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Abstract. A Rolewicz type theorem concerning the superstability of ap-
proximate convexity is established. Namely, it is proved that any real
valued function f , defined on an open, convex subset D of a linear normed
space, which satisfies the inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) + c (λ(1− λ)‖x− y‖)p

for every x, y ∈ D and λ ∈ [0, 1], with a fixed non-negative real number
c, and a fixed exponent p > 1, has to be convex, i.e., satisfies the above
inequality with c = 0 as well.

1. Introduction

Investigations of approximate convexity, in various cases, usually involves
the study of functions f satisfying an inequality of the form

(1.1) f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y) + CΦ (t , 1 − t)ψ (‖x − y‖) ,
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where f : D → R is defined on a convex, open subset D of a normed space
X , ‖u‖ denotes the norm of u ∈ X , C is a (usually non-negative) fixed real
number, Φ : [0, 1] × [0, 1] → R and ψ : [0,+∞[→ R are given functions, while
inequality (1.1) is supposed to hold for all t ∈ [0, 1] and x , y ∈ D . In several
papers, investigations are restricted to the case X = R , when f is defined on
an open interval and ‖u‖ has to be replaced by the absolute value |u| of the
real number u.

In case C = 0 , the inequality (1.1) describes the concept of convex functions.
If C ≥ 0 and Φ (t , 1 − t) = ψ (‖x − y‖) = 1 for all t ∈ [0, 1], x, y ∈ D , a
function f : D → R satisfying (1.1) is called C-convex. The first investigations
of C-convex functions are due by Hyers and Ulam [6]. According to their
result, if the underlying space X is of finite dimension n and the function f is
C-convex, then there exists a convex function g : D → R such that

|f(x) − g(x)| ≤ knC

for all x ∈ D . Concerning the constant kn , they established the inequality

kn ≤ n(n+ 3)

4(n+ 1)
.

C-convex functions were studied by Green [3] as well. He obtained better esti-
mations. On the other hand, Laczkovich [7] proved that kn ≥ 1

4 log2(n/2) . This
estimation shows that the statement cannot be extended to infinite dimensional
spaces. A counterexample in this direction was earlier constructed by Casini
and Papini [2].

Luc, Ngai and Théra [8] investigated the solutions f of the inequality (1.1)
when Φ(t, s) = ts and ψ(h) = h , X is a Banach space. They assumed, in
addition, that f is lower semicontinuous.

In a series of papers, Rolewicz introduced and investigated the concepts
of ψ-paraconvex and strongly ψ-paraconvex functions, corresponding to the
choices Φ(t, s) = 1 and Φ(t, s) = min{t, s}, respectively, in the inequality (1.1).
He obtained various results according to the assumptions on X and the local
behaviour of the function ψ around the origin. When X = R , ψ(h) = hp

with some fixed p > 2 , C ≥ 0 and Φ(t, s) = 1 , he proved [13] that every
solution f : D → R of (1.1) is convex. Later he extended this result [14] to the
more general case when X is a Banach space and ψ : [0,+∞[→ R fulfils the
assumption limh→0 ψ(h)/h

2 = 0 . His further results show that the assumption
on ψ is essential. For instance, one can easily verify that the real function
f(x) = −Cx2 (x ∈ R) is strongly ψ-paraconvex with ψ(h) = h2 but f is not
convex when C > 0 . Via similar calculations one can prove the following
statement: if X = R , Φ(t, s) = ts , ψ(h) = h2 , and f satisfies (1.1) for all
t ∈ [0, 1], x, y ∈ D , then the function g(x) = f(x)+Cx2 (x ∈ D) is convex. The
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statement is valid for negative C as well, when f is called strongly convex (cf. [5,
Prop. 1.1.2], [10]). We note that the choices Φ(t, s) = min{t, s} and Φ(t, s) = ts
in (1.1) are essentially equivalent as 1

2 min{ t , 1− t } ≤ t(1− t) ≤ min{ t , 1− t }
for every t ∈ [0, 1] .

Motivated by results on C-convex functions and investigations in the spirit
of Luc, Ngai and Théra, Páles [12] proved the following theorem: Let I denote
an open interval in R and ε , δ be nonnegative real numbers. A function
f : I → R satisfies the inequality

f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y) + εt(1 − t)|x − y| + δ

for all x, y ∈ I and t ∈ [0, 1] if, and only if, f can be represented in the form
f = g + α + β , where g : I → R is convex, α : I → R is a Lipschitz function
and β : I → R is a bounded function.

