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Abstract. In this paper we characterize the homogeneous and translative
members of the class of Makó-Páles means. This is a common general-
ization of the classes of weighted quasi-arithmetic means and Lagrangian
means. So, as an application we get the description of homogeneous and
translative means also within these classes.

1. Introduction

The theory of means is an intensively investigated area of mathematics.
One of the typical hot topics of this is the characterization of such members
of the examined class of means which posses some special additional property
within the class in question.

Here we determine the homogeneous and translative members of a certain
class of means. These types of questions are not new, they have already been
examined by several authors (see e.g. [2], [5], [3], [6], [4], [7], [11], [15], [16],
[17], [18]).
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Firstly, we introduce the most important definitions in the second section.
In the third one we solve the homogeneity problem in the class of Makó-Páles
means and in the fourth we investigate in the same class the translativity too.
Finally, as an application of our theorems, we characterize the homogeneuous
and translative means in the classes of weighted quasi-arithmetic means and
Lagrangian means.

2. Definitions and tools

The following notations are used throughout this work.

Let I ⊂ R be an interval. A function M : I2 → R is said to be a mean on
I if it is continuous and fulfills the undermentioned pair of inequalities

min {x, y} ≤ M(x, y) ≤ max {x, y} , x, y ∈ I.

If, in addition, these inequalities are sharp whenever x �= y, the mean M is
called strict. Note that if M : I2 → R is a mean, then for every interval
J ⊂ I we have M(J2) = J ; in particular, M

(
I2
)
= I; moreover M is reflexive,

that is M(x, x) = x for all x ∈ I.

M is called homogeneous if I = R+ or R and

M(tx, ty) = tM(x, y) for all x, y, t ∈ I.

M is called translative if I = R and

M(t+ x, t+ y) = t+M(x, y) for all x, y, t ∈ I.

M is said to be conditionally homogeneous or translative if M is defined only
on a subinterval, and the beforementioned inequalities are fulfilled only on this,
such that the products and the sums make sense. That is, tx, ty, t + x, t + y
are in this subinterval.

In this paper we are interested in the conditional homogeneity and transi-
tivity of Makó-Páles means. This class was introduced in [19] by the authors
(for further information about this class see [20]).

Given a strictly monotonic, continuous function ϕ : I → R and a probability
Borel measure μ on [0, 1], the Makó-Páles mean Aϕ,μ : I2 → I is defined by

Aϕ,μ(x, y) = ϕ−1

⎛⎝ 1∫
0

ϕ (tx+ (1 − t)y) dμ(t)

⎞⎠ .
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It is clear that Aϕ,μ is a strict mean on I unless μ is the Dirac measure concen-
trated to 0 or 1. It is quite straightforward, with a special choice of ϕ and μ,
that this class is a common generalization of Lagrangian means and weighted
quasi-arithmetic means (the definition of these classes can be found in the last
section, for more information about these means see e.g. [9], [13], [21]).

In our investigation [19, Theorem 7] is of key importance. For the readers
convenience we recall this here. For this we also need a definition from [19].

The kth moment of μ is defined in the following way

μ̂k :=

1∫
0

tkdμ(t).

Moreover, the Dirac measure concentrated to τ ∈ [0, 1] will be denoted by δτ .

Theorem 2.1 (Makó-Páles, [19]). Let I ⊂ R be a nonempty open interval,
ϕ, ψ : I → R be strictly monotonic, continuous functions and μ, ν Borel prob-
ability measures on [0, 1]. If μ̂k = ν̂k for all k ∈ N, then Aϕ,μ = Aψ,ν if and
only if

1. either μ = ν = δτ for some τ ∈ [0, 1] and ϕ, ψ are arbitrary,
or

2. μ = ν is not a Dirac measure and there exist constants a �= 0 and b such
that ψ = aϕ+ b.

3. Homogeneity

In this section we solve the homogeneity problem in the class of Makó-Páles
means. We do not assume any regularity on the generators.

