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Abstract. Hyperbolic geometry of the plane was discovered by J. Bolyai
(1802–1860), C.F. Gauß (1777–1855), and N. Lobachevski (1793–1856). –
In our book [3] we associate to every real vector space X of finite or infiinite
dimension > 1, and equipped with a fixed inner product δ : X ×X → R, a
hyperbolic geometry such that (X, δ), (X ′, δ′) are isomorphic if, and only
if, the associated hyperbolic geometries are isomorphic. – In this paper we
present a common treatment of translations in euclidean and hyperbolic
geometry of arbitrary (finite or infinite) dimension greater than one.

1. Introduction

Let X = (X, δ) be a real inner product space of arbitrary (finite or infinite)
dimension greater than one. Here δ : X ×X → R designates a fixed real inner
product of X. The main result of chapter 1 of our book [3], namely Theorem 7,
p. 21, is a common characterization of euclidean and hyperbolic geometry over
X: let T be a separable translation group ofX with axis e ∈ X (see sections 7, 8
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of chapter 1 of [3]) and let d be a function, not identically zero, from X×X into
the set R≥0 of all non–negative real numbers, satisfying d(x, y) = d

(
ϕ(x), ϕ(y)

)
and, moreover, d(βe, 0) = d(0, βe) = d(0, αe) + d(αe, βe) for all x, y ∈ X, all
ϕ ∈ T ∪O(X) where O(X) is the group of orthogonal bijections of X, and for
all real α, β with 0 ≤ α ≤ β. Then, up to isomorphism, there exist exactly
two geometries with distance function d in question, namely the euclidean or
the hyperbolic geometry over X. The methods of the proof of Theorem 7 in
question are based on the solution of special real functional equations (see J.
Aczél [1], J. Aczél and J. Dhombres [2], Z. Daróczy [8], [9], M. Kuczma [10],
and others).

2. The metric spaces (X, eucl) and (X, hyp)

Let X be a real inner product space of (finite or infinite) dimension greater
than one. The metric space (X, eucl) consists of X as the set of points and of
the distance function

eucl (x, y) := ‖x − y‖ :=
√
(x − y)2(1)

for x, y ∈ X. The metric space (X, hyp) is defined by the set X of points and
by means of hyp (x, y) ≥ 0 for x, y ∈ X and

cosh hyp(x, y) :=
√
1 + x2

√
1 + y2 − xy.(2)

A set S �= ∅ together with a mapping d : S×S → R is called a metric space
(S, d) provided

(i) d(x, y) = 0 if, and only if, x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ d(x, z) + d(z, y)

hold true for all x, y, z ∈ S.

Observe d(x, y) ≥ 0 for all x, y ∈ S, since (i), (ii), (iii) imply

0 = d(x, x) ≤ d(x, y) + d(y, x) = 2d(x, y).

Suppose that (S, d) is a metric space and that c ∈ S and � ≥ 0 is in R. Then

B(c, �) := {x ∈ S | d(c, x) = �}(3)
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is the ball with center c and radius �. Observe B(c, 0) = {c}. If a, b are distinct
elements of S, then

g(a, b) :=
{
x ∈ S | B

(
a, d(a, x)

)
∩ B

(
b, d(b, x)

)
= {x}

}
(4)

will be called a g–line (see [3]) of (S, d), and

{x ∈ S | d(a, x) = d(b, x)}(5)

a hyperplane. Observe g(a, b) = g(b, a) for a �= b.

The lines of (X, eucl), (X, hyp) are given by the sets

{p+ ξq | ξ ∈ R} with p, q ∈ X such that q �= 0,(6)

{pCξ + qSξ | ξ ∈ R} with p, q ∈ X, pq = 0, q2 = 1,(7)

respectively, where we wrote cosh ξ =: Cξ and sinh ξ =: Sξ. The hyperplanes
of (X, eucl), (X, hyp) are given by the sets

{x ∈ X | ax = α} with a ∈ X\{0}, α ∈ R,(8)

{γpCξ + ySξ | ξ ∈ R, y ∈ p⊥, y2 = 1} with p ∈ X, p2 = 1, γ ∈ R≥0,(9)

respectively (see [3]).

