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Abstract. The following assertion is proved. Let @1, Q2 be odd primes,
Aog,,0,(z) be the number of those n < z for which @1 1 o(n),Q210(n+1)
simultaneously hold. Then Ag, q,(z) > Toeays i © > Xo. ¢, Xo are
positive constants.

1. Introduction

1.1. Notation

P = set of primes. ¢(n) = Euler’s totient function, o(n) = sum of divisors
function, 7(n) = number of divisors.

Let 1 =logz, o = logxy, ..., Tpr1 = logzy.
1.2. Formulation of the theorems

In his paper [4] Katai (Theorem 4) proved the following assertion:
Let A>2, I, = [22,05], Q1,Qz € P,

B, () =#{n<z : Qife(n), Q2fp(n+1)}.
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Then, uniformly for Q1,Q2 € I,

%EQM% (z) = (1+0,(1)) g K1 K2,
where

Kj = exp (_Qj@l) ) (j=1,2)7
and

pPEP

Kétai notes that similar theorem can be proved for ¢ instead of ¢, and that
he is unable to count the asymptotic of those n for which 31 ¢(n), 31 ¢(n+1)

simultaneously holds.

In this paper we shall investigate the function

AQl,sz(w) =#{n<z : Qifon), Q2fo(n+1)},

where @1, Q2 are arbitrary odd primes, @1 = @2 is included.

Theorem 1. If Q1,Q2 € P, Q1 # 2, Q2 # 2, then there are constants ¢ > 0

and Xo such that
cx

(log z)®"

AQhQQ (l‘) >

if © > Xo.

Theorem 2. Let Q € P, Q # 2,

Bo(z)=#{p<z : peP, Qtolp+1)}.

Then there are constants ¢ > 0 and Xq such that

cT
(logz)

Bg(z) >

Our theorems follow from some variants of known, deep theorems.
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2. Main auxiliary results

2.1. Let Q € P, @ # 2, x(n) be a character mod @, such that x(—1) = —1.
Let 7(n) = Y10 x(d),

T(x) = > r(@Qp+1) [u(@p+1)|.

p<z
p+1£0 (mod Q)

Theorem 3. We have

z z
Tx)=A4 —
() Ologx +0 ((log x)H‘S) ’

where § and Ay are positive constants.

2.2. Let Q1 # Q2, @1, Q2 be odd primes, x(n) be a character mod Q2, such
that x(—1) = —1. Let r(n) = >_,,, x(d). Let A= QQ5, a € {1,2}, b€ {1,2}
such that Q1 1 o(A). Let

S(z) = > r(Ap +1) |u(Ap+1)|.

p<z
p+1#0 (mod Q1)

Theorem 4. We have

T T
560 = o +© ()

where § and By are suitable positive constants.
3. Deduction of Theorem 1 and 2 from Theorem 3 and 4

In the case Q1 = Q2 = Q let A = Q, x mod @ be a Dirichlet character such
that x(—1) = —1, and r(n) = 3, x(d).

If p+1=£0 (mod @), and |u(@Qp + 1)|r(Qp + 1) # 0, then Qp + 1 is a
squarefree number, and 7|@p+1, 7 € P implies that 14+ x(7) = 2, consequently

Q1m+1, thus Q{ o(Qp+1). Furthermore Q { o(Qp) = (Q +1)(p+1).
Assume that Q; # Q2. Let A = Q$Q5, where a and b are such positive
integers that Q1 { (1 + Q2+ ... +Q%, Q211+ Q1 + ...+ Q%. Observe that
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a,b € {1,2} is a suitable choice. Let x be a character mod @2, such that
A1) = “1, and r(n) = X1, x(d).

Let p#£ —1 (mod Q1). Then Q1 1 o(Ap), and if |u(Ap+ 1)|r(Ap+ 1) #0,
then Q2 t o(Ap + 1).

We have

T(x) < Aga.(x) >, r*(Qp+1) [m(@Qp+1).

p<z
pZ—1 (mod Q)

Since 7?(Qp+1) < 7%(Qp+1), and >, ., 73(n) < cz -}, therefore Ag o(z) >
> & -

We can obtain similarly that

@ <Bo@ Y PAp ) [u(Ap+ 1),
p<z
p+1£0  (mod Q)
and hence that Bg(z) > %.
1

Remark. We could improve these inequalities by using some sieve results.

4. Sketch of the proof of Theorem 3 and 4

The main ingredient of the proof is the inequality due to E. Bombieri and
A1 Vinogradov which is quoted now as Lemma 1.

Let m(2,D,l) =#{p <z : p=1 (mod D)},

Lemma 1. (See Elliott [1], Chapter 7.)

li z T
7Dvl - < A
Z l(rlfll(?dXD) pors (2 ) (D) < i

\/ﬁ
D<2B  (1,D)=1

where B > 2A + 23.
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I. Katai considered in [4] the sum

= ralp—1) |ulp - 1)},

p<z

where r4(n) = 3, x4(d), x (mod 4) is the character satisfying x(-1) = —1,

and proved that
T(x)=Ap—— 4+ 0 [ ———
~ Ooga (log x)1+o )
To prove Theorem 3 we can follow his argument. Let

T(z, k) = > r(Qp+1).
p<z
p+1#£0 (mod Q)
Qp+1=0 (mod k)

Arguing as in [4], we have
x
T(x)= > u(d)T(x,d*)+0 (15)) .
d<a3 T

Let k <29, (k,Q) = 1. Then

T(x, k) = Z Z

p<z Qp+1=uv

Qp+1=0(k)
p+1£0(Q)
Thus
T(x, k) = Z x(u) Z 1.
u<Qz+1 p<z
(u,Q)=1 pZE—1(Q)

Qp+12£0([k,u])
Since (@, u) = 1, therefore the right most sum equals

Z (z, Qlk, u],1;),

where [; are those residues for which
Qli+1=0 (mod [k,u]), [;+1#0 (mod Q)

holds. With this modification we can proceed further. The ”enveloping sieve”
of C. Hooley can be applied.

The proof of Theorem 4 is similar.
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