Theorem 3.1. Assume that I ⊂ (0,∞). Let ϕ : I → R be a continuous strictly
monotonic function and μ be a probability Borel measure on [0, 1]. The mean
Aϕ,μ is conditionally homogeneous if and only if μ is a Dirac measure or there
are a ∈ R \ {0} and b ∈ R such that either

(3.1) ϕ(x) = axp + b, x ∈ I,

with some p ∈ R \ {0}, or

(3.2) ϕ(x) = a log x+ b, x ∈ I.
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The theorem will be derived from the proposition below. Assuming there
that I is an interval of positive numbers we set

α =
inf I

sup I

adopting the convention that x
∞ = 0 for each x ∈ R. Then α ∈ [0, 1]. Observe

that if λ ∈
(
α, α−1

)
(here α−1 := ∞ if α = 0) and intI = (r, s) with some

0 ≤ r < s ≤ ∞, then α = r
s , hence r < s

λ and r
λ < s, and thus the intervals (r, s)

and
(
r
λ ,

s
λ

)
intersect, that is intI ∩ int 1λI �= ∅. Conversely, if intI ∩ int 1λI �= ∅,

then α < λ < α−1. Therefore

λ ∈
(
α, α−1

)
if and only if int

(
I ∩ 1

λ
I

)
�= ∅.

Proposition 3.2. Assume that I ⊂ (0,∞), α is defined as above, and let
c, d :

(
α, α−1

)
→ R. If ϕ : I → R is a continuous function satisfying the

equation

ϕ (λx) = c(λ)ϕ(x) + d (λ)(3.3)

for all λ ∈
(
α, α−1

)
and x ∈ I ∩ 1

λI, then there are a, b ∈ R such that either

(i) ϕ is of form (3.1) with some p ∈ R \ {0} and d(λ) = b (1 − c(λ))
for every λ ∈

(
α, α−1

)
, and c(λ) = λp for every λ ∈

(
α, α−1

)
whenever

a �= 0,

or

(ii) ϕ is of form (3.2), c(λ) = 1 and d(λ) = a log λ for every λ ∈
(
α, α−1

)
.

Proof. We may confine ourselves to the case when intI �= ∅, that is α < 1.
First assume that ϕ is constant on a subinterval of I, with non-empty interior.
Let J be a maximal one and suppose that J � I. Then we can find a λ ∈ (0,∞)
such that λJ ⊂ I, λJ \ J �= ∅ and J ∩ λJ �= ∅. Then J ∪ λJ is an interval
and J � J ∪ λJ . It follows from (3.3) that ϕ is constant also on λJ , and thus
on J ∪ λJ because of the condition J ∩ λJ �= ∅. This contradiction shows that
J = I, i.e. ϕ is constant. In particular, it is of form (3.1) with a = 0, and the
condition d(λ) = b (1 − c(λ)) for each λ ∈

(
α, α−1

)
follows from (3.3).

Now consider the complementary case when ϕ is constant on no interval
with non-empty interior. We prove that the functions c and d are continuous.
Take any λ0 ∈

(
α, α−1

)
. Then the interval I ∩ 1

λ0
I has non-empty interior,

so there are x1, x2 ∈ int
(
I ∩ 1

λ0
I
)
with ϕ (x1) �= ϕ (x2). Choose a δ ∈ (0,∞)

such that (λ0 − δ, λ0 + δ) ⊂
(
α, α−1

)
and

x1, x2 ∈ int

(
I ∩ 1

λ
I

)
, λ ∈ (λ0 − δ, λ0 + δ) .
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For every λ ∈ (λ0 − δ, λ0 + δ) equality (3.3) gives

ϕ (λx1) − ϕ (λx2) = c(λ) (ϕ (x1) − ϕ (x2)) ,

and thus, since ϕ is continuous and ϕ (x1) �= ϕ (x2), it follows that c is contin-
uous in (λ0 − δ, λ0 + δ). Consequently, c is continuous and, according to (3.3),
so is d.

We verify that c satisfies the Cauchy equation

c (κλ) = c(κ)c(λ)(3.4)

for all κ, λ ∈
(
α

1
2 , α−

1
2

)
. Take any such κ, λ. Then κ, λ, κλ ∈

(
α, α−1

)
, hence

int
(
1
λI ∩ 1

κλI
)

�= ∅, int
(
I ∩ 1

λI
)

�= ∅ and int
(
I ∩ 1

κλI
)

�= ∅. Observe that if
J1, J2, J3 are open intervals pairwise intersecting, then J1 ∩ J2 ∩ J3 is a non-
empty interval. Thus, setting J1 = intI, J2 = int 1λI, J3 = int 1

κλI we see that
I ∩ 1

λI ∩ 1
κλI is an interval with non-empty interior. Take any of its element x.

Then, as ϕ satisfies (3.3), we get

ϕ(κλx) = c (κλ)ϕ(x) + d(κλ)

and

ϕ(κλx) = c (κ)ϕ(λx) + d(κ) = c (κ) [c(λ)ϕ(x) + d(λ)] + d(κ) =

= c (κ) c(λ)ϕ(x) + c (κ) d(λ) + d(κ).