The notion of midconvex (or Jensen convex) functions concerns functions
f : D → R that satisfy (1.1) for all x, y ∈ D with t = 1/2 and C = 0 . According
to the celebrated Bernstein–Doetsch theorem [1], if f is midconvex and locally
bounded above, then f is convex. Analogously, if f satisfies (1.1) with t = 1/2 ,
C ≥ 0 and Φ (1/2 , 1/2) = ψ (‖x − y‖) = 1 for all x, y ∈ D and f is locally
bounded above, then f is 2C-convex [11]. Házy and Páles [4], considering an
exponent p ∈ [0, 1] , investigated the relations among the solutions of inequality
(1.1) with Φ(t, s) = (ts)p , ψ(h) = hp , and those of the special case t = 1/2 ,
obtaining similar results. Their results were generalized to more general choices
of Φ and ψ by Makó and Páles [9]. A comparison of these results with those
of Rolewicz is elaborated by Jacek Tabor and Józef Tabor [15].

2. Results

We consider approximate convexity of the form (1.1) in case Φ(t, s) = (ts)p ,
ψ(h) = hp , under the assumption that p > 1 . We begin the investigation and
reformulation of the problem in case of real variables.

2.1. Approximate convexity on intervals

Proposition 2.1. Let I ⊂ R be an open interval, c ≥ 0 , p > 1 . A function
f : I → R fulfils the inequality

(2.1) f(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) + c (λ(1 − λ) |x − y|)p
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for every x, y ∈ I and λ ∈ [0, 1] if, and only if, f satisfies the inequality

(2.2) f(y) ≤ z − y

z − x
f(x) +

y − x

z − x
f(z) + c

(
(z − y)(y − x)

z − x

)p

for every x, y, z ∈ I fulfilling x < y < z .

Proof. Let us assume that (2.1) holds for all x, y ∈ I and λ ∈ [0, 1] . Let
us consider x, y, z ∈ I such that x < y < z . Let λ = z−y

z−x . Then 0 < λ < 1 ,

1− λ = y−x
z−x , and y = λx+ (1− λ)z . Thus, applying the inequality (2.1) with

z in place of y , we obtain (2.2).

Conversely, suppose that f satisfies (2.2) for all x, y, z ∈ I fulfilling x <
< y < z , and let 0 < λ < 1 , x , z ∈ I such that x < z . Introducing
y = λx+(1−λ)z , we obtain x < y < z and all the above listed expressions for
λ and 1− λ . Therefore (2.2) yields (2.1) with z in place of y . In other words,
(2.1) is verified if x < y and 0 < λ < 1 . Since λ can be replaced with 1 − λ
(as both are between 0 and 1), the inequality (2.1) is symmetric with respect
to x and y . So we obtained (2.1) from (2.2) for x �= y and 0 < λ < 1 . In the
remaining cases (i.e., when x = y or λ ∈ {0 , 1}) (2.1) obviously holds with
equality.

The proof of the following lemma consists of straightforward calculations,
so it is left to the reader.

Lemma 2.2. Let us suppose that x , y , z ∈ I satisfy x < y < z . Then (2.2)
is equivalent to each of the following three inequalities:

(2.3)
f(y) − f(x)

y − x
≤ f(z) − f(x)

z − x
+ c

(
z − y

z − x

)p

(y − x)p−1,

(2.4)
f(z) − f(x)

z − x
− c

(
y − x

z − x

)p

(z − y)p−1 ≤ f(z) − f(y)

z − y
,

and

(2.5)
f(y) − f(x)

y − x
≤ f(z) − f(y)

z − y
+ c

(
(z − y)(y − x)

z − x

)p−1

.

Theorem 2.3. Let I ⊂ R be an open interval, c ≥ 0 , p > 1 and f : I → R
such that, for every x, y ∈ I and λ ∈ [0, 1], f satisfies (2.1). Then, for every
a ∈ I , there exist the limits

f ′−(a) := lim
s→a−

f(s) − f(a)

s − a
= sup

{
f(s) − f(a)

s − a
: a > s ∈ I

}
∈ R and

f ′+(a) := lim
t→a+

f(t) − f(a)

t − a
= inf

{
f(t) − f(a)

t − a
: a < t ∈ I

}
∈ R .

Moreover, f ′−(a) ≤ f ′+(a) .
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Proof. First we show that f ′+(a) exists, it is real and it coincides with the
greatest lower bound of the given set of difference ratios. Let s, t ∈ I such that
s < a < t. Then from (2.5) we get

f(t) − f(a)

t − a
≥ f(a) − f(s)

a − s
− c

(
(t − a)(a − s)

t − s

)p−1

≥ f(a) − f(s)

a − s
− c (a − s)

p−1
.

Thus the set

S+
a =

{
f(t) − f(a)

t − a

∣∣∣∣ t ∈ I, a < t

}
is bounded below, therefore

ϕ(a) := inf S+
a ∈ R.

