ELTE logo ELTE Eötvös Loránd University
ANNALES Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae
Sectio Computatorica

Volumes » Volume 40 (2013)

https://doi.org/10.71352/ac.40.275

Generalized cyclic congruence

János Gonda

Abstract. This article generalizes the in the theory of finite fields important relation of \(r\sim s\) defined on \(\textbf{Z}\) by the congruence \(s\equiv rq^{t}\ (q-1)\), where \(r\) and \(s\) are arbitrary integers, \(t\) is a
non-negative integer and \(q\) is a power of a prime.

Full text PDF
Journal cover