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Abstract. In this note we use the Ulam–Hyers stability for solving an
alternative form of the quadratic equation.

1. Introduction

In the second half of 1970’s several problems concerning alternative func-
tional equations, mainly related to the Cauchy equation, have been proposed
and solved by Roman Ger in [4] and [5] and by Marek Kuczma in [6].

In 1978, the author of the present note while investigating one of these
problems concerning the alternative Cauchy equation, became aware of the
existence of Hyers’ theorem about stability of the additive equation and that
stability result has been the main tool for solving that problem (see [2]).

Herein we consider a problem similar to Kuczma’s one about the Cauchy
equation, but concerning the quadratic equation. More precisely, we intend to
describe the solutions of the following alternative quadratic functional equation

(1) Qf(x, y) = f(xy) + f(xy−1) − 2f(x) − 2f(y) ∈ {0, 1}
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where f : G → R and G is a group with certain properties which will be
specified below.

The first step is to recall the stability theorems concerning the quadratic
equation: the first result is due to F. Skof (see [7]), later improved by P. Cholewa
in [1]. The result which will be used herein is the following, proved by D. Yang
in [8]:

Theorem 1.1. Let G be an amenable group and assume that f : G → B, where
(B, ‖ · ‖) is a Banach space, satisfies the inequality

(2) ‖f(xy) + f(xy−1) − 2f(x) − 2f(y)‖ ≤ δ

for some positive δ. Then there exists a unique quadratic function, i.e., solution
of the equation

(3), q(xy) + q(xy−1) − 2q(x) − 2q(y) = 0

such that

(4) ‖f(x) − q(x)‖ ≤ δ′

for every x ∈ G and some δ′ depending only on δ.

From now on we assume that the group G is amenable and e is its identity.

The next result we need is the analogue of that proved in [3, Th. 4] for the
Cauchy functional equation. If

Qf(x, y) = f(xy) + f(xy−1) − 2f(x) − 2f(y)

is bounded then, by the previous theorem, we have the decomposition f(x) =
= q(x) + k(x), with q quadratic and k bounded. Our aim is to provide infor-
mation on the range of the bounded function k.

Theorem 1.2. Let f : G → B, where B is a Banach space and let M be a
bounded subset of B. If Qf(x, y) ∈ M , then f(x) = q(x) + k(x), where q is
quadratic and the range of k is contained in 1

2C(−M), where C(−M) is the
closure of the convex hull of −M .

Proof. By the stability result, we have the decomposition

f(x) = q(x) + k(x)

with q quadratic and k bounded.

Since q(e) = 0, we have f(e) = k(e) = − 1
2m0, for certain m0 ∈ M . Fix

x ∈ G and consider the value k(x) =: u. We have

k(x2)−4k(x) = Qf(x, x)−f(e), hence k(x2) = 4u+
1

2
m0+m1 for somem1 ∈ M.
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By induction we obtain for every positive integer s

k(xs) = s2u+
s − 1

2
m0 +

s−1∑
i=1

(s − i)mi,

for some mi ∈ M . By dividing by s2 we have

k(xs)

s2
= u+

1

2

s−1∑
i=1

2(s − i)

s2
mi +

1

2s
m0 − 1

2s2
m0.

Clearly,
∑s−1

i=1
2(s−i)

s2 mi +
1
2sm0 ∈ C(M); taking the limit as s → ∞ and

remembering that k is bounded, we get

u+
1

2
μ = 0, where μ = lim

s→∞

s−1∑
i=1

2(s − i)

s2
mi +

1

2s
m0,

thus, u ∈ 1
2C(−M). �

Theorem 1.3. In the hypotheses of Theorem 1.2, the range of k is contained

in the set K =
{

−
∑∞

i=1
mi

41 − m0

6 : mi ∈ M, m0 = −2k(e)
}
.

Proof. By Theorem 1.2 the range of k is contained in 1
2C(−M) and we have

k(e) = −m0

2 for some m0 ∈ M . From

Qk(x, x) = k(x2) + k(e) − 4k(x) = k(x2) − 4k(x) − m0

2
∈ M,

we obtain

k(x2) = 4k(x) +
m0

2
+m1 ∈ 1

2
C(−M), for some m1 ∈ M,

hence

k(x) ∈
[1
8
C(−M) − m0

8
− m1

4

]
∩
[1
2
C(−M)

]
.

