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Abstract. Under certain conditions weak regularity property of solutions
f of the functional equation

f(x) = h
(
x, y, f

(
g1(x, y)

)
, . . . , f

(
gn(x, y)

))
,

(x, y) ∈ D ⊂ Rr × Rs,

implies that they are C∞, even if 1 ≤ s ≤ r. Corollaries which are easy to
apply and examples will be given.

1. Introduction

General regularity theorems for the solutions f of the functional equation

(1)
f(x) = h

(
x, y, f

(
g1(x, y)

)
, . . . , f

(
gn(x, y)

))
,

(x, y) ∈ D ⊂ Rr × Rs,
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have been proven in [4], [5], [6], [7], [10], [11], [14], [15]. Roughly speaking, my
older results prove regularity of an r-place function f that is the solution of
a functional equation only if there are at least 2r variables in the functional

equation, because of the “strong rank condition” that rank
∂gi
∂y

= r. Simple

examples as the Sincov equation

f(x1, x2) = f(x1, y) + f(y, x2), x1, x2, y ∈ R

show that the “strong rank condition” cannot simply be omitted and the num-
ber of variables cannot be reduced without introducing some additional condi-
tions (see below).

The first general regularity results which overcome this difficulty were given
by Światak (see [18]). She applied her distribution method to generalizations
of the mean value equation. First she investigated the generalized mean value
equation

n∑
i=1

hi(x, y)f
(
x+ gi(y)

)
= h0(x, y), x ∈ Rr, y ∈ Y ⊂ Rs,

and finally (in essence) the equation

n∑
i=1

hi(x, y)f
(
gi(x, y)

)
= h0(x, y), x ∈ Rr, y ∈ Y ⊂ Rs.

with unknown function f and proved that continuous solutions are in C∞.
This equation is “almost linear”, so, formally, it is much less general than
equation (1). However Światak’s theorems can be applied even if the rank of
∂gi
∂y

is much less than the dimension of the domain of the unknown function

f . The essence of her method consists of applying (in the distribution sense) a
linear differential operator in y and substituting y = 0 to obtain a hypoelliptic
partial differential equation. We have to assume that gi(x, 0) ≡ x for each i, a
very strong condition. The method of Światak can be applied even if f is an
r-place function and there are only r+1 variables; this is the minimal number
of variables if the equation is not a functional equation in a “single variable”.
So the results of Światak suggest that the “strong rank condition” is too strong,
and the results can be extended for other cases, at least if we add some further
conditions.

Regularity results for functional equations with “few” variables, i. e., with
an r-place unknown function but with less than 2r (but more than r) variables
have been proved in papers [8], [9] and [12]. These can be applied to prove that
f ∈ Cq−1 =⇒ f ∈ Cq for q = 0, 1, . . . where C−1 is understood as the class of
measurable functions or as the class of functions having the property of Baire.
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Most of the results can be applied for equation (1) except results having the
type f ∈ C0 =⇒ f ∈ C1 which are proved only for special h’s linear in the f
terms.

The proofs use special function spaces, which — roughly speaking — in-
terpolate between measurability and continuity, between Baire property and
continuity and between continuity and continuous differentiability. Although
it seems to me that in some complicated cases (see, for example, [13]) the gen-
eral theory cannot be avoided, reading the 70 pages of the general theory given
in papers [8], [9] and [12] is not simple. Therefore it seems to be important to
formulate and prove corollaries not referring to any new function spaces but
only to simple conditions usual in analysis. This has been done first in my talk
at the 42th International Symposium on Functional Equations, Opava, 2004.
These corollaries have been applied by István Kovácsvölgyi in [17]. The present
paper is an extended form of my talk, containing the proofs, too.

Although the general theory of [8], [9] and [12] can be applied for systems
of functional equations with several unknown functions, here only less general
but easy to apply corollaries for the case of one unknown function will be given.
For a general “transfer principle” to reduce functional equations with several
unknown functions to functional equations with one unknown function, see my
book [13], 1.23. For simplicity I will refer to the material in this book without
mentioning [13]; the whole material of [8], [9] and [12] is contained in there.
See the historical details of regularity theory of functional equations and the
connections to the fifth problem of Hilbert also there or in the papers [1], [2],
[3] and [16].