Therefore, since ϕ is not constant on the interval I ∩ 1
λI ∩ 1

κλI, we obtain (3.4)
and the equality

d(κλ) = c (κ) d (λ) + d(κ)(3.5)

for all κ, λ ∈
(
α

1
2 , α−

1
2

)
. If c(λ) = 0 for a λ ∈

(
α, α−1

)
, then, by virtue of (3.4),

we would get c(1) = c(λ)c
(
λ−1

)
= 0, hence, because of (3.3), ϕ(x) = d(1)

for each x ∈ I, i.e. ϕ would be constant. Thus, c does not vanish, which,
due to the continuity of c and equality (3.4), means that c is positive. Now
the function f : (logα,− logα) → R, given by f(x) = log c (ex), satisfies the
Cauchy equation

f(x+ y) = f(x) + f(y)

for all x, y ∈ (logα,− logα) with x + y ∈ (logα,− logα), in particular for all
x, y ∈

(
1
2 logα,−

1
2 logα

)
. Applying [14, Theorem 13.5.2] or [1, Theorem 1. p.

46] and taking into account the continuity of f we find a number p ∈ R such
that f(x) = px for every x ∈ (logα,− logα), that is

c(λ) = λp, λ ∈
(
α, α−1

)
.(3.6)
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Assume that p �= 0. Then, on account of (3.5),

d(κλ) = κpd (λ) + d(κ)

and, by symmetry,

d(κλ) = λpd (κ) + d(λ),

hence d(1) = 0 and

(1 − λp) d(κ) = (1− κp) d(λ)

for all κ, λ ∈
(
α

1
2 , α−

1
2

)
. In other words

d(κ)

1 − κp
=

d(λ)

1 − λp
, κ, λ ∈

(
α

1
2 , α−

1
2

)
\ {1},

which means that

d(λ) = b (1 − λκ) , λ ∈
(
α

1
2 , α−

1
2

)
,(3.7)

with some b ∈ R. Take any x0 ∈ I and x ∈ I ∩
(
α

1
2x0, α

− 1
2x0

)
. Then, by

(3.3), (3.6) and (3.7), we have

ϕ(x) = ϕ

(
x

x0
x0

)
= c

(
x

x0

)
ϕ (x0) + d

(
x

x0

)
=

=

(
x

x0

)p

ϕ (x0) + b

(
1 −

(
x

x0

)p)
=

ϕ (x0) − b

xp
0

xp + b.

This means that

ϕ(x) = a (x0)x
p + b, x ∈ I ∩

(
α

1
2x0, α

− 1
2x0

)
,

with some a (x0) ∈ R. If x ∈ I∩
(
α

1
2x0, α

− 1
2x0

)
, then also x ∈ I∩

(
α

1
2x, α−

1
2x

)
,

so

a(x)xp + b = ϕ(x) = a (x0)x
p + b,

hence a(x) = a (x0). In such a way we see that

ϕ(x) = axp + b, x ∈ I,

with some a ∈ R. This, according to (3.3) and (3.6), gives d(λ) = b (1 − λp) =
= b (1 − c(λ)) for each λ ∈

(
α, α−1

)
.
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Finally, consider the case p = 0. Then (3.6) and (3.5) become c(λ) = 1 for
every λ ∈

(
α, α−1

)
and

d(κλ) = d(κ) + d(λ)

for all κ, λ ∈
(
α

1
2 , α−

1
2

)
, respectively. Using [14, Theorem 13.5.2] or [1, Theo-

rem 1. p. 46] again and taking into account the continuity of d we get

d(λ) = a log λ, λ ∈
(
α, α−1

)
,

with some a ∈ R. Now taking any x0 ∈ I we see that (3.3) gives

ϕ(x) = ϕ

(
x

x0
x0

)
= c

(
x

x0

)
ϕ (x0) + d

(
x

x0

)
=

= ϕ (x0) + a log
x

x0
= a log x+ (ϕ (x0) − a log x0) = a log x+ b (x0)

for every x ∈ I ∩
(
αx0, α

−1x0

)
with some b (x0) ∈ R. As previously, it can be

shown that b does not depend on x0, and thus

ϕ(x) = a log x+ b

for every x ∈ I. �

Now we are in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Assume that Aϕ,μ is conditionally homogeneous,
that is
(3.8)

ϕ−1

⎛⎝ 1∫
0

ϕ (tλx+ (1 − t)λy) dμ(t)

⎞⎠ = λϕ−1

⎛⎝ 1∫
0

ϕ (tx+ (1 − t)y) dμ(t)