It is easy to see that

1

8
C(−M) − m0

8
− m1

4
⊂ 1

2
C(−M),

thus

k(x) ∈
⋃

m1∈M

[1
8
C(−M) − m0

8
− m1

4

]
.
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We claim that

k(x) ∈
⋃

m1,m2,··· ,mn∈M

[ 1

2 · 4nC(−M) − m0

2

n∑
i=1

1

4i
−

n∑
i=1

mn+1−i

4i

]
=: Kn.

The proof is by induction. Consider n+ 1 and

4k(x) +
m0

2
+mn+1 ∈ 1

2 · 4nC(−M) − m0

2

n∑
i=1

1

4i
−

n∑
i=1

mn+1−i

4i

for some m1,m2, · · · ,mn+1 ∈ M . Hence

k(x) ∈ 1

2 · 4n+1
C(−M) − m0

2

n+1∑
i=1

1

4i
−

n∑
i=1

mn+1−i

4i
− mn+1

4

and

k(x) ∈
⋃

m1,m2,··· ,mn+1∈M

[ 1

2 · 4n+1
C(−M)− m0

2

n+1∑
i=1

1

4i
−

n+1∑
i=1

mn+2−i

4i

]
= Kn+1.

It is not difficult to prove that Kn+1 ⊂ Kn, then

k(x) ∈
∞⋂

n=1

Kn =: K

and

K =
{

−
∞∑
i=1

mi

41
− m0

6
: mi ∈ M, m0 = −2k(e)

}
. �

2. Alternative quadratic equation

We assume that f : G → R, where G is an amenable group and, as stated
before, we intend to find the solutions of the following alternative equation:

Qf(x, y) = f(xy) + f(xy−1) − 2f(x) − 2f(y) ∈ {0, 1}

Thanks to Theorem 1.1, we transform the previous problem into the follow-
ing

(5) Qk(x, y) = k(xy) + k(xy−1) − 2k(x) − 2k(y) ∈ {0, 1},

where the function k is bounded. By setting x = y = 0, we have k(e) ∈ {− 1
2 , 0}.



Alternative quadratic equation 227

By setting p(x) := −k(x) − 1
2 we see that k(e) = − 1

2 implies p(e) = 0 and
Qp(x, y) ∈ {0, 1}. Thus, we can consider only the case k(e) = 0 and investigate
the problem

(6) k(xy) + k(xy−1) − 2k(x) − 2k(y) ∈ {0, 1}, k(e) = 0.

Theorem 1.3 applied to this situation gives that the range of k is contained
in the set K = {−

∑∞
n=1

αn

4n : αn ∈ {0, 1}} ⊂ [− 1
2 , 0].

Writing the set K in the form

K = {−1

3

∞∑
n=1

3αn

4n
: αn ∈ {0, 1}}

we see that it is obtained by a procedure similar to that of the construction
of the ternary Cantor set. In this case we take the unit interval, divide it in
4 equal parts, say [0, 1/4], [1/4, 1/2], [1/2, 3/4] and [3/4, 1] and eliminate the
open central interval (1/4, 3/4). Proceeding in this way and multiplying the
resulting set by − 1

3 we obtain K.

It should be noted that the numbers in K have a unique representation in
the form −

∑∞
n=1

αn

4n with αn ∈ {0, 1}.

Consider the set Zk = {x ∈ G : k(x) = 0} and put x, y ∈ Zk in equation
(6): we have

k(xy) + k(xy−1) ∈ {0, 1}
and, since k cannot assume non negative values, this forces k(xy) = k(xy−1) =
= 0, i.e., Zk is a subgroup of G. Since we are obviously looking for the non
trivial solutions, we assume that Zk is a proper subgroup of G.

Take now x /∈ Zk and let k(x) = −
∑∞

n=1
αn

4n for some sequence
{αn} ∈ {0, 1}N. Then

k(x2) − 4k(x) ∈ {0, 1} ⇔ k(x2) ∈
{

−
∞∑

n=1

αn

4n−1
, 1 −

∞∑
n=1

αn

4n−1

}
.

If α1 = 0, then

∞∑
n=1

αn

4n−1
=

∞∑
n=2

αn

4n−1
≤ 1

3
, hence 1 −

∞∑
n=1

αn

4n−1
≥ 2

3
.

Thus,

k(x2) = −
∞∑

n=1

αn

4n−1
= −

∞∑
n=2

αn

4n−1
.
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If α1 = 1, then

∞∑
n=1

αn

4n−1
= 1 +

∞∑
n=2

αn

4n−1
≥ 1, hence 1 −

∞∑
n=1

αn

4n−1
≤ 0.

