ABOUT POSITIVE LINEAR FUNCTIONALS ON SPACES OF ARITHMETICAL FUNCTIONS

K.-H. Indlekofer and R. Wagner

(Paderborn, Germany)

Dedicated to Professor Zoltán Daróczy and Professor Imre Kátai on the occassion of their 75th birthday

> Communicated by Bui Minh Phong (Received May 31, 2013; accepted June 25, 2013)

Abstract. Let \mathcal{F} be an algebra of real-valued bounded functions on \mathbb{N} which separates the points, which contains the constants and which is complete in the sup-norm. If L is a positive linear functional on \mathcal{F} , then, for each $f \in \mathcal{F}$, L(f) can be represented as an integral of \overline{f} on $\beta\mathbb{N}$ where \overline{f} is the unique extension of f to the Stone-Čech compactification $\beta\mathbb{N}$ of \mathbb{N} .

1. Introduction

A general problem of probabilistic number theory is to find appropriate probability spaces where large classes of arithmetical functions $f : \mathbb{N} \to \mathbb{C}$ can be considered as random variables. In particular, is it possible to write the mean-value

$$M(f) = \lim_{x \to \infty} x^{-1} \sum_{n \le x} f(n)$$

of a function f (if the limit exists) as an integral

$$M(f) = \int\limits_X \overline{f} \, d\mu(x)$$

Key words and phrases: Probabilistic number theory, spaces of arithmetical functions, positive linear functionals.

²⁰¹⁰ Mathematics Subject Classification: 11K65. https://doi.org/10.71352/ac.40.295

where the space X and the integrable function \overline{f} is uniquely determined by \mathbb{N} and f, respectively?

The main difficulties concerning the immediate application of probabilistic tools to the investigation of the above mentioned questions arise from the fact that the asymptotic density

$$\delta(A) = M(1_A) \qquad (A \in \mathcal{A})$$

defines only a finitely additive measure on the family \mathcal{A} of subsets of \mathbb{N} having an asymptotic density.

In the sixties, E. Novoselov built up a theory of polyadic numbers (see [4]), the background of which is as follows. The ring \mathbb{Z} of the integers is embedded into the compact ring S of the *polyadic numbers*. Then, on the additive group of the ring S, as a compact group, there exists a normalized Haar measure Pdefined on a σ -algebra \mathcal{A} , which contains the Borel sets in S such that (S, \mathcal{A}, P) is a probability space, and P is the extension of the asymptotic density. This enabled Novoselov to develop an "integration theory" for the space of *limit periodic functions*, i.e. for arithmetic functions f, which can be approximated by periodic functions with integer period.

A different approach to the mentioned problem of probabilistic number theory was given by K.-H. Indlekofer in the nineties (see [1] and [2]). The underlying idea can be described as follows: \mathbb{N} , endowed with the discrete topology, will be embedded in a compact space $\beta\mathbb{N}$, the Stone-Cech compactification of \mathbb{N} , and then any algebra \mathcal{A} in \mathbb{N} with an arbitrary finitely additive set function (pseudomeasure) δ on \mathcal{A} can be extended to an algebra $\overline{\mathcal{A}}$ in $\beta\mathbb{N}$, together with an extension $\overline{\delta}$ on $\overline{\mathcal{A}}$ of the pseudomeasure which turns out to be a premeasure on $\overline{\mathcal{A}}$, and to a corresponding integration theory.

For example, the algebra of all residue classes in \mathbb{N} together with the asymptotic density leads to the space of limit periodic functions of Novoselov.

Further, when we apply the above described theory to the algebra ${\mathcal A}$ generated by the sets

$$A_{p^k} := \{m : p^k || m\}$$

and the asymptotic density we arrive at the space of *almost-even functions* (see W. Schwarz and J. Spilker [5]) and the mean-value M(f) of such a function f can be represented as an integral of \overline{f} on $\beta\mathbb{N}$ where \overline{f} is the unique extension of f to a continuous function on $\beta\mathbb{N}$. (Schwarz and Spilker proved such a result by using Gelfand's theory and applying Riesz' representation theorem (see [5]).) In a recent paper R. Wagner [6] could show that if \mathcal{F} is an algebra of real-valued bounded functions on \mathbb{N} such that

- (I) \mathcal{F} separates the points,
- (II) \mathcal{F} contains the constants,
- (III) \mathcal{F} is complete in the sup-norm

and each $f \in \mathcal{F}$ possesses a mean-value M(f) then a suitable algebra \mathcal{A} of sets may be found such that every $A \in \mathcal{A}$ possesses an asymptotic density and M(f) is equal to the integral of \overline{f} on $\beta \mathbb{N}$.

