ON TRANSLATIONS IN HYPERBOLIC GEOMETRY OF ARBITRARY (FINITE OR INFINITE) DIMENSION > 1

Walter Benz (Hamburg, Germany)

Dedicated to Professors Zoltán Daróczy and Imre Kátai on their 75th birthday, in friendship

Communicated by Antal Járai

(Received March 01, 2013; accepted June 10, 2013)

Abstract. Hyperbolic geometry of the plane was discovered by J. Bolyai (1802–1860), C.F. Gauß (1777–1855), and N. Lobachevski (1793–1856). – In our book [3] we associate to every real vector space X of finite or infinite dimension > 1, and equipped with a fixed inner product $\delta : X \times X \to \mathbb{R}$, a hyperbolic geometry such that $(X, \delta), (X', \delta')$ are isomorphic if, and only if, the associated hyperbolic geometries are isomorphic. – In this paper we present a common treatment of translations in euclidean and hyperbolic geometry of arbitrary (finite or infinite) dimension greater than one.

1. Introduction

Let $X = (X, \delta)$ be a real inner product space of arbitrary (finite or infinite) dimension greater than one. Here $\delta : X \times X \to \mathbb{R}$ designates a fixed *real inner product* of X. The main result of chapter 1 of our book [3], namely Theorem 7, p. 21, is a common characterization of euclidean and hyperbolic geometry over X: let T be a separable translation group of X with axis $e \in X$ (see sections 7, 8

Key words and phrases: Hyperbolic geometry of arbitrary dimensional real inner product spaces, hyperbolic translations.

2010 Mathematics Subject Classification: 39 B 22, 39 72, 51 M 10. https://doi.org/10.71352/ac.40.135 of chapter 1 of [3]) and let d be a function, not identically zero, from $X \times X$ into the set $\mathbb{R}_{\geq 0}$ of all non-negative real numbers, satisfying $d(x, y) = d(\varphi(x), \varphi(y))$ and, moreover, $d(\beta e, 0) = d(0, \beta e) = d(0, \alpha e) + d(\alpha e, \beta e)$ for all $x, y \in X$, all $\varphi \in T \cup O(X)$ where O(X) is the group of orthogonal bijections of X, and for all real α, β with $0 \leq \alpha \leq \beta$. Then, up to isomorphism, there exist exactly two geometries with distance function d in question, namely the euclidean or the hyperbolic geometry over X. The methods of the proof of Theorem 7 in question are based on the solution of special real functional equations (see J. Aczél [1], J. Aczél and J. Dhombres [2], Z. Daróczy [8], [9], M. Kuczma [10], and others).

2. The metric spaces (X, eucl) and (X, hyp)

Let X be a real inner product space of (finite or infinite) dimension greater than one. The metric space (X, eucl) consists of X as the set of *points* and of the *distance function*

(1)
$$\operatorname{eucl}(x,y) := ||x-y|| := \sqrt{(x-y)^2}$$

for $x, y \in X$. The metric space (X, hyp) is defined by the set X of *points* and by means of hyp $(x, y) \ge 0$ for $x, y \in X$ and

(2)
$$\cosh hyp(x, y) := \sqrt{1 + x^2} \sqrt{1 + y^2} - xy.$$

A set $S\neq \emptyset$ together with a mapping $d:S\times S\to \mathbb{R}$ is called a $metric\ space\ (S,d)$ provided

- (i) d(x, y) = 0 if, and only if, x = y,
- (ii) d(x,y) = d(y,x),
- (iii) $d(x,y) \le d(x,z) + d(z,y)$

hold true for all $x, y, z \in S$.

Observe $d(x, y) \ge 0$ for all $x, y \in S$, since (i), (ii), (iii) imply

$$0 = d(x, x) \le d(x, y) + d(y, x) = 2d(x, y).$$

Suppose that (S, d) is a metric space and that $c \in S$ and $\rho \ge 0$ is in \mathbb{R} . Then

(3)
$$B(c,\varrho) := \{x \in S \mid d(c,x) = \varrho\}$$

is the *ball* with *center* c and *radius* ρ . Observe $B(c, 0) = \{c\}$. If a, b are distinct elements of S, then

(4)
$$g(a,b) := \{x \in S \mid B(a,d(a,x)) \cap B(b,d(b,x)) = \{x\}\}$$

will be called a g-line (see [3]) of (S, d), and

(5)
$$\{x \in S \mid d(a, x) = d(b, x)\}$$

a hyperplane. Observe g(a, b) = g(b, a) for $a \neq b$.

