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Abstract. In one of his work, appeared in 1969, John A. Baker initiated
the systematic investigation of some partial difference equations. The main
purpose of this paper is to continue and to extend these investigations.
Firstly, we present how such type of equations can be classified into elliptic,
parabolic and hyperbolic subclasses, respectively. After that, we show
solution methods in the elliptic class. Here we will deal in details with the
discrete version of the following partial differential equations: Laplace’s
equation, Poisson equation and the (in)homogeneous biharmonic equation.

1. Introduction

The aim of this paper is to give a systematic description of certain type of
partial difference equations. Throughout this note N,Z,Q and R denote the
sets of the natural, integer, rational and real numbers, respectively.
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Let Ω ⊂ Rn be a set and u : Ω → R be a function, then

Δh
(xi)

u(x1, . . . , xn) = u(x1, . . . , xi−1, xi + h, xi+1, xn) − u(x1, . . . , xn)

is called the first order partial difference of the function u with respect to the
variable xi. The higher order partial differences are defined recursively, that
is, if k ∈ N and k ≥ 2 and i = 1, . . . , n, then

Δk
h

(xi)

u(x) = Δh
(xi)

(
Δk−1

h
(xi)

)
u(x),

assuming that x + khei ∈ Ω is valid for all x ∈ Ω, where ei denotes the ith

standard base vector of Rn. Further, if k1, . . . , kn ∈ N∪ {0} and
∑n

i=1 ki = N ,
then

ΔN
h

(x
k1
1 ,...,xkn

n )

u(x) = Δk1

h
(x1)

. . .Δkn

h
(xn)

u(x).

In view of this notions on a partial difference equation we mean a functional
equation that has the form

(1) F

⎛⎝ ΔN
h

(x
k1
1 ,...,xkn

n )

u(x1, . . . , xn), . . . , u(x1, . . . , xn), x1, . . . , xn

⎞⎠ = 0,

where F is a given function, u is the unknown function which has to be deter-
mined and k1, . . . , kn ∈ N ∪ {0} are such that

∑n
i=1 ki = N .

Equation (1) is called an N th-order equation if it contains both ΔNu and u.
For the sake of simplicity, here we remark that other properties (e.g. linearity,
quasilinearity, semilinearity etc.) of such type of equations can be defined
analogously as in the theory of partial differential equations. Concerning partial
difference equations we refer to the monograph of Cheng [2].

2. Classification of partial difference equations

Let Ω ⊂ Rn, m ∈ N and γi : Ω → R given functions and ρj,i ∈ R,
j = 1, . . . , n, i = 1, . . . ,m and let us consider the operator D defined by

C(Ω) ) u(x1, . . . , xn)
D−→

m∑
i=1

γi(x1, . . . , xn) · u (x1 + ρ1,ih, . . . , xn + ρn,ih) .
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Here the domain Ω is assumed to be such that x+ρih ∈ Ω for all i = 1, . . . ,m
and x = (x1, . . . , xn) ∈ Ω, where ρi = (ρ1,i, . . . , ρn,i).

In this case let

Ak,l(x) = Ak,l(x1, . . . , xn)

=
m∑
i=1

ρk,iρl,iγi(x1, . . . , xn) (k, l = 1, . . . , n,x ∈ Ω) .

Further, let us consider the (symmetric) n×n matrix valued function Q defined
by

Q(x) =

⎛⎜⎝A11(x) . . . A1n(x)
...

. . .
...

An1(x) . . . Ann(x)

⎞⎟⎠ (x ∈ Ω) .

We say that the operator D defined above is

• elliptic at the point x ∈ Ω, if Q(x) ∈ Mn×n(R) is a definite matrix;

• hyperbolic at the point x ∈ Ω, if Q(x) ∈ Mn×n(R) is an indefinite matrix;

• parabolic at the point x ∈ Ω, if Q(x) ∈ Mn×n(R) is a semidefinite matrix;

The systematic investigation of equations of the form

D(u)(x) + u(x) = Φ(x)

goes back to Baker [1], McKiernan [5], and Światak [8]. The aim of this paper is
to continue and to extend the results of John A. Baker. Additionally, not only
the solutions will be derived but also we will get regularity theorems such as
’continuity implies infinitely many times differentiability’. Such type of results
can be found e.g. in Járai [4].

Finally, we remark that for linear, homogeneous, constant coefficient partial
difference equations a method based on spectral synthesis was developed by
László Székelyhidi in [9].

3. Elliptic partial difference equations

In this section we will investigate elliptic partial difference equations. In
fact, as we shall see, they are nothing but the ’discrete’ versions of elliptic par-
tial differential equations. Here we remark that the investigations concerning
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hyperbolic and parabolic partial difference equations will appear as a continu-
ation of this work.

Among the most important of all partial differential equations are undoubt-
edly Laplace’s equation

Δu(x) =
n∑

i=1

∂2u(x)

∂x2
i

= 0 (x ∈ Ω)

and the Poisson equation

−Δu(x) = f(x) (x ∈ Ω) .

