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Abstract. Let F be an algebra of real-valued bounded functions on N
which separates the points, which contains the constants and which is
complete in the sup-norm. If L is a positive linear functional on F , then,
for each f ∈ F , L(f) can be represented as an integral of f on βN where f
is the unique extension of f to the Stone-Čech compactification βN of N.

1. Introduction

A general problem of probabilistic number theory is to find appropriate
probability spaces where large classes of arithmetical functions f : N → C can
be considered as random variables. In particular, is it possible to write the
mean-value

M(f) = lim
x→∞x−1

∑
n≤x

f(n)

of a function f (if the limit exists) as an integral

M(f) =

∫
X

f dμ(x)

Key words and phrases: Probabilistic number theory, spaces of arithmetical functions,
positive linear functionals.
2010 Mathematics Subject Classification: 11K65.

https://doi.org/10.71352/ac.40.295

https://doi.org/10.71352/ac.40.295


296 K.-H. Indlekofer and R. Wagner

where the space X and the integrable function f is uniquely determined by N
and f , respectively?
The main difficulties concerning the immediate application of probabilistic tools
to the investigation of the above mentioned questions arise from the fact that
the asymptotic density

δ(A) = M(1A) (A ∈ A)

defines only a finitely additive measure on the family A of subsets of N having
an asymptotic density.
In the sixties, E. Novoselov built up a theory of polyadic numbers (see [4]),
the background of which is as follows. The ring Z of the integers is embedded
into the compact ring S of the polyadic numbers. Then, on the additive group
of the ring S, as a compact group, there exists a normalized Haar measure P
defined on a σ-algebra A, which contains the Borel sets in S such that (S,A, P )
is a probability space, and P is the extension of the asymptotic density. This
enabled Novoselov to develop an ,,integration theory” for the space of limit
periodic functions, i.e. for arithmetic functions f , which can be approximated
by periodic functions with integer period.
A different approach to the mentioned problem of probabilistic number theory
was given by K.-H. Indlekofer in the nineties (see [1] and [2]). The underlying
idea can be described as follows: N, endowed with the discrete topology, will
be embedded in a compact space βN, the Stone-Cech compactification of N,
and then any algebra A in N with an arbitrary finitely additive set function
(pseudomeasure) δ on A can be extended to an algebra A in βN, together with
an extension δ on A of the pseudomeasure which turns out to be a premeasure
on A, and to a corresponding integration theory.
For example, the algebra of all residue classes in N together with the asymptotic
density leads to the space of limit periodic functions of Novoselov.
Further, when we apply the above described theory to the algebra A generated
by the sets

Apk := {m : pk||m}
and the asymptotic density we arrive at the space of almost-even functions (see
W. Schwarz and J. Spilker [5]) and the mean-value M(f) of such a function f
can be represented as an integral of f on βN where f is the unique extension of
f to a continuous function on βN. (Schwarz and Spilker proved such a result by
using Gelfand’s theory and applying Riesz’ representation theorem (see [5]).)
In a recent paper R. Wagner [6] could show that if F is an algebra of real-valued
bounded functions on N such that

(I) F separates the points,

(II) F contains the constants,

(III) F is complete in the sup-norm
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and each f ∈ F posseses a mean-value M(f) then a suitable algebra A of sets
may be found such that every A ∈ A possesses an asymptotic density and
M(f) is equal to the integral of f on βN.

In this paper we prove that such a representation is valid for any positive
linear functional on F . To be more precise we shall use the following

Notations: We write �∞ = �∞(N) for the set of bounded functions on N and
denote by || · ||u the sup-norm on �∞. If A is an algebra of subsets of N then

A := {A : A ∈ A},

where A = clβNA is the closure of A in βN, is an algebra in βN. If δ is a content
on A then the map

δ : A → [0,∞)

δ(A) = δ(A)

is σ-additive on A and its extension to σ(A) will be denoted by δ, too. We
shall write

E(A) := {s ∈ �∞ : s =

m∑
j=1

αj1Aj
;αj ∈ C, Aj ∈ A, j = 1, . . . ,m,

N =

m⋃
j=1

Aj withAi ∩ Aj = ∅, if i �= j}

for the algebra of simple functions on A. If f ∈ �∞ then f will denote its
unique extension to βN (f is continuous on βN).
With these notations we will prove the following results.