Let now (X, d) be one of the metric spaces (X, eucl) or (X, hyp) where
X = (X, δ) is an arbitrary (finite or infinite) dimensional real vector space,
dimX > 1, with a fixed real inner product δ. Observe that there exist infi-
nite dimensional real vector spaces X with real inner products δ, δ′ such that
(X, δ) �∼= (X, δ′).

A bijection f of X is called a motion of (X, d) (see [3], p. 76) provided, i.e.
if, and only if,

d(x, y) = d
(
f(x), f(y)

)
holds true for all x, y ∈ X.

The following statement is important.

Proposition 1. Motions of (X, d) map g–lines onto g–lines.

Proof. a) If f is a motion of (X, d), then f−1 as well, since

d
(
f−1(x), f−1(y)

)
= d

(
f
(
f−1(x)

)
, f
(
f−1(y)

))
for all f−1(x), f−1(y) ∈ X, i.e. for all x, y ∈ X.
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b) From (3) we get for a motion f of (X, d),

f
(
B(c, �)

)
= {f(x) ∈ X | d(c, x) = �} =

{
f(x) ∈ X | d

(
f(c), f(x)

)
= �

}
,

i.e.

f
(
B(c, �)

)
= {y ∈ X | d

(
f(c), y

)
= �} = B

(
f(c), �

)
.

c) f
(
g(a, b)

)
(see (4)) consists of all f(x) ∈ X satisfying

B
(
a, d(a, x)

)
∩ B

(
b, d(b, x)

)
= {x}.

This last equation is equivalent with

B
(
f(a), d

(
f(a), f(x)

))
∩ B

(
f(b), d

(
f(b), f(x)

))
= {f(x)}.

Put f(a) =: p, f(b) =: q. Hence

f
(
g(a, b)

)
=

{
y ∈ X | B

(
p, d(p, y)

)
∩ B

(
q, d(q, y)

)
= {y}

}
= g(p, q). �

Remark. If we define the g–lines of (X, d) equivalently as lines of L.M. Blu-
menthal (see [3], section 2.2), Proposition 1 can be derived as shown on p. 42,
[3], along the rows before Proposition 5.

3. Translations of (X, d), d ∈ {eucl, hyp}

Let e ∈ X be given with e2 = 1. Put H := e⊥, i.e. H = {x ∈ X | xe = 0},
and � : H × R → R by means of

�(h, λ) = sinhλ ·
√

1 + h2 for d = hyp,(10)

�(h, λ) = λ for d = eucl,(11)

and all (h, λ) ∈ H × R, according to section 1.7, [3]. For t ∈ R we define the
translation T e

t : X → X of (X, d) with axis e,

T e
t

(
h+ �(h, τ)e

)
= h+ �(h, τ + t)e,(12)

by observing that to x ∈ X there exist uniquely determined x ∈ H and x0 ∈ R
with x = x + x0e, namely xe = (x + x0e)e = x0 and x = x − x0e, and by
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defining h ∈ H and τ ∈ R for x ∈ X by means of x =: h + �(h, τ)e, i.e. by
h = x and �(h, τ) = x0. In other words: with

x = x+ x0e = x+ �(x, τ)e = x+ sinh τ ·
√
1 + x2e

the translation (12) reads as

T e
t (x+ sinh τ ·

√
1 + x2e) = x+ sinh(τ + t)

√
1 + x2e(13)

for d = hyp and with

x = x+ x0e = x+ �(x, τ)e = x+ τe

as
T e
t (x+ τe) = x+ (τ + t)e, i.e.

T e
t (x) = x+ te,(14)

for d = eucl.

Remark. H = e⊥ is the euclidean hyperplane (8),

{x ∈ X | ex = 0},

in case d = eucl, and the hyperbolic hyperplane (9),

{0 · e · Cξ + ySξ | ξ ∈ R, y ∈ e⊥, y2 = 1},

for d = hyp.

Remark. Observe that the functions � : H × R → R in (10), (11) are char-
acterized by Theorem 7 ([3], p. 21) as kernels of suitable translation groups
{T e

t | t ∈ R} leading to hyperbolic, euclidean geometry, respectively.

