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Abstract. The following assertion is proved. Let Q1, Q2 be odd primes,
AQ1,Q2(x) be the number of those n ≤ x for which Q1 � σ(n), Q2 � σ(n+1)
simultaneously hold. Then AQ1,Q2(x) ≥ cx

(log x)5
, if x > X0. c, X0 are

positive constants.

1. Introduction

1.1. Notation

P = set of primes. ϕ(n) = Euler’s totient function, σ(n) = sum of divisors
function, τ(n) = number of divisors.

Let x1 = log x, x2 = log x1, . . ., xk+1 = log xk.

1.2. Formulation of the theorems

In his paper [4] Kátai (Theorem 4) proved the following assertion:

Let λ > 2, Ix =
[
λx2

x3
, x2

]
, Q1, Q2 ∈ P,

EQ1,Q2(x) := # {n ≤ x : Q1 � ϕ(n), Q2 � ϕ(n+ 1)} .
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Then, uniformly for Q1, Q2 ∈ Ix,

1

x
EQ1,Q2(x) =

(
1 +Ox(1)

) B
2
κ1 κ2,

where

κj = exp

(
− x2

Qj − 1

)
, (j = 1, 2),

and

B =
∏
p≥3

p∈P

(
1 − 2

p(p − 1)

)
.

Kátai notes that similar theorem can be proved for σ instead of ϕ, and that
he is unable to count the asymptotic of those n for which 3 � ϕ(n), 3 � ϕ(n+1)
simultaneously holds.

In this paper we shall investigate the function

AQ1,Q2(x) := # {n ≤ x : Q1 � σ(n), Q2 � σ(n+ 1)} ,

where Q1, Q2 are arbitrary odd primes, Q1 = Q2 is included.

Theorem 1. If Q1, Q2 ∈ P, Q1 �= 2, Q2 �= 2, then there are constants c > 0
and X0 such that

AQ1,Q2
(x) ≥ cx

(log x)5
,

if x > X0.

Theorem 2. Let Q ∈ P, Q �= 2,

BQ(x) = # {p ≤ x : p ∈ P, Q � σ(p+ 1)} .

Then there are constants c > 0 and X0 such that

BQ(x) ≥ cx

(log x)5
.

Our theorems follow from some variants of known, deep theorems.
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2. Main auxiliary results

2.1. Let Q ∈ P, Q �= 2, χ(n) be a character mod Q, such that χ(−1) = −1.
Let r(n) =

∑
d|n χ(d),

T (x) =
∑
p≤x

p+1 ≡0 (mod Q)

r(Qp+ 1) |μ(Qp+ 1)|.

Theorem 3. We have

T (x) = A0
x

log x
+O

(
x

(log x)1+δ

)
,

where δ and A0 are positive constants.

2.2. Let Q1 �= Q2, Q1, Q2 be odd primes, χ(n) be a character mod Q2, such
that χ(−1) = −1. Let r(n) =

∑
d|n χ(d). Let A = Qa

1Q
b
2, a ∈ {1, 2}, b ∈ {1, 2}

such that Q1 � σ(A). Let

S(x) =
∑
p≤x

p+1 ≡0 (mod Q1)

r(Ap+ 1) |μ(Ap+ 1)|.

Theorem 4. We have

S(x) = B0
x

log x
+O

(
x

(log x)1+δ

)
,

where δ and B0 are suitable positive constants.

3. Deduction of Theorem 1 and 2 from Theorem 3 and 4

In the case Q1 = Q2 = Q let A = Q, χ mod Q be a Dirichlet character such
that χ(−1) = −1, and r(n) =

∑
d|n χ(d).

If p + 1 �≡ 0 (mod Q), and |μ(Qp + 1)| r(Qp + 1) �= 0, then Qp + 1 is a
squarefree number, and π|Qp+1, π ∈ P implies that 1+χ(π) = 2, consequently
Q � π + 1, thus Q � σ(Qp+ 1). Furthermore Q � σ(Qp) = (Q+ 1)(p+ 1).

Assume that Q1 �= Q2. Let A = Qa
1Q

b
2, where a and b are such positive

integers that Q1 � (1 + Q2 + . . . + Qb
2, Q2 � 1 + Q1 + . . . + Qa

1 . Observe that
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a, b ∈ {1, 2} is a suitable choice. Let χ be a character mod Q2, such that
χ(−1) = −1, and r(n) =

∑
d|n χ(d).

Let p �≡ −1 (mod Q1). Then Q1 � σ(Ap), and if |μ(Ap+ 1)| r(Ap+ 1) �= 0,
then Q2 � σ(Ap+ 1).

We have

T 2(x) ≤ AQ1,Q2
(x)

∑
p≤x

p ≡−1 (mod Q)

r2(Qp+ 1) |μ(Qp+ 1)|.

Since r2(Qp+1) ≤ τ2(Qp+1), and
∑

n≤x τ
2(n) ≤ cx ·x3

1, therefore AQ,Q(x) �
� x

x5
1
.

We can obtain similarly that

S2(x) ≤ BQ(x)
∑
p≤x

p+1 ≡0 (mod Q)

r2(Ap+ 1) |μ(Ap+ 1)|,

and hence that BQ(x) � x
x5
1
.

Remark. We could improve these inequalities by using some sieve results.

4. Sketch of the proof of Theorem 3 and 4

The main ingredient of the proof is the inequality due to E. Bombieri and
A.I. Vinogradov which is quoted now as Lemma 1.

Let π(z,D, l) = #{p ≤ z : p ≡ l (mod D)},

li z =

∫ z

2

du

log u
.

Lemma 1. (See Elliott [1], Chapter 7.)

∑
D≤

√
x

x1B

max
l (modD)

(l,D)=1

max
z≤x

∣∣∣∣π(z,D, l) − li z

ϕ(D)

∣∣∣∣ � x

xA
1

,

where B ≥ 2A+ 23.
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I. Kátai considered in [4] the sum

T (x) =
∑
p≤x

r4(p − 1) |μ(p − 1)|,

where r4(n) =
∑

d|n χ4(d), χ (mod 4) is the character satisfying χ(−1) = −1,
and proved that

T (x) = A0
x

log x
+O

(
x

(log x)1+δ

)
.

To prove Theorem 3 we can follow his argument. Let

T (x, k) =
∑
p≤x

p+1 ≡0 (mod Q)
Qp+1≡0 (mod k)

r(Qp+ 1).

Arguing as in [4], we have

T (x) =
∑
d≤x3

1

μ(d)T (x, d2) +O

(
x

x1,5
1

)
.

Let k ≤ x6
1, (k,Q) = 1. Then

T (x, k) =
∑
p≤x

Qp+1≡0(k)

p+1 ≡0(Q)

∑
Qp+1=uv

χ(u).

Thus
T (x, k) =

∑
u≤Qx+1

(u,Q)=1

χ(u)
∑
p≤x

p ≡−1(Q)

Qp+1 ≡0([k,u])

1.

Since (Q, u) = 1, therefore the right most sum equals

Q−2∑
j=1

π(x,Q[k, u], lj),

where lj are those residues for which

Qlj + 1 ≡ 0 (mod [k, u]), lj + 1 �≡ 0 (mod Q)

holds. With this modification we can proceed further. The ”enveloping sieve”
of C. Hooley can be applied.

The proof of Theorem 4 is similar.
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