2. Function spaces interpolating between C0 and C1

For convenience we introduce the following notation. Suppose that X is an
open subset of Rn, Y is a Banach space, 0 ≤ k ≤ n an integer, W is a class of
functions w mapping some product U × P (depending on w) into R, where U
is an open subset of Rk and P is an open subset of some Euclidean space, Φ
is a class of functions ϕ mapping some product U × P into X where, again U
is an open subset of Rk and P is an open subset of some Euclidean space, and
G is a class of functions mapping some open subset P of some Euclidean space
into Y . Let

Fk(X,Y,W,Φ;G)
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denote the class of all continuous functions f : X → Y for which whenever
w ∈ W and ϕ ∈ Φ have the same domain U × P , the parametric integral

p !→
∫
U

w(u, p)f
(
ϕ(u, p)

)
du

exists for each p ∈ P and is in the class G. (Integration is with respect to
k-dimensional Lebesgue measure.)

The function classes W, Φ, and G will be defined via smoothness conditions.
Let 0 ≤ m ≤ ∞ and let Cm denote the class of all functions which are defined
on some open subset of some Euclidean space, take values in a Banach space,
and are m times continuously differentiable. Let Km be the subclass of Cm

consisting of functions that have compact support. Let Im denote the class of
functions ϕ ∈ Cm which map some Cartesian product U ×P of open subsets of
Euclidean spaces into a Euclidean space so that u !→ ϕ(u, p) is an immersion
for each p ∈ P . (Recall, that a C1 mapping of U into X is an immersion if
and only if its derivative is an injective linear mapping for each point of U .)
Similarly, let Em denote the class of those functions ϕ ∈ Cm which map some
Cartesian product U ×P of open subsets of Euclidean spaces into a Euclidean
space so that u !→ ϕ(u, p) is an embedding (i.e., an immersion which is a
homeomorphism) for each p ∈ P .

Corollary 1. Let X ⊂ Rr be an open set and f : X → Rm be a function.
Suppose that

(LFES) the linear functional equations

f(x) = hi,0(x, y) +

ni∑
j=1

hi,j(x, y)f
(
gi,j(x, y)

)
are satisfied, whenever i ∈ I, (x, y) ∈ Di (here I is an index set);

(S2) Di ⊂ X × Yi is an open set, Yi is a Euclidean space, the functions
hi,0 : Di → Rm and hi,j : Di → R are in C1, the functions gi,j : Di →
→ X are in C2;

(D) for each x ∈ X and for each proper linear subspace V of Rr there
exists an i ∈ I and a y such that (x, y) ∈ Di and

dim

(
∂gi,j
∂x

(x, y)(V ) + rng
∂gi,j
∂y

(x, y)

)
> dim(V )

whenever 1 ≤ j ≤ ni.

Then f ∈ C0 implies f ∈ C1.
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Observe, that if dim(Yi) > 0, then the dimension condition (D) is satisfied
“in general”, because “in general”

det

(
∂gi,j
∂x

(x, y)

)
�= 0, dim

(
∂gi,j
∂x

(x, y)(V )

)
= dim(V ),

rank

(
∂gi,j
∂y

(x, y)

)
= min

{
r, dim(Yi)

}
> 0.

Proof. The case r = 0 is obvious. Otherwise, we will prove that if

f ∈ Fk+1(X,Rm,K1, E2; C1),

then
f ∈ Fk(X,Rm,K1, E2; C1)

for all 0 ≤ k < r; this proves the statement, because by 21.4 if f ∈ C0 then f ∈
Fr(X,Rm,K1, E2; C1) and from 21.3 it follows that if f ∈ F0(X,Rm,K1, E2; C1)
then f ∈ C1.

To prove that
f ∈ Fk(X,Rm,K1, E2; C1)

we have to prove that if U ⊂ Rk is open, P is an open subset of some Euclidean
space, ϕ : U × P → X is a I2 function, then for any function w : U × P → X
belonging to K1 the parametric integral

p !→
∫
U

w(u, p)f
(
ϕ(u, p)

)
du

is continuously differentiable. Let us fix U , P and ϕ. By the locality principle
mentioned in the definition 21.1 it is enough to prove that for any u0 ∈ U and
p0 ∈ P there exists an open neighbourhood U0 of u0 and an open neighbourhood
P0 of p0 such that this parametric integral is continuous whenever the support
of w : U × P → R is contained in U0 × P0. To prove this we shall use theorem
21.8. Let us fix a u0 ∈ U and a p0 ∈ P .

