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Abstract. Let E be a real inner product space of dimension at least 2. If
f : E → E satisfies

f(x+ y) = f(x) + f(y) for all orthogonal x, y ∈ E

and
f(f(x)) = x for x ∈ E,

then f is additive.

Let E be a real inner product space of dimension at least 2.

A function f mapping E into on abelian group is called orthogonally addi-
tive, if

f(x+ y) = f(x) + f(y) for all x, y ∈ E with x ⊥ y.

It is well known, see [3, Corollary 10] and [1, Theorem 1], that every orthogo-
nally additive function f defined on E has the form

(1) f(x) = a(‖x‖2) + b(x) for x ∈ E,

where a and b are additive functions uniquely determined by f .

Our main result says that every involutory orthogonally additive function
is additive.
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Theorem 1. If f : E → E is orthogonally additive and

(2) f(f(x)) = x for x ∈ E,

then f is additive.

Proof. Let (u|v) denote the inner product of u, v ∈ E.

As mentioned above f has form (1) with additive functions a : R → E and
b : E → E. It follows from (1) that

‖f(x)‖2 = ‖a(‖x‖2)‖2 + 2(a(‖x‖2)|b(x)) + ‖b(x)‖2 for x ∈ E,

which jointly with (2) and (1) gives

x = a(‖f(x)‖2) + b(f(x)) =

= a(‖a(‖x‖2)‖2 + 2(a(‖x‖2)|b(x)) + ‖b(x)‖2) + b(a(‖x‖2) + b(x))

for x ∈ E. Hence, if x ∈ E and r ∈ Q, then

rx = r4a(‖a(‖x‖2)‖2) + 2r3a((a(‖x‖2)|b(x))) + r2a(‖b(x)‖2)+
+ r2b(a(‖x‖2)) + rb(b(x)).

Consequently,

(3) b(b(x)) = x and a((a(‖x‖2)|b(x))) = 0 for x ∈ E.

In particular for all x, y ∈ E we have

0 = a((a(‖x+ y‖2)|b(x+ y))) =

= a((a(‖x‖2)|b(y)) + 2(a((x|y))|b(x+ y)) + (a(‖y‖2)|b(x))),

i.e.,

a((a(‖x‖2)|b(y)) + 2(a((x|y))|b(x))) = −a((a(‖y‖2)|b(x)) + 2(a((x|y))|b(y))).

As the function of x ∈ E, the left–hand side is even, whereas the right–hand
side is odd, and so on each side we have zero for every x, y ∈ E. Hence

(4) a((a(‖x‖2)|b(y))) = 0 for all orthogonal x, y ∈ E.

Now, if z ∈ E and α ∈ (0,∞), then finding an x ∈ E such that x ⊥ b(z) and
‖x‖2 = α and applying (3) and (4) we see that

a((a(α)|z)) = a((a(‖x‖2)|b(b(z)))) = 0.
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This shows that

(5) a((a(α)|x)) = 0 for α ∈ R and x ∈ E.

Suppose a(α) �= 0 for some α ∈ R. Then(
a(α)|α a(α)

‖a(α)‖2

)
= α

and by (5) we have

a(α) = a

((
a(α)|α a(α)

‖a(α)‖2

))
= 0.

The contradiction obtained proves that a = 0 and (1) gives f = b. �

Remark 1. Let H0 be a basis of the vector space R over Q and let H be a
basis of the vector space E over Q. Then (cf. [2, Theorem 4.2.3])

c = card H0 ≤ card H.

If H1 and H2 are disjoint subsets of H such that

1 ≤ card H1 ≤ c and card H2 = card H,

and a : R → E and b : E → E are additive functions such that

a(H0) = H1, b(H) = H2

and b is injective, then the function f : E → E given by (1) is orthogonally
additive, injective and it is not additive.

To see that f is injective it is enough to observe that if x, y ∈ E and
f(x) = f(y), then

a(‖x‖2) − a(‖y‖2) = b(y) − b(x),

the left–hand side belongs to LinQH1 and the right–hand side is in LinQH2,
whence b(x) = b(y) and, consequently, x = y.

Remark 2. Assume

E = E1 ⊕ E2, E1 ⊥ E2 and dim E1 = 1.

Fix an e ∈ E1 with ‖e‖ = 1, let a0 : R → R and b0 : E2 → E2 be additive
functions such that

a0([0,∞)) = R, b0(E2) = E2
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and define a : R → E and b : E → E by

a(α) = a0(α)e, b(αe+ x2) = b0(x2) for α ∈ R and x2 ∈ E2.

Then the function f : E → E given by (1) is orthogonally additive, f(E) = E
and f is not additive.

To see that f(E) = E fix arbitrarily y ∈ E. Then y = βe+y2 where β ∈ R,
y2 ∈ E2 and y2 = b0(x2) for some x2 ∈ E2, β − a0(‖x2‖2) = a0(α) for some
α ∈ [0,∞). Consequently ‖

√
αe+ x2‖2 = α+ ‖x2‖2 and

f(
√
αe+ x2) = a0(α+ ‖x2‖2)e+ b0(x2) = βe+ y2 = y.

We have been unable to find an example of a bijective orthogonally additive
function f : E → E which is not additive.

Remark 3. If a : R → E and b : E → E are linear and the function f : E → E
given by (1) is bijective, then it is linear.

Proof. As for some x0 ∈ E we have

−a(1) = f(x0) = ‖x0‖2a(1) + b(x0),

it follows that
(‖x0‖2 + 1)a(1) = −b(x0)

and so
a(1) = b(y0),

where y0 = − 1
1+‖x0‖2x0. Consequently

f(x) = ‖x‖2a(1) + b(x) = b(‖x‖2y0 + x)

for x ∈ E. Suppose y0 �= 0. Then

f

(
− 1

‖y0‖2
y0

)
= b

(
1

‖y0‖2
y0 − 1

‖y0‖2
y0

)
= 0 = f(0)

which contradicts the injectivity of f . Hence y0 = 0 and f = b. �
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