In this paper we prove that such a representation is valid for any positive linear functional on \mathcal{F} . To be more precise we shall use the following

Notations: We write $\ell^{\infty} = \ell^{\infty}(\mathbb{N})$ for the set of bounded functions on \mathbb{N} and denote by $|| \cdot ||_u$ the sup-norm on ℓ^{∞} . If \mathcal{A} is an algebra of subsets of \mathbb{N} then

$$\overline{\mathcal{A}} := \{\overline{A} : A \in \mathcal{A}\},\$$

where $\overline{A} = cl_{\beta\mathbb{N}}A$ is the closure of A in $\beta\mathbb{N}$, is an algebra in $\beta\mathbb{N}$. If δ is a content on \mathcal{A} then the map

$$\overline{\delta}: \overline{\mathcal{A}} \to [0,\infty)$$

 $\overline{\delta}(\overline{A}) = \delta(A)$

is σ -additive on $\overline{\mathcal{A}}$ and its extension to $\sigma(\overline{\mathcal{A}})$ will be denoted by $\overline{\delta}$, too. We shall write

$$\mathcal{E}(\mathcal{A}) := \{ s \in \ell^{\infty} : s = \sum_{j=1}^{m} \alpha_j \mathbf{1}_{A_j}; \alpha_j \in \mathbb{C}, A_j \in \mathcal{A}, j = 1, \dots, m, \\ \mathbb{N} = \bigcup_{j=1}^{m} A_j \text{ with } A_i \cap A_j = \emptyset, \text{ if } i \neq j \}$$

for the algebra of simple functions on \mathcal{A} . If $f \in \ell^{\infty}$ then \overline{f} will denote its unique extension to $\beta \mathbb{N}$ (\overline{f} is continuous on $\beta \mathbb{N}$).

With these notations we will prove the following results.

Theorem 1. Let \mathcal{F} be an algebra of real-valued bounded functions on \mathbb{N} satisfying (I), (II) and (III). Let L be a positive linear functional on \mathcal{F} with $L(1_{\mathbb{N}}) = 1$. Then there exist an algebra \mathcal{A} of subsets of \mathbb{N} and a content δ on \mathcal{A} such that

(i) each $f \in \mathcal{F}$ belongs to the $|| \cdot ||_u$ -closure of $\mathcal{E}(\mathcal{A})$ and

(ii) for each $f \in \mathcal{F}$ the relation

$$L(f) = \int_{\beta \mathbb{N}} \overline{f} \, d\overline{\delta}$$

holds.

For an arbitrary subset B of N we define the number $\delta^*(B)$ by the equation

$$\delta^*(B) = \inf \sum_{i=1}^m \delta(A_i)$$

where the infimum is taken over all finite sequences $\{A_i\}_{i=1}^m$ of sets A_i from \mathcal{A} whose union contains B.

Obviously

$$\delta^*(B) = \lim_{B \subset A} \delta(A)$$

where A is restricted to sets from \mathcal{A} .

Putting for $f: \mathbb{N} \to \mathbb{C}$

$$||f|| := \inf_{\alpha > 0} \{\alpha + \delta^* (\{n \in \mathbb{N} : |f(n)| > \alpha\})\}$$

then ||f|| = 0 if and only if $\delta^*(\{n \in \mathbb{N} : |f(n)| > \alpha\}) = 0$ for each $\alpha > 0$. Further,

 $\lim_{n \to \infty} ||f_n - f|| = 0 \quad \text{if and only if } \lim_{n \to \infty} \delta^*(\{m \in \mathbb{N} : |f_n(m) - f(m)| > \varepsilon\}) = 0$

for every $\varepsilon > 0$.

If there exists a sequence $\{s_n\}$ from \mathcal{A} such that $\lim ||s_n - f|| = 0$ and $\lim \int_{\partial \mathbb{N}} |\overline{s_n} - \overline{s_m}| d\overline{\delta} = 0$ then we say that f belongs to $\mathcal{L}^*(\mathcal{A}, \delta)$.

With these notations we prove

Theorem 2. Let $f \in \mathcal{L}^*(\mathcal{A}, \delta)$. Then there exist $f_n \in \mathcal{F}$ such that

$$L(f) := \lim_{n \to \infty} L(f_n) = \int_{\beta \mathbb{N}} \overline{f} d\overline{\delta}$$

where $\overline{f}: \beta \mathbb{N} \to \mathbb{C}$ is unique modulo $\overline{\delta}$ -null function.