In both equations the unknown function is u : Ω → R, where in general
Ω ⊂ Rn is assumed to be an open set. Further, in the second equation the
function f : Ω → R is also given.

3.1. Auxiliary statements

In this subsection we list some preliminary tools that will be used subse-
quently, see also Evans [3] and Rudin [7].

Theorem 3.1 (Harnack’s principle). If the sequence functions un : Ω → R
(n ∈ R) is harmonic in the domain Ω ⊆ Rn and

u1(x) ≤ u2(x) ≤ · · ·

at every point of Ω, then limn→∞ un(x) either is infinite at every point of the
domain or it is finite at every point of the domain, in both cases uniformly in
each closed subdomain of Ω. In the latter case, the function

u(x) = lim
n→∞un(x) (x ∈ Ω)

is harmonic in the domain Ω.

Remark 3.1. Harnack’s principle can be generalized to monotone sequences
of solutions of elliptic equations, as well.

Definition 3.1. We say that the function ϕ ∈ C∞(Rn) is a mollifier, if

(i) it is compactly supported

(ii) ∫
Rn

ϕ(x)dx = 1



On some classes of partial difference equations 289

(iii)

lim
ε→0+

1

εn
ϕ
(x
ε

)
= δ(x) (x ∈ Rn) ,

where δ denotes the Dirac delta function and the limit is understood in
the Schwartz space.

If the function ϕ is a mollifier and for all x ∈ Rn ϕ(x) ≥ 0 holds, then ϕ is
said to be nonnegative mollifier.

In case ϕ is a mollifier and there exists a function σ ∈ C∞(R) such that

ϕ(x) = σ(‖x‖) (x ∈ Rn) ,

then ϕ is termed to be a (radially) symmetric mollifier.

It is easy to see that if

ϕ(s) =

{
exp

(
− 1

1−s

)
, if s < 1

0, otherwise

and

ω(x) =
ϕ(‖x‖2)∫

Rn ϕ(‖x‖2)dx
(x ∈ Rn) ,

then the functions ωε : Rn → R defined by

ωε(x) =
1

εn
ω
(x
ε

)
(x ∈ Rn)

are nonnegative, symmetric mollifiers for all ε > 0.

Theorem 3.2 (Mollification Theorem). Let f ∈ L1(Rn), then

(i) lim
ε→0+

‖f ∗ ωε − f‖L1 = 0

(ii) for all ε > 0
supp(f ∗ ωε) ⊂ supp(f) +B(0, ε)

holds, where B(0, ε) = {x ∈ Rn | ‖x‖ ≤ ε}.

(iii) every sequence (εn)n∈N of positive real numbers admits a subsequence
(εnk

)k∈N such that f ∗ ωεnk
converges to f almost everywhere

(iv) if additionally, f ∈ C(Ω), where Ω ⊂ Rn is an open set, then

lim
k→∞

f ∗ ωεnk
(x) = f(x) (x ∈ Ω)

and the convergence is uniform on any compact subset of Ω
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(v) for all ε > 0 we have f ∗ ωε ∈ C∞(Rn), further, if α ∈ Nn
0 is a multi

index, then

∂α (f ∗ ωε) = f ∗ (∂αωε) .

3.2. The discrete Laplace’s equation

In this subsection we will investigate the discrete Laplace’s equation, that
is,

(L)
n∑

i=1

Δ2
h

(x2
i )

u(x) =

n∑
i=1

[u(x+ 2eih) − 2u(x+ eih) + u(x)] = 0.

Let us observe that in this case, the corresponding coefficient matrix Q(x)
is the n × n identity matrix at every point x ∈ Rn. Thus equation (L) can be
considered as the most representative example for the class of elliptic partial
difference equations.

Theorem 3.3. Let u : Rn → R be a continuous function and assume that u
fulfills the discrete Laplace’s equation on Rn. Then the function u is harmonic
on Rn.

Proof. Assume that for all ε > 0 the functions ϕε ∈ C∞(Rn) are nonnegative,
symmetric mollifiers and let

uε(z) = (u ∗ ϕε) (z) =

∫
Rn

u(x)ϕε(z − x)dx (z ∈ Rn) .

Due to linearity of equation (L) and because of the properties of the convolu-
tion,

n∑
i=1

Δ2
h

(x2
i )

uε(z) = 0 (z ∈ Rn) .

In other words, this means that for all ε > 0 the functions uε also fulfill equation
(L). Additionally, due to the Mollification Theorem, we also have that

lim
ε→0+

‖uε − u‖L1 = 0.

Now let (εn)n∈N be a null sequence for which the sequence of functions (uεn)n∈N
is monotone. Form this we get that the limit limn→∞ uεn(z) exists for all z ∈ Rn

and the limit function is a harmonic function, too.

This means that the function u is a harmonic function.
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Remark 3.2. In view of the previous theorem we immediately get that if a
continuous function satisfies equation (L), then it is automatically in the class
C∞(Rn).