Theorem 1. Let F be an algebra of real-valued bounded functions on N satisfy-
ing (I), (II) and (III). Let L be a positive linear functional on F with L(1N) = 1.
Then there exist an algebra A of subsets of N and a content δ on A such that

(i) each f ∈ F belongs to the || · ||u-closure of E(A) and

(ii) for each f ∈ F the relation

L(f) =

∫
βN

f dδ

holds.
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For an arbitrary subset B of N we define the number δ∗(B) by the equation

δ∗(B) = inf

m∑
i=1

δ(Ai)

where the infimum is taken over all finite sequences {Ai}mi=1 of sets Ai from A
whose union contains B.
Obviously

δ∗(B) = lim
B⊂A

δ(A)

where A is restricted to sets from A.

Putting for f : N → C

||f || := inf
α>0

{α+ δ∗({n ∈ N : |f(n)| > α})}

then ||f || = 0 if and only if δ∗({n ∈ N : |f(n)| > α}) = 0 for each α > 0.
Further,

lim
n→∞ ||fn − f || = 0 if and only if lim

n→∞ δ∗({m ∈ N : |fn(m) − f(m)| > ε}) = 0

for every ε > 0.

If there exists a sequence {sn} from A such that lim ||sn − f || = 0 and
lim

∫
βN

|sn − sm|dδ = 0 then we say that f belongs to L∗(A, δ).

With these notations we prove

Theorem 2. Let f ∈ L∗(A, δ). Then there exist fn ∈ F such that

L(f) := lim
n→∞L(fn) =

∫
βN

fdδ

where f : βN → C is unique modulo δ-null function.

2. Construction of the algebra A and the content δ

Let F and L be as in Theorem 1 and observe that L is continuous on F .
Then, for each B ⊂ N we put

(2.1) I(B) := inf L(f) for f ≥ 1B and f ∈ F
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and

(2.2) I(B) := supL(f) for f ≤ 1B and f ∈ F ,

and call A ⊂ N to be regular if

I(A) = I(A).

Let A be the family of all regular sets and put

(2.3) δ(A) := I(A)(= I(A)) for A ∈ A.

An obvious characterization of regular sets is given by

Lemma 1. A ∈ A if and only if there exist sequences {f̃n} and {fn} satisfying

(i) f̃n, fn ∈ F ,

(ii) {f̃n} is increasing, {fn} is decreasing,

(iii) 0 ≤ f̃n ≤ 1A and fn ≥ 1A

such that
lim
n→∞L(f̃n) = lim

n→∞L(fn) =: δ(A).

Now the following result holds.

Lemma 2. The family of regular sets is an algebra and δ is a content on A.

Proof. We shall show

- N ∈ A,

- if A ∈ A then N \ A ∈ A

and

- if A,B ∈ A then A∩B ∈ A and δ(A∪B) = δ(A)+δ(B) in case A∩B = ∅.

Obviously N ∈ A since 1N ∈ F .
Now, if A ∈ A let {f̃n} and {fn} as in Lemma 1. Then

1N − fn ≤ 1N − 1A = 1N\A
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and
1N − f̃n ≥ 1N − 1A = 1N\A

which implies

lim
n→∞L(1N − fn) = lim

n→∞(1 − L(fn)) = lim
n→∞(1 − L(f̃n)) = lim

n→∞L(1N − f̃n).