First, let us observe that using the notation x0 = ϕ(u0, p0) and V0 =

= rng
∂ϕ
∂u

(u0, p0) by the dimension condition (D) there exist an index i ∈ I

and an y ∈ Yi such that (x0, y) ∈ Di and

dim

(
∂gi,j
∂x

(x0, y)(V0) + rng
∂gi,j
∂y

(x0, y)

)
> dim(V0) = k

whenever 1 ≤ j ≤ ni. Let us fix this i, x0 and y. By the C2-smoothness
condition (S2) and because of ϕ ∈ I2 there exist neighbourhoods U0 of u0 and
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P0 of p0 such that using the notation x = ϕ(u, p) and V = rng
∂ϕ
∂u

(u, p) we

have (x, y) ∈ Di and

dim

(
∂gi,j
∂x

(x, y)(V ) + rng
∂gi,j
∂y

(x, y)

)
> dim(V ) = k.

Let us choose an arbitrary weight function w : U × P → R from K1 having
its support contained in U0 × P0. Let p′0 ∈ P0 be arbitrary. From the linear
functional equation system (LFES) let us choose the equation indexed by i
and let us apply theorem 21.8 with the following substitutions: Let fj = f
for j = 1, 2, . . . , ni and let gj = gi,j for j = 1, 2, . . . , ni. For −m ≤ j < 0
let fj be a constant function equal to the j’th vector from an arbitrary (but
fixed) base of Rm, let hj be equal to the corresponding coordinate of hi,0; for
−m ≤ j < 0 let gj be any of the functions gi,t, t = 1, 2, . . . , ni. Let kj = k + 1
for all j. Applying theorem 21.8 we obtain that for any p′0 ∈ P0 the parametric
integral above is continuous at p′0. This means that the parametric integral is
continuous on P . This completes the proof. �

Corollary 2. Let X ⊂ Rr be an open set and f : X → Rm a function. Suppose
that

(FES) we have (
x, y, f

(
gi,1(x, y)

)
, . . . , f

(
gi,ni(x, y)

))
∈ Wi

and the functional equation

f(x) = hi

(
x, y, f

(
gi,1(x, y)

)
, . . . , f

(
gi,ni

(x, y)
))

is satisfied, whenever i ∈ I, (x, y) ∈ Di (here I is an index set);

(SI) Di ⊂ X × Yi is an open set, Yi is a Euclidean space, Wi is an open
subset of Di×(Rm)ni , all the partial derivatives ∂α0

t ∂α1
z1 . . . ∂

αni
zni

hi of the
functions hi : Wi → Rm are continuously differentiable, the functions
gi,j : Di → X are in C∞;

(D) for each x ∈ X and for each proper linear subspace V of Rr there exist
an i ∈ I and a y such that (x, y) ∈ Di and

dim

(
∂gi,j
∂x

(x, y)(V ) + rng
∂gi,j
∂y

(x, y)

)
> dim(V )

whenever 1 ≤ j ≤ ni.

Then f ∈ C1 implies f ∈ C∞.
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Proof. The proof of this corollary is very similar to the proof of the previous
corollary. The only important difference is that we have to apply 21.9 instead
of 21.8 to prove that if all order � partial derivatives of f are in

Fk+1(X,Rm,K1, E2; C1),

then they are also in

Fk(X,Rm,K1, E2; C1)

for all 0 ≤ k < r; this proves the statement, because by 21.4 if f ∈ C� then all
of its order � partial derivatives are in Fr(X,Rm,K1, E2; C1) and from 21.3 it
follows that if all partial derivatives of order � of f are in F0(X,Rm,K1, E2; C1)
then f ∈ C�+1. Unfortunately, Theorem 21.9 is not formulated in a general
enough form: We need it in the case when function h is defined on an open
subset W of D × Z1 × · · · × Zn → Z (and not the whole of this set) such that(

x, y, f1
(
g1(x, y)

)
, . . . , fn

(
gn(x, y)

))
∈ W

and

f(x) = h
(
x, y, f1

(
g1(x, y)

)
, . . . , fn

(
gn(x, y)

))
whenever (x, y) ∈ D. Fortunately, the proof of the original version works word-
by-word in this somewhat more general case, too.