2. Construction of the algebra \mathcal{A} and the content δ

Let \mathcal{F} and L be as in Theorem 1 and observe that L is continuous on \mathcal{F} . Then, for each $B \subset \mathbb{N}$ we put

(2.1)
$$\overline{I}(B) := \inf L(f) \quad \text{for } f \ge 1_B \text{ and } f \in \mathcal{F}$$

and

(2.2)
$$\underline{I}(B) := \sup L(f) \quad \text{for } f \le 1_B \text{ and } f \in \mathcal{F},$$

and call $A \subset \mathbb{N}$ to be *regular* if

$$\overline{I}(A) = \underline{I}(A).$$

Let \mathcal{A} be the family of all regular sets and put

(2.3)
$$\delta(A) := \overline{I}(A)(=\underline{I}(A)) \quad \text{for } A \in \mathcal{A}.$$

An obvious characterization of regular sets is given by

Lemma 1. $A \in \mathcal{A}$ if and only if there exist sequences $\{\tilde{f}_n\}$ and $\{f_n\}$ satisfying

(i) f̃_n, f_n ∈ F,
(ii) {f̃_n} is increasing, {f_n} is decreasing,
(iii) 0 ≤ f̃_n ≤ 1_A and f_n ≥ 1_A

such that

$$\lim_{n \to \infty} L(\tilde{f}_n) = \lim_{n \to \infty} L(f_n) =: \delta(A).$$

Now the following result holds.

Lemma 2. The family of regular sets is an algebra and δ is a content on \mathcal{A} .

Proof. We shall show

- $\mathbb{N} \in \mathcal{A}$, - if $A \in \mathcal{A}$ then $\mathbb{N} \setminus A \in \mathcal{A}$

and

- if
$$A, B \in \mathcal{A}$$
 then $A \cap B \in \mathcal{A}$ and $\delta(A \cup B) = \delta(A) + \delta(B)$ in case $A \cap B = \emptyset$.

Obviously $\mathbb{N} \in \mathcal{A}$ since $1_{\mathbb{N}} \in \mathcal{F}$. Now, if $A \in \mathcal{A}$ let $\{\tilde{f}_n\}$ and $\{f_n\}$ as in Lemma 1. Then

$$1_{\mathbb{N}} - f_n \le 1_{\mathbb{N}} - 1_A = 1_{\mathbb{N} \setminus A}$$

and

$$1_{\mathbb{N}} - f_n \ge 1_{\mathbb{N}} - 1_A = 1_{\mathbb{N} \setminus A}$$

which implies

$$\lim_{n \to \infty} L(1_{\mathbb{N}} - f_n) = \lim_{n \to \infty} (1 - L(f_n)) = \lim_{n \to \infty} (1 - L(\tilde{f}_n)) = \lim_{n \to \infty} L(1_{\mathbb{N}} - \tilde{f}_n).$$

Further, let $A, B \in \mathcal{A}$ and associate to A and B, according to Lemma 1, the sequences $\{\tilde{f}_n\}, \{f_n\}$ and $\{\tilde{g}_n\}, \{g_n\}$, respectively. Putting

$$c_n := \sup_{m \in \mathbb{N}} f_n(m)$$

then obviously $c_n \leq c_1$ for all $n \geq 1$. Now we consider $1_{A \cap B} = 1_A \cdot 1_B$. Then

$$0 \leq I(A \cap B) - \underline{I}(A \cap B) \leq$$

$$\leq L(f_n \cdot g_n) - L(\tilde{f}_n \cdot \tilde{g}_n) =$$

$$= L(f_n \cdot g_n) - L(f_n \cdot \tilde{g}_n) + L(f_n \cdot \tilde{g}_n) - L(\tilde{f}_n \cdot \tilde{g}_n) =$$

$$= L(f_n(g_n - \tilde{g}_n)) + L(\tilde{g}_n(f_n - \tilde{f}_n)) \leq$$

$$\leq L(c_1(g_n - \tilde{g}_n)) + L(f_n - \tilde{f}_n) =$$

$$= c_1(L(g_n) - L(\tilde{g}_n)) + L(f_n) - L(\tilde{f}_n)$$

which tends to zero as $n \to \infty$. Thus $A \cap B \in \mathcal{A}$. Obviously

(2.4)
$$\overline{I}(A \cup B) \le \overline{I}(A) + \overline{I}(B)$$

If $A \cap B = \emptyset$ then

(2.5)
$$\underline{I}(A) + \underline{I}(B) \le \underline{I}(A \cup B)$$

thus, by (2.4) and (2.5)

(2.6)
$$\underline{I}(A) + \underline{I}(B) \le \underline{I}(A \cup B) \le \overline{I}(A \cup B) \le \overline{I}(A) + \overline{I}(B).$$

Since $\delta(A)$ and $\delta(B)$ exist, $\delta(A \cup B)$ exists by (2.6), too, and the assertions of Lemma 2 hold.