Thus,

k(x2) = 1−
∞∑

n=1

αn

4n−1
= −

∞∑
n=2

αn

4n−1
.

If we identify k(x) with the sequence {αn}∞n=1, then k(x2) is identified by
{αn+1}∞n=1.

Now we compute k(x3). From equation (6) with x2 instead of x and x
instead of y, we obtain

k(x3) + k(x) − 2k(x2) − 2k(x) = k(x3) − 2k(x2) − k(x) ∈ {0, 1}

whence

k(x3) ∈
{

−
∞∑

n=1

αn + 2αn+1

4n
, 1 −

∞∑
n=1

αn + 2αn+1

4n

}
.

If

k(x3) = −
∞∑

n=1

αn + 2αn+1

4n
,

then for having k(x3) ∈ K, by Theorem 3, we must have

∞∑
n=1

αn + 2αn+1

4n
=

∞∑
n=1

an
4n

for some sequence {an} with an = 0, 1. We prove that this is possible if
and only if αn + 2αn+1 ∈ {0, 1}. If not, let n0 be the first index such that
αn + 2αn+1 �= an; we have two possibilities: either an0

< αn0
+ 2αn0+1 or

1 = an0
> αn0

+ 2αn0+1 = 0.

In the first case we have

∞∑
n=n0

an
4n

≤ an0

4n0
+

1

3 · 4n0
=

an0
+ 1/3

4n0
<

an0
+ 1

4n0
≤

≤ αn0
+ 2αn0+1

4n0
≤

∞∑
n=n0

αn + 2αn+1

4n
,

a contradiction.
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In the second case we have

∞∑
n=n0

αn + 2αn+1

4n
≤ 1

4n0
≤ 1

4n0
+

∞∑
n=n0+1

an
4n

=

∞∑
n=n0

an
4n

.

This forces the equality and an = 0, αn+2αn+1 = 3 for all n > n0, i.e., αn = 1
for all n > n0. Hence 0 = αn0

+ 2αn0+1 ≥ 2: a contradiction.

Thus αn + 2αn+1 ∈ {0, 1} and this is possible if and only if αn+1 = 0 for
every n ≥ 1. Thus, either αn = 0 for every n ≥ 0, i.e., x ∈ Zk, impossible, or
α1 = 1 and αn = 0 for every n ≥ 2. This means that k(x) = − 1

4 . In this case
k(x2) = 0, i.e., x2 ∈ Zk and k(x3) = − 1

4 .

The other possibility is

k(x3) = 1 −
∞∑

n=1

αn + 2αn+1

4n
=

∞∑
n=1

3

4n
−

∞∑
n=1

αn + 2αn+1

4n
=

= −
∞∑

n=1

αn + 2αn+1 − 3

4n
.

The condition k(x3) ∈ K implies αn + 2αn+1 − 3 = 0, i.e., αn + 2αn+1 = 3 for
every n ≥ 1, hence αn = 1 for every n ≥ 1.

This means that k(x) = − 1
3 . In this case k(x2) = − 1

3 and k(x3) = 0, i.e.,
x3 ∈ Zk.

Thus, the group G is partitioned in three sets: the subgroup Zk, and the
sets H4 := {x ∈ G : k(x) = − 1

4 } and H3 := {x ∈ G : k(x) = − 1
3 }, with

H3 ∪ H4 �= ∅.
Assume that H3 and H4 are both non empty and take x ∈ H4 and y ∈ H3.

Then

k(xy) + k(xy−1) +
1

2
+

2

3
∈ {0, 1} ⇔ k(xy) + k(xy−1) ∈ {−7

6
,−1

6
}.

Since k(xy), k(xy−1) ∈ {− 1
3 ,−

1
4 , 0}, we can’t obtain the values − 7

6 and − 1
6 .

Thus, we conclude that either H3 = ∅ or H4 = ∅.
Suppose H4 �= ∅ and take x, y ∈ H4, then y−1 ∈ H4 and

k(xy) + k(xy−1) − 2k(x) − 2k(y) = k(xy) + k(xy−1) + 1 ∈ {0, 1};

the only possibilities is k(xy) = k(xy−1) = 0, i.e., xy, xy−1 ∈ Zk. Moreover,
from x ∈ H4 and y ∈ Zk, so x−1y /∈ Zk, we obtain

k(x−1yx)+k(x−1yx−1)−2k(x−1y)−2k(x) = k(x−1yx)+k(x−1yx−1)+1 ∈ {0, 1}
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whence k(x−1yx) = k(x−1yx−1) = 0, i.e., x−1yx, x−1yx−1 ∈ Zk. Thus, Zk is a
normal subgroup of G of index 2 and H4 = xZk and G/Zk is the cyclic group
of order 2.