Let ε1 > 0. Since lim
d→0+

cdp−1 = 0, it follows that there exists δ0 > 0 such

that c·δp−1
0 < ε1

2 . Moreover, there exists u ∈ I such that u > a and f(u)−f(a)
u−a <

< ϕ(a) + ε1
2 . Let δ = min {δ0, u − a}. Obviously, δ > 0 . If a < t < a+ δ, then

a+ δ ≤ a+ (u − a) = u and from (2.3) we get

ϕ(a) ≤ f(t) − f(a)

t − a
≤ f(u) − f(a)

u − a
+ c

(
u − t

u − a

)p

(t − a)
p−1

< ϕ(a) +
ε1
2

+ cδp−1
0 < ϕ(a) + ε1 .

Hence, we have ϕ(a) = lim
t→a+

f(t)−f(a)
t−a = f ′+(a) .

We can apply an analogous argument, based on the inequalities (2.5) and
(2.4), to show that f ′−(a) exists, it is real and it coincides with the least upper
bound of the given set of difference ratios.

In order to verify the inequality f ′−(a) ≤ f ′+(a) , let us consider x, z ∈ I
such that x < a < z . Writing a in the place of y in (2.5) we get

f(a) − f(x)

a − x
≤ f(z) − f(a)

z − a
+ c

[
(z − a)(a − x)

z − x

]p−1

≤

≤ f(z) − f(a)

z − a
+ c

[
(z − a)(z − x)

z − x

]p−1

=
f(z) − f(a)

z − a
+ c(z − a)p−1.

Hence we have

f ′−(a) = lim
x→a−

f(x) − f(a)

x − a
= lim

x→a−
f(a) − f(x)

a − x
≤ f(z) − f(a)

z − a
+ c(z − a)p−1,
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and thus

f ′−(a) ≤ lim
z→a+

(
f(z) − f(a)

z − a
+ c(z − a)p−1

)
= f ′+(a). �

Theorem 2.4. Let I ⊂ R be an open interval, c ≥ 0 , p > 1 and f : I → R
such that f satisfies (2.1) for every x, y ∈ I and λ ∈ [0, 1]. Then f satisfies
(2.1) with c = 0 as well, so f is convex.

Proof. Suppose that x, y, z ∈ I satisfy x < y < z . According to Theorem
2.3, we have the inequalities

f(y) − f(x)

y − x
≤ f ′−(y) ≤ f ′+(y) ≤ f(z) − f(y)

z − y
.

Therefore inequality (2.5) is satisfied with c = 0 as well. Thus inequalities (2.2)
and (2.1) are also valid with c = 0 . Hence, f is convex by definition. �

Remark 2.1. Let us consider the example f(x) = − c
4x

2 (x ∈ R), which
was mentioned in the introduction as well. Clearly, f is continuous, bounded
above, and it fulfils (2.1) with p = 2 for λ = 1/2 and for all x , y ∈ R . However,
it is not convex (when c > 0), hence, due to Theorem 2.4, it cannot satisfy (2.1)
with p = 2 (and any constant in place of c) for all λ ∈ [0, 1]. Therefore the
Bernstein–Doetsch theorem cannot be extended to this type of approximately
convex functions.

2.2. Approximate convexity in normed spaces

Theorem 2.5. Let (X , ‖ · ‖) denote a linear normed space, D ⊂ X be open
and convex, c ≥ 0 , p > 1 and let us suppose that f : D → R satisfies

f(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) + c (λ(1 − λ)‖x − y‖)p

for every x, y ∈ D and λ ∈ [0, 1]. Then f is convex.

Proof. Fix x, y ∈ X and let u = x+y
2 , w = y−x

2 . Note that u − w = x ∈ D
and u + w = y ∈ D , hence there exists an open interval I such that ±1 ∈ I
and u+ sw ∈ D for all s ∈ I . Let

g(s) = f(u+ sw) (s ∈ I).
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Then, for every s, t ∈ I and λ ∈ [0, 1], we have

g (λs+ (1 − λ)t) = f (λ(u+ sw) + (1 − λ)(u+ tw)) ≤
≤ λf(u+ sw) + (1 − λ)f(u+ tw) +

+ c (λ(1 − λ)‖(u+ sw) − (u+ tw)‖)p =

= λg(s) + (1 − λ)g(t) + c‖w‖p (λ(1 − λ)|s − t|)p .

Thus g satisfies the assumptions of Theorem 2.4 (with the constant c‖w‖p in
place of c), hence it is convex. In particular, we have, for every λ ∈ [0, 1],

f(λx+ (1 − λ)y) = g(λ(−1) + (1 − λ) · 1)
≤ λg(−1) + (1 − λ)g(1) = λf(x) + (1 − λ)f(y) .

As x and y were arbitrarily fixed, this completes the proof. �
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