In the next step we show that every $f \in \mathcal{F}$ can be approximated in the supnorm by step functions $s = \sum_{j=1}^{m} \alpha_j \mathbf{1}_{A_j}$ when $\mathbb{N} = \bigcup_{j=1}^{m} A_j$, with $A_i \cap A_j = \emptyset$ if $i \neq j$. Put $\tilde{L}(s) = \sum_{j=1}^{m} \alpha_j \delta(A_j)$. Then, if $s_n \to f$ we shall obtain $\tilde{L}(s_n) \to L(f)$. For this purpose we denote by \mathcal{H} the space of all uniformly continuous, bounded functions $h : \mathbb{R} \to \mathbb{R}$ and define, if $f \in \mathcal{F}$ is given, for all $a \in \mathbb{R}$

(2.7)
$$V(f)(a) := \inf L(h \circ f)$$
 where $h \in \mathcal{H}$ and $h \ge 1_{(-\infty,a]}$.

We observe that $h \circ f \in \mathcal{F}$ since f is bounded and h can be approximated by polynomials on each bounded and closed interval (Theorem of Weierstraß).

First we prove

Lemma 3. V(f) is a distribution function.

Proof. Obviously, V(f) is monotone increasing, and there are real numbers c < d such that

$$1_{(-\infty,a]} \circ f = 0 \quad \text{for } a \le c$$

and

$$1_{(-\infty,a]} \circ f = 1 \quad \text{for } a \ge d.$$

Therefore, we only have to prove that V(f) is continuous on the right. For this let $\varepsilon > 0$. Then there exists $h \in \mathcal{H}$ with $h \ge 1_{(-\infty,a]}$ and $0 \le L(h \circ f) - -V(f)(a) \le \varepsilon$. For $\delta > 0$ put

$$s_{\delta}(h)(t) := h(t - \delta).$$

Then

$$s_{\delta}(h) \ge 1_{(-\infty, a+\delta]}.$$

We choose $\delta_0 > 0$ such that for all $\delta \leq \delta_0$

$$\sup_{t\in\mathbb{R}}|s_{\delta}(h)(t)-h(t)|<\varepsilon.$$

Then

$$0 \le V(f)(a+\delta) - V(f)(a) \le \\ \le L(s_{\delta}(h) \circ f) - L(h \circ f) + L(h \circ f) - V(f)(a) \le \\ < 2\varepsilon$$

which proves Lemma 3.

Lemma 4. If $a \in \mathbb{R}$ is a point of continuity for V(f) then

$$A := \{n \in \mathbb{N} : f(n) \le a\} \in \mathcal{A}$$

Proof. Obviously

$$V(f) \ge \overline{I}(A).$$

If $a_n \nearrow a$ there exist $h_n \in \mathcal{H}$ satisfying

$$1_{(-\infty,a_n]} \le h_n \le 1_{(-\infty,a]}$$

Then

$$V(f)(a) - V(f)(a_n) \ge V(f)(a) - L(h_n \circ f) \ge \overline{I}(A) - \underline{I}(A),$$

and, since $V(f)(a) - V(f)(a_n) \to 0$ as $n \to \infty$, the assertion of Lemma 4 is true.

Lemma 5. Let $f \in \mathcal{F}$. Then f belongs to the $|| \cdot ||_u$ -closure of $\mathcal{E}(\mathcal{A})$.