⎞⎠
for all λ ∈ (0,∞) and x, y ∈ I with λx, λy ∈ I, and thus for all λ ∈

(
α, α−1

)
and x, y ∈ I ∩ 1

λI. Defining ψλ : 1
λI → R by

ψλ(x) = ϕ (λx)

and inserting it into the left side of equality (3.8) we get

ψ−1
λ

⎛⎝ 1∫
0

ψλ (tx+ (1 − t)y) dμ(t)

⎞⎠ = ϕ−1

⎛⎝ 1∫
0

ϕ (tx+ (1 − t)y) dμ(t)

⎞⎠
for all λ ∈

(
α, α−1

)
and x, y ∈ I ∩ 1

λI. It is clear that all the assumptions
of Theorem 2.1 are fulfilled. On account of this we infer that either μ is a
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Dirac measure concentrated at a point of [0, 1], or there are functions c, d :(
α, α−1

)
→ R such that c does not vanish and

ψλ(x) = c(λ)ϕ(x) + d(λ), λ ∈
(
α, α−1

)
, x ∈ I ∩ 1

λ
I.

Now the possible forms of ϕ, c and d follow directly from Proposition 3.2.

The opposite direction can be verified trivially. �

Corollary 3.3. Assume that I ⊂ (0,∞). The only conditionally homogeneous
Makó-Páles means on I are these of the forms

⎛⎝ 1∫
0

(tx+ (1 − t)y)
p
dμ(t)

⎞⎠
1
p

with an p ∈ R \ {0} and

exp

⎛⎝ 1∫
0

log (tx+ (1 − t)y) dμ(t)

⎞⎠ ,

where μ is a probabilistic Borel measure on [0, 1].

Proof. If μ is a Dirac measure concentrated at a point τ ∈ [0, 1], then

Aϕ,μ(x, y) = τx+ (1 − τ)y =

1∫
0

(tx+ (1 − t)y) dμ(t),

so Aϕ,μ is of the first form with p = 1. The rest follows directly from Proposi-
tion 3.2. �

4. Translativity

Now we deal with the characterization of translative means in the class of
Makó-Páles means. Here we do not assume further regularity on the generating
functions.
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Theorem 4.1. Let ϕ : I → R be a continuous strictly monotonic function
and μ be a probability Borel measure on [0, 1]. The mean Aϕ,μ is conditionally
translative, i.e.

Aϕ,μ(x+ λ, y + λ) = Aϕ,μ(x, y) + λ

for all x, y ∈ I and λ ∈ R with x + λ, y + λ ∈ I if and only if μ is a Dirac
measure or there are a ∈ R \ {0} and b ∈ R such that either

ϕ(x) = aepx + b, x ∈ I,

with some p ∈ R \ {0}, or

ϕ(x) = ax+ b, x ∈ I.(4.1)

Proof. Assume that the mean Aϕ,μ is conditionally translative. Then, for
every λ ∈ R, the formula

ψλ(x) = ϕ (x+ λ)

defines a function ψλ : I − λ → R. Now, taking into consideration the condi-
tional translativity of Aϕ,μ and setting β = sup I − inf I, we see that

ψ−1
λ

⎛⎝ 1∫
0

ψλ (tx+ (1 − t)y) dμ(t)

⎞⎠ = ϕ−1

⎛⎝ 1∫
0

ϕ (tx+ (1 − t)y) dμ(t)

⎞⎠
for all λ ∈ (−β, β) and x, y ∈ I ∩ (I − λ). Making use of Theorem 2.1 we
conclude that either μ is a Dirac measure concentrated at a point of [0, 1], or
there are functions c : (−β, β) → R \ {0} and d : (−β, β) → R such that

ψλ(x) = c(λ)ϕ(x) + d(λ),

or ϕ satisfies the equation

ϕ(x+ λ) = c(λ)ϕ(x) + d(λ)

for all λ ∈ (−β, β) and x ∈ I ∩ (I − λ). Assume the second possibility. Then,
putting I0 = exp(I), ϕ0 = ϕ ◦ log |I0 , c0 = c ◦ log |I0 , d0 = d ◦ log |I0 and
α = e−β , we see that for all λ ∈

(
α, α−1

)
and x ∈ I0 ∩ 1

λI0 we have

ϕ0(λx) = ϕ (log x+ log λ) = c (log λ)ϕ (log x) + d (log λ) =

= c0 (λ)ϕ0 (x) + d0 (λ) .