Suppose H3 �= ∅, from x ∈ H3 and y ∈ Zk, so x−1y /∈ Zk, we obtain

k(x−1yx) + k(x−1yx−1) − 2k(x−1y) − 2k(x) =

= k(x−1yx) + k(x−1yx−1) +
4

3
∈ {0, 1}

whence k(x−1yx)+k(x−1yx−1) ∈ {− 4
3 ,−

1
3}. The only possibility is k(x−1yx)+

+k(x−1yx−1) = − 1
3 , i.e., either x−1yx ∈ Zk or x−1yx−1 ∈ Zk. This doesn’t

permit to conclude that Zk is normal.

Take now x, y ∈ H3, then

k(xy) + k(xy−1) − 2k(x) − 2k(y) = k(xy) + k(xy−1) +
4

3
∈ {0, 1}

so k(xy) + k(xy−1) = − 1
3 and either xy ∈ H3 and xy−1 ∈ Zk, or vice–versa.

Hence the set H3 × H3 is partitioned in two disjoint sets:

L3 := {(x, y) ∈ H3 × H3 : xy ∈ H3}, M3 := {(x, y) ∈ H3 × H3 : xy ∈ Zk}.

Clearly we have
(x, y) ∈ L3 ⇔ (x, y−1) ∈ M3.

From this follows that (x, x) ∈ L3, (x, x
2) ∈ M3.

The following theorem shows that the necessary conditions we have obtained
assuming that k is a non trivial solution of equation (6), are also sufficient.

Theorem 2.1. Non zero solutions of problem (6) exist only in this two cases:

(i) the group G has a normal subgroup Z of index 2; the solution k assume
the value zero on Z and − 1

4 on G \ Z;

(ii) the group G has a subgroup Z such that the set (G \Z)× (G \Z) can be
split in two (disjoint) sets L and M with the property that (x, y) ∈ L if xy /∈ Z
and (x, y) ∈ M if (x, y−1) ∈ L; the solution k assume the value zero on Z and
− 1

3 on G \ Z.

Proof. Let x, y ∈ G, we have the following possibilities:

Case (i):

a) x, y ∈ Z, then xy, xy−1 ∈ Z and Qk(x, y) = 0.

b) x /∈ Z, y ∈ Z, then xy, xy−1 /∈ Z and Qk(x, y) = − 1
4 − 1

4 + 1
2 = 0; the

same if x ∈ Z and y /∈ Z.
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c) x, y /∈ Z, then xy, xy−1 ∈ Z and Qk(x, y) = 1
2 + 1

2 = 1.

Case (ii):

d) x, y ∈ Z, then xy, xy−1 ∈ Z and Qk(x, y) = 0.

e) x /∈ Z, y ∈ Z, then xy, xy−1 /∈ Z and Qk(x, y) = − 1
3 − 1

3 + 2
3 = 0; the

same if x ∈ Z and y /∈ Z.

f) x, y /∈ Z; we have two possibilities. First, let (x, y) ∈ L, then xy /∈ Z and
xy−1 ∈ Z since (x, y−1) ∈ M , so we obtain Qk(x, y) = − 1

3 + 2
3 + 2

3 = 1.
Second case is (x, y) ∈ M , then xy ∈ Z and xy−1 /∈ Z, so again we have
Qk(x, y) = 1. �

Note that if G is Abelian, so Z is normal, the case (ii) of Theorem 2.1
becomes simply the following: Z is a subgroup of G of index 3 and the solution
k assume the value zero on Z and − 1

3 on G \ Z.

We have assumed that our functions f and k are real, but exactly in the
same way we can treat the case f : G → B where B is a Banach space and
equation (1) is substituted by the following

Qf(x, y) = f(xy) + f(xy−1) − 2f(x) − 2f(y) ∈ {0, β}

where β is a fixed element in B which we can assume of norm 1. By Theorem 1.2
the range of f is contained in the segment having end points 0 and −β

2 , thus
we are reduced to the one dimensional case.
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