The lines of (X, eucl), (X, hyp) are given by the sets

(6)
$$\{p + \xi q \mid \xi \in \mathbb{R}\}$$
 with $p, q \in X$ such that $q \neq 0$,

(7)
$$\{pC_{\xi} + qS_{\xi} \mid \xi \in \mathbb{R}\}$$
 with $p, q \in X, pq = 0, q^2 = 1$,

respectively, where we wrote $\cosh \xi =: C_{\xi}$ and $\sinh \xi =: S_{\xi}$. The hyperplanes of (X, eucl), (X, hyp) are given by the sets

(8)
$$\{x \in X \mid ax = \alpha\} \text{ with } a \in X \setminus \{0\}, \alpha \in \mathbb{R},$$

(9)
$$\{\gamma pC_{\xi} + yS_{\xi} \mid \xi \in \mathbb{R}, y \in p^{\perp}, y^2 = 1\}$$
 with $p \in X, p^2 = 1, \gamma \in \mathbb{R}_{\geq 0},$

respectively (see [3]).

Let now (X, d) be one of the metric spaces (X, eucl) or (X, hyp) where $X = (X, \delta)$ is an arbitrary (finite or infinite) dimensional real vector space, dim X > 1, with a fixed real inner product δ . Observe that there exist infinite dimensional real vector spaces X with real inner products δ, δ' such that $(X, \delta) \ncong (X, \delta')$.

A bijection f of X is called a *motion* of (X, d) (see [3], p. 76) provided, i.e. if, and only if,

$$d(x,y) = d(f(x), f(y))$$

holds true for all $x, y \in X$.

The following statement is important.

Proposition 1. Motions of (X, d) map g-lines onto g-lines.

Proof. a) If f is a motion of (X, d), then f^{-1} as well, since

$$d(f^{-1}(x), f^{-1}(y)) = d(f(f^{-1}(x)), f(f^{-1}(y)))$$

for all $f^{-1}(x), f^{-1}(y) \in X$, i.e. for all $x, y \in X$.

b) From (3) we get for a motion f of (X, d),

$$f(B(c,\varrho)) = \{f(x) \in X \mid d(c,x) = \varrho\} = \{f(x) \in X \mid d(f(c), f(x)) = \varrho\},\$$

i.e.

$$f(B(c,\varrho)) = \{y \in X \mid d(f(c), y) = \varrho\} = B(f(c), \varrho).$$

c) f(g(a,b)) (see (4)) consists of all $f(x) \in X$ satisfying

$$B(a, d(a, x)) \cap B(b, d(b, x)) = \{x\}.$$

This last equation is equivalent with

$$B\Big(f(a), d\big(f(a), f(x)\big)\Big) \cap B\Big(f(b), d\big(f(b), f(x)\big)\Big) = \{f(x)\}.$$

Put f(a) =: p, f(b) =: q. Hence

$$f(g(a,b)) = \{y \in X \mid B(p,d(p,y)) \cap B(q,d(q,y)) = \{y\}\} = g(p,q).$$

Remark. If we define the g-lines of (X, d) equivalently as lines of L.M. Blumenthal (see [3], section 2.2), Proposition 1 can be derived as shown on p. 42, [3], along the rows before Proposition 5.

3. Translations of $(X, d), d \in \{\text{eucl, hyp}\}$

Let $e \in X$ be given with $e^2 = 1$. Put $H := e^{\perp}$, i.e. $H = \{x \in X \mid xe = 0\}$, and $\varrho : H \times \mathbb{R} \to \mathbb{R}$ by means of

(10)
$$\varrho(h,\lambda) = \sinh \lambda \cdot \sqrt{1 + h^2} \text{ for } d = \text{hyp},$$

(11)
$$\varrho(h,\lambda) = \lambda \text{ for } d = \text{eucl},$$

and all $(h, \lambda) \in H \times \mathbb{R}$, according to section 1.7, [3]. For $t \in \mathbb{R}$ we define the translation $T_t^e : X \to X$ of (X, d) with axis e,

