 1]). It suffices to verify the
partial fraction expansion

(3.21)

(
N−1∑
n=0

B[n]zn

)
1

1 − zN
=

N−1∑
n=0

b[n]

1 − ξnz
,

which is [11, (8)] (Cf. the passage following this proof).

For as given toward the end of the paper [11], writing the right-hand side of

(3.21) as
∑N−1

n=0
b[n] 
=0

b(n)
1−ξnz = P (z)

C(z) , then the polynomial C(z) =
∏N−1

n=0
b[n] 
=0

b(n)
1−ξnz is

the connection polynomial of the shortest LFSR that generates the periodically
repeated sequence B∞. By Lemma 3.1, the linear complexity of this sequence
is equal to the degree of the connection polynomial C(z), which is the number
of non-zero elements b[n], which in turn is the Hamming weight of b, proving
Theorem 3.1.

We now turn to the proof of (3.21). First note that (3.17) may be written
as

(3.22) zN − 1 =

N−1∏
j=0

(z − ξ−j).

Writing

(3.23) −
(

N−1∑
n=0

B[n]zn

)
1

1 − zN
=

N−1∑
i=0

ai
1

z − ξ−i
,

we obtain by Theorem 3.3

(3.24) ai = lim
z→ξ−i

∑N−1
n=0 B[n]zn∏
j 
=i(z − ξ−j)

=

∑N−1
n=0 B[n]ξ−in∏
j 
=i(ξ

−j − ξ−j)
.

Now the denominator is Nξi by Lemma 3.2. Hence (3.23) reads

(3.25) ai = ξ−ib(i),

whence (3.23) leads to (3.21), completing the proof. �

In the proof of [11, Theorem 4] (which is Theorem 3.1), there are some
typos, which we point out here. [11, Eq. (10)] should read

(10)
P (D)

C(D)
=

N−1∑
n=0

b(n) 
=0

b[n]
1

1 − ξnD
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and [11, Eqn. (12)] should read

(12) S(D) =
(
B[0] +B[1]D + · · · +B[N − 1]DN−1

) 1

1 − DN
.

I.e. [11, Eqn.(8)] should be given as (3.21) with z = D.

Proof of Blahut’s theorem, Theorem 1.1, a là Massey’s results

Note that (1.1) reads

(3.26) â = DFT(a) = Fa

while (1.2)

(3.27) a =
1

N
F ∗â,

where we view the row vectors as column vectors. Hence we have the following
equality for the representor

pâ(z) = â0 + â1z + · · · + âN−1z
N−1 =

N−1∑
�=0

â�z
� =

N−1∑
�=0

z�
N−1∑
k=0

akζ
−k�(3.28)

=
N−1∑
k=0

ak

N−1∑
�=0

(zζ−k)
�
=

N−1∑
k=0

ak
1 − zN

1 − zζ−k
,

which is [11, (8)]=(3.21) on which the proof hinges. For each fixed j, 0 ≤ j ≤
≤ N − 1, we now put z = ζj in the formula above to deduce that

(3.29) pâ(ζ
j) = â0 + â1ζ

j + · · · + âN−1ζ
(j)(N−1) = aj .

Cf. Theorem 2.1. By the result of Massey, we conclude that pâ(z) = C(z),
the connection polynomial, whence that the eigen-values of M(a) are pâ(ζ

j),
0 ≤ j ≤ N − 1. Hence it follows that the number of non-zero eigen-values is
the same as that of non-zero elements in a.

4. Topological matrices of cyclic orbitals

In this section we consider the topological matrix associated to a ring-
shaped polyene (cyclo-polyene, typically, hydrocarbons). Letting Hn(λ) be the
matrix of degree n whose first row, second row, . . . are

(−λ, 1, 0, . . . , 0, 1) , (1,−λ, 1, 0, . . . , 0) ,

(0, 1,−λ, 1, 0, . . . , 0) , . . . , (1, 0, . . . , 0, 1,−λ) ,
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respectively. Then Hn(λ) is the (π-electron) Hückel matrix for a cyclo-polyene
by viewing −λ, 1 as α (Coulomb integral), β (overlapping integral), resp. It
may be decomposed as −λE + T , where T is the topological matrix of the
cyclo-polyene consisting of entries

(0, 1, 0, . . . , 0, 1) , (1, 0, 1, 0, . . . , 0) ,

(0, 1, 0, 1, 0, . . . , 0) , . . . , (1, 0, . . . , 0, 1, 0) ,

which is a circulant matrix with γ = (0, 1, 0, . . . , 0, 1), so that pγ(z) = z+zn−1.
Cf. [1, Chapter 5, pp. 56-70].