Now Corollary 2 can be proved the same way as we proved Corollary 1
above. �

3. Critical subspaces

Let X ⊂ Rr be an open set and for each i ∈ I let Di ⊂ X × Yi be an
open set, where Yi is a Euclidean space and let the functions gi,j : Di → X,
1 ≤ j ≤ ni be in C1. Suppose that for each x ∈ X there is an i ∈ I and a y
such that (x, y) ∈ D. For a proper linear subspace V of Rr we will say that it
is a critical subspace at x if for each i ∈ I and for each y for which (x, y) ∈ Di

we have

dim

(
∂gi,j
∂x

(x, y)(V ) + rng
∂gi,j
∂y

(x, y)

)
≤ dim(V )

for some 1 ≤ j ≤ ni.

It is clear, that the dimension condition (D) can be formulated in a way
that there is no critical subspace for any x ∈ X. It is also clear that if a linear
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subspace V is critical then any proper linear subspace of Rr containing V is
critical too. Hence it is enough to consider minimal critical linear subspaces.

Example 1. Let us consider equation

(2) f(x+ t, y) + f(x, y + t2) = 2f(x, y), x, y, t ∈ R.

For this equation a proper linear subspace V is critical if and only if

dim
(
I(V ) +

{
(u, 0) : u ∈ R

})
≤ 1,

i. e., V = V1 =
{
(u, 0) : u ∈ R

}
, or

dim
(
I(V ) +

{
(2tu, 0) : u ∈ R

})
≤ 1

for all t ∈ R, i. e., V = V2 =
{
(0, u) : u ∈ R

}
.

Substituting x+ t with x, for the new equation

f(x, y) = 2f(x − t, y) − f(x − t, y + t2), x, y, t ∈ R

a proper linear subspace V is critical if and only if

dim
(
I(V ) +

{
(−u, 2tu) : u ∈ R

})
≤ 1

for all t ∈ R or
dim

(
I(V ) +

{
(−u, 0) : u ∈ R

})
≤ 1.

Hence for these two equations only V2 remains critical.

Substituting x+ t2 with x, for the new equation

f(x, y) = 2f(x, y − t2) − f(x+ t, y − t2), x, y, t ∈ R

a proper linear subspace V is critical if and only if

dim
(
I(V ) +

{
(−u,−2tu) : u ∈ R

})
≤ 1

or
dim

(
I(V ) +

{
(0,−2tu) : u ∈ R

})
≤ 1

for all t ∈ R. Hence for all three equations, i. e., for the system of these three
equations no critical subspace remains.

Example 2. Sincov equation

f(x1, x2) = f(x1, y) + f(y, x2), x1, x2, y ∈ R
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does not belong to the class of generalized mean value equations, but if we
try to apply our corollaries, we find the critical subspaces V1 and V2 as above,
but in this case we cannot remove these with substitutions. Let us observe
the connection of the critical subspaces with the general solution f(x1, x2) =
= g(x1) − g(x2).

Example 3. In her paper H. Światak illutrates her regularity results with the
following examples:

(3) f(x+ t, y) + f(x, y + t2) = 2f(x, y),

(4) f(x+ t, y) + f(x, y + t2) + f(x, y − t2) = 3f(x, y),

(5) f(x+ t, y) + t2f(x, y + t) − (1 + t2)f(x, y) = t(2x+ t),

(6)
f(x+ t, y) + t2f(x, y + t) + (t − t2 − 1)f(x, y) =

= t(x2 + 2x+ t),

(7)
f(x+ t, y) + t2f(x, y + t) + (t − t2 − 1)f(x, y) =

= t(x2 + 2x+ t+ t3 + 2yt+ y2),

(8)
f(x+ t, y) + t2f(x, y + t) − (1 + t2)f(x, y) =

= t(2x+ t+ t3 + 2yt2),

(9)
f(x+ t, y) + f(x − t, y) + f(x, y + t2) + f(x, y − t2) =

= 4f(x, y),

(10)
f(x+ t, y) + f(x − t, y) + f(x, y + t3) + f(x, y − t3) =

= 4f(x, y),

where the unknown function is f : R2 → R.

All these equations can be easily handled by using Corollary 1 and Corol-
lary 2, similarly to the equation of Example 1, which is the same as equation (3).

Differentiation with respect to t and putting t = 0 yields

(11)
∂4f

∂x4 (x, y) + C
∂2f

∂y2
(x, y) = C∗
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for equations (3)–(9), and

(12)
∂6f

∂x6 (x, y) + C
∂2f

∂y2
(x, y) = C∗

for equation (10), where C > 0 and C∗ ∈ R. It is easy to verify that equations
(11) and (12) are hypoelliptic and therefore we may apply one of the theorems
of Światak to obtain that all the continuous solutions of equations (3)–(10) are
in C∞.