According to our definition of the translation T e
t : X → X we defined here

the set of all translations of (X, d) by

TL(X, d) =
{
T e
t | t ∈ R and e ∈ X with e2 = 1

}
with

T e
t

(
x = h+ �(h, τ)e

)
= h+ �(h, τ + t)e

for all x ∈ X, i.e. for all h ∈ H = e⊥ and all τ ∈ R. We also have

T e
t (x) = x+ [(xe)(cosh t − 1) +

√
1 + x2 sinh t]e

(see (1.8) of section 1.7, [3]) in the case d = hyp.
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Remark. In [7] we define as hyperbolic translation of X besides μ = id every
hyperbolic motion μ �= id of X with the existence of an element a �= 0 in X such
that 0 �= μ(x) − x ∈ Ra holds true for all x ∈ X: this, especially, means that
there is no x ∈ X with μ(x) = x. For the case dimX = 2 compare the book
[4] (here p. 163, or even section 3.4) concerning hyperbolic translations and
hyperbolische Schubspiegelungen. In comparison with the planar case, observe,
that to every T j

t , t ∈ R, j ∈ X with j2 = 1, there exists a hyperbolic line g
remaining fixed, in its entirety, under T j

t . In fact, take the hyperbolic line

g = {p · cosh ξ + q sinh ξ | ξ ∈ R}, p = 0 and q = j.

Now
T j
t (j sinh ξ) = T j

t (0 + sinh ξ ·
√
1 + 02j) = 0 + sinh(ξ + t)j

implies T j
t (g) = g.

Theorem 2. Take a fixed element e ∈ X with e2 = 1. Then

TL(X, d) = {αT e
t α
−1 | α ∈ O(X) and t ∈ R}.(15)

Proof. Given t ∈ R and j ∈ X with j2 = 1. According to step A of the proof
of Theorem 7 ([3], section 1.11) there exists γ ∈ O(X) with γ(j) = e. Put
γ−1 =: α. For all x = h+ �(h, τ)e with h := x we would like to prove

L := αT e
t (x) = T j

t α(x) =: R.(16)

Obviously, α(h) · j = α(h)α(e) = he = 0, and

L = α
(
h+ �(h, τ + t)e

)
= α(h) + �(h, τ + t)j.

Moreover, α(h) ∈ j⊥,

R = T j
t α(x) = T j

t

(
α(h) + �(h, τ)j

)
,

�(h, τ) =
√
1 + h · h sinh τ =

√
1 + α(h) · α(h) sinh τ = �

(
α(h), τ

)
,

and �(h, τ + t) = �
(
α(h), τ + t

)
as well. Hence

L = α(h) + �
(
α(h), τ + t

)
j = T j

t

(
α(h) + �

(
α(h), τ

)
j
)
,

and R = T j
t

(
α(h) + �

(
α(h), τ

)
j
)
= L, i.e. we obtain

αT e
t α
−1 = T j

t

and (16) for d = hyp. In the case d = eucl, of course, the proof of �(h, τ) =
= �

(
α(h), τ

)
is trivial. – The remaining question is whether every αT e

t α
−1
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must be a translation of (X, d) in the case t ∈ R and α ∈ O(X)? Now given
αT e

t α
−1, put α(e) =: j and consider T j

t . Observe

αT e
t

(
x = h+ �(h, τ)e

)
= α

(
h+ �(h, τ + t)e

)
= α(h) + �(h, τ + t)j,

T j
t α

(
x = h+ �(h, τ)e

)
= T j

t

(
α(h) + �(h, τ)j

)
together with �(h, τ) = sinh τ ·

√
1 + h2 = sinh τ

√
1 + [α(h)]2, i.e. �(h, τ) =

= �
(
α(h), τ

)
for d = hyp. Hence

T j
t α(x) = T j

t

(
α(h) + �

(
α(h), τ

)
j
)
= α(h) + �

(
α(h), τ + t

)
j,

i.e. αT e
t (x) = α(h) + �(h, τ + t)j = T j

t α(x). Thus

αT e
t (x) = T j

t α(x)

for all x ∈ X, i.e. αT e
t α
−1 is the translation T j

t . �
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