It is obvious however, that equation (L) has nowhere continuous solutions,
as well. To see this, let α : R → R be a nowhere continuous additive function
(see Corollary 5.2.2 in [6, page 130.]) and

u(x) = u(x1, . . . , xn) =

n∏
i=1

α(xi) (x ∈ Rn) .

Finally, we remark that the method we used in the proof of Theorem 3.3 is
also appropriate to solve more general elliptic equations such as

1

h2

m∑
i=1

γiu(x+ ρih) + u(x) = Φ(x).

Assume namely that is equation is elliptic. Then the coefficient matrix (which
will be independent of x in this case), is

Q =

⎛⎜⎝A11 . . . A1n

...
. . .

...
An1 . . . Ann

⎞⎟⎠
a definite matrix. Here,

Ak,l =
m∑
i=1

γiρk,iρl,i (k, l = 1, . . . , n) .

Thus applying the method based on the Mollification Theorem, we obtain that

n∑
k,l=1

Ak,l
∂2uε(z)

∂xk∂xk
+ uε(z) = Φε(z)

holds for all z ∈ Rn and for all ε > 0, where

uε(z) = (u ∗ ϕε) (z) and Φε(z) = (Φ ∗ ϕε) (z) (z ∈ Rn) .

Since the matrix Q is definite, this latter partial differential equation is of ellip-
tic type. Thus, after a suitable change of the variables, it can be transformed
into its canonical form. Using the theory of elliptic partial differential equa-
tions, the solution of the original partial difference equation can be obtained
easily, with the help of Harnack’s principle.
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3.3. The discrete Poisson equation

Now we consider the discrete Poisson equation, that is,

(P)
1

h2

n∑
i=1

Δ2
h

(x2
i )

u(x) = f(x),

where f : Rn → R is a given function.

Theorem 3.4. Let f : Rn → R be a continuous, compactly supported function
and assume that u : Rn → R is also a continuous function which fulfills the
discrete Poisson equation on Rn. Then

u(x) =

∫
Rn

Φ(x − y)f(y)dy + C (x ∈ Rn) ,

where C is a real constant and Φ stands for the fundamental solution of the
Laplace’s equation

Φ(x) =
1

2π
ln(‖x‖) (x ∈ Rn)

if n = 2 and

Φ(x) = − 1

(n − 2)sn
‖x‖−n+2

(x ∈ Rn)

if n ≥ 3, where sn denotes the area of the n-dimensional unit sphere.

Proof. Similarly as in the previous theorem, assume that for all ε > 0 the
functions ϕε ∈ C∞(Rn) are nonnegative, symmetric mollifiers and let

uε(z) =

∫
Rn

u(z)ϕε(z − x)dx (z ∈ Rn) .

Due to the linearity of equation (P) and because of the properties of the con-
volution, we obtain that

n∑
i=1

Δ2
h

(x2
i )

uε(z) = h2fε(x) (z ∈ Rn) ,

where
fε(z) = (f ∗ ϕε)(z) (z ∈ Rn) .

In other words, this means that for all ε > 0 the functions uε fulfill a differ-
ence equation similar to equation (L). Additionally, due to the Mollification
Theorem, we also have that

lim
ε→0+

‖uε − u‖L1 = 0.
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Since for all ε > 0, we have uε, fε ∈ C∞(Rn), by differentiating twice with
respect to h and putting h = 0, we obtain that

Δuε(z) = fε(z) (z ∈ Rn) ,

yielding that for all ε > 0 the functions uε fulfill a Poisson equation. Applying
a version of Harnack’s principle concerning elliptic equations finally we get that
the function u is a solution to the partial differential equation

Δu(z) = f(z) (z ∈ Rn) .

The statement of the theorem follows now from Theorem 1. of Evans [3, p. 22.].

3.4. The discrete biharmonic equation

Finally, we consider a fourth order partial difference equation, namely, the
discrete biharmonic equation

(B) 1

h4

n∑
i=1

Δ4
h

(x4
i )

u(x) +
1

h4

n∑
i,j=1
i �=j

Δ4
h

(x2
ix

2
j )

u(x) = 0.

The proof of the following result is similar to those in the previous subsec-
tions, hence we omit it.

Theorem 3.5. Let u : Rn → R be a continuous function and assume that u ful-
fills the discrete biharmonic equation on Rn. Then the function u is biharmonic
on Rn, that is,

ΔΔu(x) =

n∑
i=1

∂4u(x)

∂x4
i

+

n∑
i,j=1
i �=j

∂4u(x)

∂x2
ix

2
j

= 0 (x ∈ Rn) .

Remark 3.3. Similarly, as in case of the discrete Poisson equation, the solu-
tions of the inhomogeneous biharmonic equation

1

h4

n∑
i=1

Δ4
h

(x4
i )

u(x) +
1

h4

n∑
i,j=1

Δ4
h

(x2
ix

2
j )

u(x) = Φ(x)

can be derived in the same way as in the proof of Theorem 3.4.
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