Proof. Choose the interval [a, b] such that $a < \inf_{n \in \mathbb{N}} f(n)$ and $\sup_{n \in \mathbb{N}} f(n) < b$. For $\varepsilon > 0$ let $\{t_0, t_1, \ldots, t_n\}$ be a dissection of [a, b] with $t_0 = a$, $t_j < t_{j+1}$, $t_n = b$ such that each t_j $(j = 0, \ldots, n)$ is a point of continuity of V(f) and $t_{j+1} - t_j < \varepsilon$. Then

$$\sum_{j=0}^{n-1} t_{j+1} \mathbf{1}_{(t_j, t_{j+1}]} \circ f \ge f \ge \sum_{j=0}^{n-1} t_j \mathbf{1}_{(t_j, t_{j+1}]} \circ f$$

where

$$1_{(t_j, t_{j+1}]} \circ f = 1_{\{n \in \mathbb{N}: t_j < f(n) \le t_{j+1}\}}$$

and

$$\{n \in \mathbb{N} : t_j < f(n) \le t_{j+1}\} \in \mathcal{A}.$$

Further

$$||\sum_{j=0}^{n-1} t_{j+1} \mathbf{1}_{(t_j,t_{j+1}]} \circ f - \sum_{j=0}^{n-1} t_j \mathbf{1}_{(t_j,t_{j+1}]} \circ f||_u < \varepsilon,$$

which proves Lemma 5.

Now we can show

Lemma 6. Let $f \in \mathcal{F}$. Then there exists a sequence $\{s_n\}$ from $\mathcal{E}(\mathcal{A})$ such that $\lim_{n \to \infty} ||f - s_n||_u = 0$ and

$$L(f) = \lim_{n \to \infty} \tilde{L}(s_n).$$

Proof. Let $f \in \mathcal{F}$ and $\varepsilon > 0$. Choose, with the notations in the proof of Lemma 5,

$$s = \sum_{j=0}^{n-1} t_j \mathbf{1}_{(t_j, t_{j+1}]} \circ f.$$

Then $s \in \mathcal{E}(\mathcal{A})$ and $||f - s||_u < \varepsilon$. We write s in the form

$$s = \sum_{j=1}^{n} (t_j - t_{j-1}) \mathbf{1}_{(t_j,\infty)} \circ f + t_0 \mathbf{1}_{\mathbb{N}}$$

and put

$$B_j := \{ n \in \mathbb{N} : t_j < f(n) \}.$$

Then there exist $h_j \in \mathcal{H}$ so that

$$|L(h_j \circ f) - \delta(B_j)| < \varepsilon.$$

The functions h_j can be chosen with values $h_j(t) \in [0, 1]$ satisfying $h_j > 1_{(t_j, \infty)}$ and $h_j(t) = 0$ for $t \leq t_{j-1}$. Putting

$$g = \sum_{j=1}^{n} (t_j - t_{j-1})(h_j \circ f) + t_0 \mathbb{1}_{\mathbb{N}}$$

we obtain

$$||f - g||_u < \varepsilon$$

and

$$|\tilde{L}(s) - L(g)| \le \sum_{j=0}^{n-1} (t_{j+1} - t_j)\varepsilon \le (b-a)\varepsilon.$$

From this we conclude

$$|L(f) - \tilde{L}(s)| < ((b-a) + 1)\varepsilon$$

and Lemma 6 is valid.

3. Integration on $\beta \mathbb{N}$

Starting from the algebra \mathcal{A} of regular sets together with the content δ we arrive at the algebra

$$\overline{\mathcal{A}} = \{\overline{A} : A \in \mathcal{A}\}$$

and the premeasure $\overline{\delta}$ on $\overline{\mathcal{A}}$,

$$\overline{\delta}(\overline{A}) = \delta(A)$$

in $\beta \mathbb{N}$. Define the outer measure $\overline{\delta}^*$ on the class of all subsets E of $\beta \mathbb{N}$ by

(3.1)
$$\overline{\delta}^*(E) = \inf \sum_{j=1}^{\infty} \overline{\delta}(\overline{A_i})$$

the infimum being taken over all sequences of sets $\{\overline{A_i}\}$ in $\overline{\mathcal{A}}$ such that $E \subset \bigcup_{j=1}^{\infty} \overline{A_j}$.

We extend $\overline{\delta}$ with the help of $\overline{\delta}^*$ to a complete measure, which we denote by $\overline{\delta}$, too, on the σ -algebra of $\overline{\delta}^*$ -measurable sets.