(12)
$$T_t^e(h+\varrho(h,\tau)e) = h+\varrho(h,\tau+t)e,$$

by observing that to $x \in X$ there exist uniquely determined $\overline{x} \in H$ and $x_0 \in \mathbb{R}$ with $x = \overline{x} + x_0 e$, namely $xe = (\overline{x} + x_0 e)e = x_0$ and $\overline{x} = x - x_0 e$, and by defining $h \in H$ and $\tau \in \mathbb{R}$ for $x \in X$ by means of $x =: h + \rho(h, \tau)e$, i.e. by $h = \overline{x}$ and $\rho(h, \tau) = x_0$. In other words: with

$$x = \overline{x} + x_0 e = \overline{x} + \varrho(\overline{x}, \tau)e = \overline{x} + \sinh \tau \cdot \sqrt{1 + \overline{x}^2}e$$

the translation (12) reads as

(13)
$$T_t^e(\overline{x} + \sinh \tau \cdot \sqrt{1 + \overline{x}^2}e) = \overline{x} + \sinh(\tau + t)\sqrt{1 + \overline{x}^2}e$$

for d = hyp and with

$$x = \overline{x} + x_0 e = \overline{x} + \varrho(\overline{x}, \tau)e = \overline{x} + \tau e$$

as

$$T_t^e(\overline{x} + \tau e) = \overline{x} + (\tau + t)e$$
, i.e.

(14)
$$T_t^e(x) = x + te_s$$

for d = eucl.

Remark. $H = e^{\perp}$ is the euclidean hyperplane (8),

 $\{x \in X \mid ex = 0\},\$

in case d = eucl, and the hyperbolic hyperplane (9),

$$\{0 \cdot e \cdot C_{\xi} + yS_{\xi} \mid \xi \in \mathbb{R}, y \in e^{\perp}, y^2 = 1\},\$$

for d = hyp.

Remark. Observe that the functions $\rho : H \times \mathbb{R} \to \mathbb{R}$ in (10), (11) are characterized by Theorem 7 ([3], p. 21) as kernels of suitable translation groups $\{T_t^e \mid t \in \mathbb{R}\}$ leading to hyperbolic, euclidean geometry, respectively.

According to our definition of the translation $T_t^e: X \to X$ we defined here the set of all translations of (X, d) by

$$TL(X,d) = \left\{ T_t^e \mid t \in \mathbb{R} \text{ and } e \in X \text{ with } e^2 = 1 \right\}$$

with

$$T_t^e(x = h + \varrho(h, \tau)e) = h + \varrho(h, \tau + t)e$$

for all $x \in X$, i.e. for all $h \in H = e^{\perp}$ and all $\tau \in \mathbb{R}$. We also have

$$T_t^e(x) = x + [(xe)(\cosh t - 1) + \sqrt{1 + x^2} \sinh t]e$$

(see (1.8) of section 1.7, [3]) in the case d = hyp.

Remark. In [7] we define as hyperbolic translation of X besides $\mu = \text{id every}$ hyperbolic motion $\mu \neq \text{id of } X$ with the existence of an element $a \neq 0$ in X such that $0 \neq \mu(x) - x \in \mathbb{R}^{a}$ holds true for all $x \in X$: this, especially, means that there is no $x \in X$ with $\mu(x) = x$. For the case dim X = 2 compare the book [4] (here p. 163, or even section 3.4) concerning hyperbolic translations and hyperbolische Schubspiegelungen. In comparison with the planar case, observe, that to every $T_{t}^{j}, t \in \mathbb{R}, j \in X$ with $j^{2} = 1$, there exists a hyperbolic line g remaining fixed, in its entirety, under T_{t}^{j} . In fact, take the hyperbolic line

$$g = \{p \cdot \cosh \xi + q \sinh \xi \mid \xi \in \mathbb{R}\}, p = 0 \text{ and } q = j.$$

Now

$$T_t^j(j\sinh\xi) = T_t^j(0 + \sinh\xi \cdot \sqrt{1 + 0^2}j) = 0 + \sinh(\xi + t)j$$

implies $T_t^j(g) = g$.

Theorem 2. Take a fixed element $e \in X$ with $e^2 = 1$. Then

(15)
$$TL(X,d) = \{ \alpha T_t^e \alpha^{-1} \mid \alpha \in O(X) \text{ and } t \in \mathbb{R} \}.$$

Proof. Given $t \in \mathbb{R}$ and $j \in X$ with $j^2 = 1$. According to step A of the proof of Theorem 7 ([3], section 1.11) there exists $\gamma \in O(X)$ with $\gamma(j) = e$. Put $\gamma^{-1} =: \alpha$. For all $x = h + \varrho(h, \tau)e$ with $h := \overline{x}$ we would like to prove