Example 4. Of course, it is very easy to give examples which our theory can
be applied to but the theory of Światak cannot. We will give an example which
Światak’s theory can be applied to but ours cannot.

To the equation

0 = 4f(x, y) + f(x+ 2t, y) + f(x, y + 2t)+

+ f(x − 2t, y) + f(x, y − 2t)+

+ 2f(x+ t, y + t) + 2f(x − t, y + t)+

+ 2f(x − t, y − t) + 2f(x+ t, y − t),

(13)

where f : R2 → R is the unknown function, Światak’s theory can be applied,
and it implies that all continuous solutions are in C∞. To solve this equation,

let us differentiate with respect to x and y, and put t = 0 to obtain
∂f
∂x

= 0

and
∂f
∂y

= 0, respectively, and conlude that f ≡ 0 is the only solution.

Easy calculations show that for the equation as it stands critical subspaces
are

V1 =
{
(u, 0) : u ∈ R

}
,

V2 =
{
(0, u) : u ∈ R

}
,

V+ =
{
(u, u) : u ∈ R

}
and

V− =
{
(u,−u) : u ∈ R

}
.

Using appropriate substitutions, V1 and V2 can be removed but V+ and V−
cannot and this makes it impossible to apply our theory.

To understand the reason for this phenomenon let us consider the equation

0 =4f(x, y) + f(x+ 2t, y) + f(x, y + 2t)+

+ f(x − 2t, y) + f(x, y − 2t)−
− 2f(x+ t, y + t) − 2f(x − t, y + t)−
− 2f(x − t, y − t) − 2f(x+ t, y − t),

(14)
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where f : R2 → R is the unknown function. This equation differs from equa-
tion (13) only in the signs of some of the terms. Our general theory is not
capable of taking care of such minor differences: If it was possible to apply it
to equation (13) then it would be possible to apply it to equation (14) as well.
But any function f(x, y) = ϕ(x+ y) + ψ(x − y) is a solution of equation (14),
so no regularity phenomenon holds for equation (14). Observe the role of the
critical subspaces.

4. Function spaces interpolating between C−1 and C0

Let X be a set, Y a metric space, and f : X → Y a function. Let U be a
Hausdorff space with the Radon (outer) measure μ, and P a topological space,
the “parameter space” with a given point p0 ∈ P . Let ϕ be a function from
U × P into X. We will think of ϕ as a surface ϕp : u !→ ϕ(u, p) for each p,
depending on the parameter p.

Riesz’s theorem suggests the following condition:

(R) For each sequence pm → p0 there exists a subsequence pmi
such that for

almost all u ∈ U we have

f
(
ϕ(u, pmi)

)
→ f

(
ϕ(u, p0)

)
.

We need some kind of a measurability condition:

(M) u !→ f
(
ϕ(u, p0)

)
is μ measurable.

The theorem of Piccard suggests that the following condition is connected
with the Baire property:

(S) For each sequence pm → p0 we have f
(
ϕ(u, pm)

)
→ f

(
ϕ(u, p0)

)
except

for a set of first category of points u ∈ U .

For our investigations we also need the following property:

(B) u !→ f
(
ϕ(u, p0)

)
has the Baire property.
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Let X be an open subset of Rn and 0 ≤ k ≤ n. The class of all functions
f for which condition (R)

[
(M), (S), (B)

]
is satisfied whenever U is an open

subset of Rk, μ = λk, P is an open subset of some Euclidean space, p0 ∈ P ,
and ϕ : U × P → X is a C1 function for which ϕp is an immersion of U into X
for each p ∈ P , will be denoted by Rk(X,Y )

[
Mk(X,Y ), Sk(X,Y ), Bk(X,Y )

]
.

(For k = 0, take R0 = {0} and λ0
(
{0}

)
= 1, i. e., λ0 is the counting measure

on R0. A function ϕ : {0} × P → X is a C1 function if and only if p !→ ϕ(0, p)
is a C1 function. Any function mapping a subset of R0, i. e., ∅ or {0} into X is
considered an immersion.)