Now, by Proposition 3.2, there are a ∈ R \ {0} and b ∈ R such that either

ϕ0(x) = axp + b, x ∈ I0,
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with some p ∈ R \ {0}, or

ϕ0(x) = a log x+ b, x ∈ I0,

and we come to the if assertion. The converse is obvious. �

Corollary 4.2. The only conditionally translative Makó-Páles means on I are
these of the forms

1

p
log

⎛⎝ 1∫
0

ep(tx+(1−t)y)dμ(t)

⎞⎠
with a p ∈ R \ {0}, and

τx+ (1 − τ)y

with a τ ∈ [0, 1].

Proof. In view of Theorem 4.1, it is enough to observe only that if ϕ is of form
(4.1), then

Aϕ,μ(x, y) =

1∫
0

(tx+ (1 − t)y)dμ(t) = x

1∫
0

tdμ(t) + y

⎛⎝1 −
1∫

0

tdμ(t)

⎞⎠
= τx − (1 − τ)y

for all x, y ∈ I, where τ is the first moment of the measure μ. �

5. Applications

With the help of the previous results, we can determine the conditionally
homogeneous and translative weighted quasi-arithmetic means and Lagrangian
means, respectively. These results are not new, see [5] regarding the case of
weighted quasi-arithmetic means and [10] regarding the case of Lagrangian
means. However, using our earlier theorems we can give new and probably
shorter proofs of these claims.

Let I ⊂ R be an interval, ϕ : I → R be a continuous, strictly monotonic
function and τ ∈ [0, 1] be a given real number.

A mean Aϕ,τ : I× I → I is called a weighted quasi-arithmetic mean if it has
the form

Aϕ,τ (x, y) = ϕ−1(τϕ(x) + (1 − τ)ϕ(y)).
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If μ = (1 − τ)δ0 + τδ1, then Aϕ,μ = Aϕ,τ . This actually enlightens the role of
the measure μ while considering the Makó-Páles means.

A mean Lϕ : I × I → I is called a Lagrangian mean if it can be written in
the form

Lϕ(x, y) =

⎧⎨⎩ ϕ−1

(
1

y−x

y∫
x

ϕ(t)dt

)
, if x �= y,

x, if x = y.

If μ is the Lebesgue measure λ on [0, 1], then clearly Aϕ,λ = Lϕ.

Corollary 5.1. Assume that I ⊂ (0,∞). The only conditionally homogeneous
weighted quasi-arithmetic means on I are the weighted power means of the form

(τxp + (1 − τ)yp)
1
p

with a p ∈ R \ {0} and a τ ∈ [0, 1], and the weighted geometric means of the
form

xτy1−τ

with a τ ∈ [0, 1].

Proof. Any weighted quasi-arithmetic mean is a Makó-Páles mean with μ
which is a convex combination of the Dirac measures δ0 and δ1. Using this,
after a short calculation we get our statement from Corollary 3.3. �

Corollary 5.2. The only conditionally translative weighted quasi-arithmetic
means on I are these of the forms

1

p
log (τepx + (1 − τ)epy)

with a p ∈ R \ {0} and τ ∈ [0, 1], and the weighted arithmetic means of the
form

τx+ (1 − τ)y

with a τ ∈ [0, 1].

Proof. As above we identify μ with a convex combination of the Dirac measures
concentrated to 0 and 1. Using Corollary 4.2 we get our result. �

Remark 5.3. The class of means occurring in Corollary 5.2 plays an important
role in the invariance theory of quasi-arithmetic and weighted quasi-arithmetic
means. For the details see e.g. [8] and [12].
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Corollary 5.4. Assume that I ⊂ (0,∞). The only conditionally homogeneous
Lagrangian means on I are these of the forms⎛⎝ 1

y − x

y∫
x

spds

⎞⎠
1
p

with a p ∈ R \ {0} and

exp

⎛⎝ 1

y − x

y∫
x

log sds

⎞⎠
whenever x �= y.

Proof. Using the fact that the Lagrange mean generated by ϕ can be derived
from a Makó-Páles mean Aϕ,μ choosing μ as the Lebesgue measure, we get our
statement immediately from Corollary 3.3. �

Corollary 5.5. The only conditionally translative Lagrangian means on I are
the arithmetic mean and this of the form

1

p
log

(
1

y − x

(
ep(y+1)

y + 1
− ep(x+1)

x+ 1

))
with a p ∈ R \ {0} whenever x �= y.

Proof. As in the previous proof we get the statement from Corollary 4.2 after
taking μ as the Lebesgue measure. �
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