Further, let A,B ∈ A and associate to A and B, according to Lemma 1, the
sequences {f̃n}, {fn} and {g̃n} , {gn}, respectively. Putting

cn := sup
m∈N

fn(m)

then obviously cn ≤ c1 for all n ≥ 1.
Now we consider 1A∩B = 1A · 1B . Then

0 ≤I(A ∩ B) − I(A ∩ B) ≤
≤L(fn · gn) − L(f̃n · g̃n) =
=L(fn · gn) − L(fn · g̃n) + L(fn · g̃n) − L(f̃n · g̃n) =
=L(fn(gn − g̃n)) + L(g̃n(fn − f̃n)) ≤
≤L(c1(gn − g̃n)) + L(fn − f̃n) =

=c1(L(gn) − L(g̃n)) + L(fn) − L(f̃n)

which tends to zero as n → ∞. Thus A ∩ B ∈ A.
Obviously

(2.4) I(A ∪ B) ≤ I(A) + I(B)

If A ∩ B = ∅ then

(2.5) I(A) + I(B) ≤ I(A ∪ B)

thus, by (2.4) and (2.5)

(2.6) I(A) + I(B) ≤ I(A ∪ B) ≤ I(A ∪ B) ≤ I(A) + I(B).

Since δ(A) and δ(B) exist, δ(A ∪ B) exists by (2.6), too, and the assertions of
Lemma 2 hold. �

In the next step we show that every f ∈ F can be approximated in the sup-

norm by step functions s =
m∑
j=1

αj1Aj
when N =

m⋃
j=1

Aj , with Ai ∩ Aj = ∅ if

i �= j. Put L̃(s) =
m∑
j=1

αjδ(Aj). Then, if sn → f we shall obtain L̃(sn) → L(f).



About positive linear functionals 301

For this purpose we denote by H the space of all uniformly continuous,
bounded functions h : R → R and define, if f ∈ F is given, for all a ∈ R

(2.7) V (f)(a) := inf L(h ◦ f) where h ∈ H and h ≥ 1(−∞,a].

We observe that h ◦ f ∈ F since f is bounded and h can be approximated by
polynomials on each bounded and closed interval (Theorem of Weierstraß).

First we prove

Lemma 3. V (f) is a distribution function.

Proof. Obviously, V (f) is monotone increasing, and there are real numbers
c < d such that

1(−∞,a] ◦ f = 0 for a ≤ c

and

1(−∞,a] ◦ f = 1 for a ≥ d.

Therefore, we only have to prove that V (f) is continuous on the right. For
this let ε > 0. Then there exists h ∈ H with h ≥ 1(−∞,a] and 0 ≤ L(h ◦ f) −
−V (f)(a) ≤ ε. For δ > 0 put

sδ(h)(t) := h(t − δ).

Then

sδ(h) ≥ 1(−∞,a+δ].

We choose δ0 > 0 such that for all δ ≤ δ0

sup
t∈R

|sδ(h)(t) − h(t)| < ε.

Then

0 ≤ V (f)(a+ δ) − V (f)(a) ≤
≤ L(sδ(h) ◦ f) − L(h ◦ f) + L(h ◦ f) − V (f)(a) ≤
≤ 2ε

which proves Lemma 3. �

Lemma 4. If a ∈ R is a point of continuity for V (f) then

A := {n ∈ N : f(n) ≤ a} ∈ A.
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Proof. Obviously

V (f) ≥ I(A).

If an ↗ a there exist hn ∈ H satisfying

1(−∞,an] ≤ hn ≤ 1(−∞,a].

Then

V (f)(a) − V (f)(an) ≥ V (f)(a) − L(hn ◦ f) ≥ I(A) − I(A),

and, since V (f)(a) − V (f)(an) → 0 as n → ∞, the assertion of Lemma 4 is
true. �

Lemma 5. Let f ∈ F . Then f belongs to the || · ||u-closure of E(A).

Proof. Choose the interval [a, b] such that a < inf
n∈N

f(n) and sup
n∈N

f(n) < b.

For ε > 0 let {t0, t1, . . . , tn} be a dissection of [a, b] with t0 = a, tj < tj+1,
tn = b such that each tj (j = 0, . . . , n) is a point of continuity of V (f) and
tj+1 − tj < ε.
Then

n−1∑
j=0

tj+11(tj ,tj+1] ◦ f ≥ f ≥
n−1∑
j=0

tj1(tj ,tj+1] ◦ f

where

1(tj ,tj+1] ◦ f = 1{n∈N:tj<f(n)≤tj+1}

and

{n ∈ N : tj < f(n) ≤ tj+1} ∈ A.