Corollary 3. Let X ⊂ Rr be an open set, f : X → Rm a function and let
K ⊂ {0, 1, . . . , r} contain 0 and r. Suppose that

(FES) we have (
x, y, f

(
gi,1(x, y)

)
, . . . , f

(
gi,ni(x, y)

))
∈ Wi

and the functional equation

f(x) = hi

(
x, y, f

(
gi,1(x, y)

)
, . . . , f

(
gi,ni

(x, y)
))

is satisfied whenever i ∈ I and (x, y) ∈ Di (here I is an index set);

(S1) Di ⊂ X × Yi is an open set, Yi is a Euclidean space, Wi is an open
subset of Di × (Rm)ni for all y ∈ Yi, hi is continuous in the other
variables and the functions gi,j : Di → X are in C1;

(CD) for each x0 ∈ X and for each proper linear subspace V0 of Rr with
k0 = dim(V0) ∈ K there exist an i ∈ I and a y0 such that (x0, y0) ∈ Di

and

dim

(
∂gi,j
∂x

(x, y)(V ) + rng
∂gi,j
∂y

(x, y)

)
is the same constant k in K and greater than k0 for 1 ≤ j ≤ ni

whenever x is close enough to x0, y is close enough to y0 and V is
close enough to V0 in the Grassmann manifold G(r, k).

Then f ∈ C−1 implies f ∈ C0.

Here again if dim(Yi) > 0, the “constant dimension” condition (CD) is
satisfied “in general” but not if there is a critical subspace for some x ∈ X.

Proof. First let us consider the case C−1 is the class of measurable functions
and f ∈ C−1. Then by 19.6 we have

f ∈ Mr(X,Rm) ∩ Rr(X,Rm).
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We have to prove that

f ∈ M0(X,Rm) ∩ R0(X,Rm),

because by 19.4 this intersection is equal to C0(X,Rm). The case r = 0 is
obvious. Otherwise we shall prove that if k0 ∈ K and

f ∈ Mk(X,Rm) ∩ Rk(X,Rm)

for each k > k0 for which k ∈ K, then

f ∈ Mk0
(X,Rm) ∩ Rk0

(X,Rm).

To prove this we have to prove that if U ⊂ Rk0 is open, P is an open
subset of some Euclidean space, ϕ : U × P → X is a C1 function for which
u !→ ϕ(u, p) is an immersion for each p ∈ P , then condition (R) and (M)
are satisfied. Let us fix U , P and ϕ. By the locality principle mentioned in
definition 19.1 it is enough to prove that for any u0 ∈ U and p0 ∈ P there
exists an open neighbourhood U0 of u0 and an open neighbourhood P0 of p0
such that ϕ|U0×P0

satisfies (R) and (M). To prove this we shall use theorem
19.13. Let us fix a u0 ∈ U and a p0 ∈ P .

Using the notation x0 = ϕ(u0, p0) and V0 = rng
∂ϕ
∂u

(u0, p0) let us choose an

index i ∈ I and an y0 ∈ Yi such that (x0, y0) ∈ Di and for

kj = dim

(
∂gi,j
∂x

(x0, y)(V0) + rng
∂gi,j
∂y

(x0, y)

)
> dim(V0) = k0

we have kj ∈ K and the constant dimension condition is satisfied at x0, y0 and
V0 whenever 1 ≤ j ≤ ni. Let us fix this i, x0 and y0. By the C1-smoothness
condition (S1) and since ϕ ∈ I1 there exist neighbourhoods U0 of u0 and P0

of p0 such that using the notation x = ϕ(u, p) and V = rng
∂ϕ
∂u

(u, p) we have

(x, y) ∈ Di and

kj = dim

(
∂gi,j
∂x

(x, y)(V ) + rng
∂gi,j
∂y

(x, y)

)
> dim(V ) = k0.

From the functional equation system (FES) let us choose the equation indexed
by i and let us apply theorem 19.13 with the following substitutions: Let fj = f
for j = 1, 2, . . . , ni and let gj = gi,j for j = 1, 2, . . . , ni. Applying theorem 19.13
we obtain that conditions (R) and (M) are satisfied for f , U0, P0, p0, ϕ|U0×P0

and λk. This completes the proof for the measurability case.

In the case when C−1 is understood to be the class of functions having the
property of Baire, the proof is completely analogous but we use Theorem 20.10
instead of 19.13. �

Example 5. All equations in Example 3 can be easily handled by using Corol-
lary 3.
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