Then the integral for simple functions $\overline{s} \in \mathcal{E}(\overline{\mathcal{A}})$, $\overline{s} = \sum_{j=1}^{m} \alpha_j \mathbf{1}_{\overline{A_j}}$ is defined by

$$\int_{\beta\mathbb{N}} \overline{s} \, d\overline{\delta} = \sum_{j=1}^m \alpha_j \overline{\delta}(\overline{A_j}).$$

For each $f \in \mathcal{F}$ there are $s_n \in \mathcal{E}(\mathcal{A})$ such that

(3.2)
$$L(f) = \lim_{n \to \infty} \tilde{L}(s_n) = \lim_{n \to \infty} \int_{\beta \mathbb{N}} \overline{s_n} \, d\overline{\delta} = \int_{\beta \mathbb{N}} \lim_{n \to \infty} \overline{s_n} \, d\overline{\delta} = \int_{\beta \mathbb{N}} \overline{f} \, d\overline{\delta},$$

where $\overline{s_n}$ and \overline{f} are the unique extensions of s_n and f to $\beta \mathbb{N}$, respectively, and this proves the second assertion of Theorem 1.

A subset $E \subset \beta \mathbb{N}$ is said to be a $\overline{\delta}$ -null set if $\overline{\delta}(E) = 0$. The function $\overline{f} : \mathbb{N} \to \mathbb{C}$ is called a *null function* if the set $\{w \in \beta \mathbb{N} : |\overline{f}(w)| > \varepsilon\}$ is a $\overline{\delta}$ -null set for each $\varepsilon > 0$.

If we define

$$||\overline{f}|| = \inf_{\alpha>0} \{ \alpha + \overline{\delta}^* (\{ w \in \beta \mathbb{N} : |\overline{f}(w)| > \alpha \}) \}$$

then \overline{f} is a null function if and only if ||f|| = 0. A sequence $\{\overline{f_n}\}$ of functions on $\beta \mathbb{N}$ to \mathbb{C} converges in $\overline{\delta}$ -measure to the function f on $\beta \mathbb{N}$ to \mathbb{C} if and only if

$$\lim_{n \to \infty} ||\overline{f_n} - \overline{f}|| = 0.$$

It is clear that such a sequence $\{\overline{f_n}\}$ converges in $\overline{\delta}$ -measure to \overline{f} if and only if

$$\lim_{n \to \infty} \overline{\delta}^* (\{ w \in \beta \mathbb{N} : |\overline{f_n}(w) - \overline{f}(w)| > \varepsilon \}) = 0$$

for every $\varepsilon > 0$.

We observe that $\overline{f} : \mathbb{N} \to \mathbb{C}$ is *integrable on* $\beta \mathbb{N}$ if there is a sequence $\{\overline{s_n}\}$ of

simple functions from $\mathcal{E}(\overline{\mathcal{A}})$ converging to \overline{f} in $\overline{\delta}$ - measure on $\beta \mathbb{N}$ and satisfying in addition

$$\lim_{n \to \infty} \int_{\beta \mathbb{N}} |\overline{s_n} - \overline{s_m}| d\overline{\delta} = 0.$$

Such a sequence $\{\overline{s_n}\}$ of simple functions is be said to determine \overline{f} . Obviously, if $B \subset \mathbb{N}$,

$$\delta^*(B) = \overline{\delta}^*(\overline{B})$$

since the open cover

$$\overline{B} \subset \bigcup_{i=1}^{\infty} \overline{A_i}$$

possesses a finite subcover. Thus the proof of Theorem 2 follows immediately.

References

- Indlekofer, K.-H., A new method in probabilistic number theory, Probability Theory and Applications, Math. Appl., 80 (1992), 299–308.
- [2] Indlekofer, K.-H., Number theory probabilistic, heuristic, and computational approaches, *Comput. Math. Appl.*, 43 (2002), 1035–1061.
- [3] Indlekofer, K.-H., On some spaces of arithmetical functions, I. Anal. Math., 18 (1992), 203–221.
- [4] Novoselov, E.V., A new method in probabilistic number theory, *Izv. Akad. Nauk SSSR Ser. Mat.*, 28 (1964), 307–364; English translation, *Amer. Math. Soc. Transl.*, 52 (2) (1966).
- [5] Schwarz, W. and J. Spilker, Arithmetical Functions, London Math. Soc. Lecture Notes Ser., 184, Cambridge Univ. Press, (1994)
- [6] Wagner, R., Über den Zusammenhang zwischen Funktionenalgebren von zahlentheoretischen Funktionen und Mengenalgebren, Annales Univ. Sci. Budapest., Sect. Comp., 39 (2013), 449–458.
- [7] Walker, R., The Stone-Cech Compactification, Springer Heidelberg -New York, (1974).

K.-H. Indlekofer and R. Wagner

Faculty of Computer Science Electrical Engineering and Mathematics University of Paderborn Warburger Strasse 100 D-33098 Paderborn Germany k-heinz@math.uni-paderborn.de Robert.Wagner43@gmx.de