Let gn(λ) = det Hn(λ). Then the solutions of gn(λ) = 0 are the eigenvalues
of the matrix π + π−1(= 2M1), say. Since pγ(ζ

j) = ζj + ζj(n−1) = ζj + ζ−j =
2Re ζj , it follows that the eigenvalues are 2Re 1, 2Re ζ, . . ., 2Re ζn−1 = 2,

2 cos 2π
n , . . ., 2 cos 2(n−1)π

n .

For n = 4, the energy levels of the π electrons of 1,3-cyclobutadiene are

2, 2 cos
2π

4
, 2 cosπ, 2 cos

6π

4
= 2, 0,−2, 0,

while those for benzene are

2, 2 cos
2π

6
, 2 cos

4π

6
, 2 cosπ, 2 cos

8π

6
, 2 cos

10π

6
= 2, 1,−1,−2,−1, 1.

An (n, k)-code C over GF (q) is a k-dimensional subspace of GF (q)
n
. A

matrix G is called a generating matrix of C if it contains k linearly inde-
pendent row vectors, which are called information sets. Hence, to give an
(n, k)-code it suffices to assign a generating matrix. In the case of GF (2), we
have the following theorem

Theorem 4.1. A cyclo-polyene with n hydrogen atoms generates an (n, n− 2)
linear code with n alphabets and (n − 2)-dimensional subspace, the number of
codewords being 2n−2.

Subsequently we illustrate Theorem 4.1.

• Cyclo-propenyl radical (cf. e.g. [15, p.153]) has the topological matrix

(4.1)

⎛⎝0 1 1
1 0 1
1 1 0

⎞⎠ = π + π2,

with π in (2.2). (4.1) gives rise to the ((3, 2)-linear) cyclic code over
GF(2):

{(0, 1, 1) , (1, 0, 1) , (1, 1, 0) , (0, 0, 0)}.
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• 1,3-cyclobutadiene gives rise to a (4, 2)-linear code over GF(2):

{(0, 1, 0, 1) , (1, 0, 1, 0) , (0, 0, 0, 0) , (1, 1, 1, 1)}.

• Similarly, cyclopentadienylanion and benzene give rise to a (5, 3)-linear
code and ((6, 4)-linear) code, resp.

For our curiosity, we record the following from [5, Exercises 4,5 p.30], which
is to be compared with the case of the Cebyshëv polynomials of the second
kind ([3, Chapter 1]).

For a positive integer p, put 2Mp = πp + π−p. Then

Mp = Mn−p, M0 = Mn = E (unit matrix), 2MpMq = Mp+q +Mp−q.

In particular,

(4.2) Mp+1 = 2M1Mp − Mp−1,

whence comparing this with the recurrence satisfied by the Cebyshëv polyno-
mials Tp of the first kind, we deduce that

(4.3) Mp = Tp (M1) .

5. Relation to the class number

With respect to the notion of Maillet determinant, the circulant matrices
appeared, cf. e.g. [6, pp.14-15]. We confine to the specific example. Let p
be an odd prime and let r = p−1

2 . Let R′(a) denote the absolutely smallest
residue of a mod p, i.e. R′(a) ≡ a (mod p), −r ≤ R′(a) ≤ r. For a prime to p

let S(a) = (−1)
R′(a)

and let Sp = (S(ab′))1≤a,b≤r, where b′ is the inverse of b
mod p which exists because a, b are relatively prime to p.

Now let g be a primitive root modulo p and for j ≥ 0 let gj be denote an
integer such that 1 ≤ gj ≤ p − 1, gj ≡ gj (mod p). Further let

aj =

{
1
2gj gj ≡ 0 (mod 2)
1
2 (gj − p) gj ≡ 1 (mod 2)

and sj = (−1)
aj . Then (si+j), where 1 ≤ i, j ≤ r is a circulant matrix and its

determinant can be expressed as (2.6), which is stated as Eq. (5) in [6, p.17].
It is proved ([6, (2), p.15]) that

|Sp| = | det(si+j)|.
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Then by [6, (5), p.17], for 11 < p ≡ 3 (mod4), the equivalence of Sp ≡
0 (mod p) and

∑ p−3
4

a=1 a
2j ≡ 0 (mod 2) for some 5 ≤ j ≤ p−3

2 , which is known
to be equivalent to χ-irregularity.

This reminds us of one of equivalent formulations of Chowla’s problem of
giving an elementary proof of the non-vanishingness of L(1, χ), with L(s, χ)
being the Dirichlet L-function with the Dirichlet character χ. We hope to
return to the study of this problem at another occasion.
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