Further

||
n−1∑
j=0

tj+11(tj ,tj+1] ◦ f −
n−1∑
j=0

tj1(tj ,tj+1] ◦ f ||u < ε,

which proves Lemma 5. �

Now we can show

Lemma 6. Let f ∈ F . Then there exists a sequence {sn} from E(A) such that
lim

n→∞ ||f − sn||u = 0 and

L(f) = lim
n→∞ L̃(sn).
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Proof. Let f ∈ F and ε > 0. Choose, with the notations in the proof of
Lemma 5,

s =

n−1∑
j=0

tj1(tj ,tj+1] ◦ f.

Then s ∈ E(A) and ||f − s||u < ε. We write s in the form

s =

n∑
j=1

(tj − tj−1)1(tj ,∞) ◦ f + t01N

and put
Bj := {n ∈ N : tj < f(n)}.

Then there exist hj ∈ H so that

|L(hj ◦ f) − δ(Bj)| < ε.

The functions hj can be chosen with values hj(t) ∈ [0, 1] satisfying hj > 1(tj ,∞)

and hj(t) = 0 for t ≤ tj−1. Putting

g =

n∑
j=1

(tj − tj−1)(hj ◦ f) + t01N

we obtain
||f − g||u < ε

and

|L̃(s) − L(g)| ≤
n−1∑
j=0

(tj+1 − tj)ε ≤ (b − a)ε.

From this we conclude

|L(f) − L̃(s)| < ((b − a) + 1)ε

and Lemma 6 is valid. �

3. Integration on βN

Starting from the algebra A of regular sets together with the content δ we
arrive at the algebra

A = {A : A ∈ A}
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and the premeasure δ on A,
δ(A) = δ(A)

in βN. Define the outer measure δ
∗
on the class of all subsets E of βN by

(3.1) δ
∗
(E) = inf

∞∑
j=1

δ(Ai)

the infimum being taken over all sequences of sets {Ai} in A such that

E ⊂
∞⋃
j=1

Aj .

We extend δ with the help of δ
∗
to a complete measure, which we denote by δ,

too, on the σ-algebra of δ
∗
-measurable sets.

Then the integral for simple functions s ∈ E(A), s =
m∑
j=1

αj1Aj
is defined by

∫
βN

s dδ =

m∑
j=1

αjδ(Aj).

For each f ∈ F there are sn ∈ E(A) such that

(3.2) L(f) = lim
n→∞ L̃(sn) = lim

n→∞

∫
βN

sn dδ =

∫
βN

lim
n→∞ sn dδ =

∫
βN

f dδ,

where sn and f are the unique extensions of sn and f to βN, respectively, and
this proves the second assertion of Theorem 1.
A subset E ⊂ βN is said to be a δ-null set if δ(E) = 0. The function f : N → C
is called a null function if the set {w ∈ βN : |f(w)| > ε} is a δ-null set for each
ε > 0.
If we define

||f || = inf
α>0

{α+ δ
∗
({w ∈ βN : |f(w)| > α})}

then f is a null function if and only if ||f || = 0. A sequence {fn} of functions
on βN to C converges in δ- measure to the function f on βN to C if and only
if

lim
n→∞ ||fn − f || = 0.

It is clear that such a sequence {fn} converges in δ- measure to f if and only if

lim
n→∞ δ

∗
({w ∈ βN : |fn(w) − f(w)| > ε}) = 0

for every ε > 0.
We observe that f : N → C is integrable on βN if there is a sequence {sn} of
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simple functions from E(A) converging to f in δ- measure on βN and satisfying
in addition

lim
n→∞

∫
βN

|sn − sm|dδ = 0.

Such a sequence {sn} of simple functions is be said to determine f .
Obviously, if B ⊂ N,

δ∗(B) = δ
∗
(B)

since the open cover

B ⊂
∞⋃
i=1

Ai

possesses a finite subcover. Thus the proof of Theorem 2 follows immediately.

�
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