(16)
$$L := \alpha T_t^e(x) = T_t^j \alpha(x) =: R.$$

Obviously, $\alpha(h) \cdot j = \alpha(h)\alpha(e) = he = 0$, and

$$L = \alpha (h + \varrho(h, \tau + t)e) = \alpha(h) + \varrho(h, \tau + t)j.$$

Moreover, $\alpha(h) \in j^{\perp}$,

$$R = T_t^j \alpha(x) = T_t^j \big(\alpha(h) + \varrho(h, \tau)j \big),$$

$$\varrho(h,\tau) = \sqrt{1+h\cdot h} \sinh \tau = \sqrt{1+\alpha(h)\cdot \alpha(h)} \sinh \tau = \varrho(\alpha(h),\tau),$$

and $\varrho(h, \tau + t) = \varrho(\alpha(h), \tau + t)$ as well. Hence

$$L = \alpha(h) + \varrho(\alpha(h), \tau + t)j = T_t^j \Big(\alpha(h) + \varrho(\alpha(h), \tau)j\Big),$$

and $R = T_t^j \left(\alpha(h) + \rho(\alpha(h), \tau) j \right) = L$, i.e. we obtain

$$\alpha T_t^e \alpha^{-1} = T_t^j$$

and (16) for d = hyp. In the case d = eucl, of course, the proof of $\varrho(h, \tau) = \varrho(\alpha(h), \tau)$ is trivial. – The remaining question is whether every $\alpha T_t^e \alpha^{-1}$

must be a translation of (X, d) in the case $t \in \mathbb{R}$ and $\alpha \in O(X)$? Now given $\alpha T_t^e \alpha^{-1}$, put $\alpha(e) =: j$ and consider T_t^j . Observe

$$\alpha T_t^e \left(x = h + \varrho(h, \tau) e \right) = \alpha \left(h + \varrho(h, \tau + t) e \right) = \alpha(h) + \varrho(h, \tau + t) j,$$
$$T_t^j \alpha \left(x = h + \varrho(h, \tau) e \right) = T_t^j \left(\alpha(h) + \varrho(h, \tau) j \right)$$

together with $\rho(h,\tau) = \sinh \tau \cdot \sqrt{1+h^2} = \sinh \tau \sqrt{1+[\alpha(h)]^2}$, i.e. $\rho(h,\tau) = \rho(\alpha(h),\tau)$ for d = hyp. Hence

$$T_t^j \alpha(x) = T_t^j \Big(\alpha(h) + \varrho \big(\alpha(h), \tau \big) j \Big) = \alpha(h) + \varrho \big(\alpha(h), \tau + t \big) j,$$

i.e. $\alpha T_t^e(x) = \alpha(h) + \varrho(h, \tau + t)j = T_t^j \alpha(x)$. Thus

$$\alpha T_t^e(x) = T_t^j \alpha(x)$$

for all $x \in X$, i.e. $\alpha T_t^e \alpha^{-1}$ is the translation T_t^j .

References

- Aczél, J., Lectures on Functional Equations and their Applications, Academic Press, New York, London, 1966.
- [2] Aczél, J. and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press. Cambridge, New York, 1989.
- [3] Benz, W., Classical Geometries in Modern Contexts. Geometry of Real Inner Product Spaces, Birkhäuser Publ. Comp., Basel, Boston, Berlin. First edition, 2005, second (enlarged) edition, 2007, third (enlarged) edition, 2012.
- [4] Benz, W., Ebene Geometrie, Einführung in Theorie und Anwendungen, Spektrum Akademischer Verlag, Heidelberg, Berlin, Oxford, 1997.
- [5] Benz, W., A common characterization of Euclidean and hyperbolic geometry by functional equations, *Publ. Math. Debrecen*, **63** (2003), 495–510.
- [6] Benz, W., Translation equation and some new geometries, *Publ. Math. Debrecen*, 52 (1998), 299–308.
- [7] Benz, W., A representation of hyperbolic motions including the infinitedimensional case, *Results Math.*, 59 (2011), 209–212.
- [8] Daróczy, Z., Über die stetigen Lösungen der Aczél-Benz'schen Funktionalgleichung, Abh. Math. Sem. Univ. Hamburg, 50 (1980), 210–218.

- [9] Daróczy, Z., Elementare Lösung einer mehrere unbekannte Funktionen enthaltenden Funktionalgleichung, Publ. Math. Debrecen, 8 (1961), 160– 168.
- [10] Kuczma, M., An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, Uniw. Slask– P.W.N., Warszawa, 1985.

W. Benz

Department of Mathematics University of Hamburg Bundesstr. 55 20146 Hamburg Germany wbenz@mac.com